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Preface

Graphs model a wide variety of natural phenomena, and it is the study of
these phenomena that gives rise to many of the questions asked by pure graph
theorists. Forexample, one motivation for the study of the chromatic numberin
graph theory is the well-known connection to scheduling problems. Suppose
that an assortment of committees needs to be scheduled, each for a total of one
hour. Certain pairs of committees, because they have a member in common,
cannot meet at the same time. What is the length of the shortest time interval
in which all the committees can be scheduled?

Let G be the graph whose vertices are these committees, with an edge
between two committees if they cannot meet at the same time. The standard
answer to the scheduling question is that the length of the shortest time interval
is the chromatic number of G. As an illustration, suppose that there are 5
committees, with scheduling conflicts given by the graph in Figure A. Since

Figure A: The graph Cs, colored with three colors.

G can be colored with 3 colors, the scheduling can be done in 3 hours, as is
illustrated in Figure B.

It is a widely held misconception that, since the chromatic number of G
is 3, the schedule in Figure B cannot be improved. In fact, the 5 committees
can be scheduled in two-and-a-half hours, as is illustrated in Figure C.

All that is required is a willingness to allow one committee to meet for
half an hour, to interrupt their meeting for a time, and later to reconvene for .
the remaining half hour. All that is required is a willingness to break one
whole hour into fractions of an hour—to break a discrete unit into fractional
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Figure B: A schedule for the five committees.
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Figure C: An improved schedule for the five committees.

parts. The minimum length of time needed to schedule committees when
interruptions are permitted is not the chromatic number of G but the less
well-known fractional chromatic number of G.

This example illustrates the theme of this book, which is to uncover the
rational side of graph theory: How can integer-valued graph theory concepts
be modified so they take on nonintegral values? This “fractionalization” bug
has infected other parts of mathematics. Perhaps the best-known example
is the fractionalization of the factorial function to give the gamma function.
Fractal geometry recognizes objects whose dimension is not a whole number
[126]. And analysts consider fractional derivatives [132]. Some even think
about fractional partial derivatives!

We are not the first to coin the term Jfractional graph theory; indeed, this
is not the first book on this subject. In the course of writing this book we
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3.1 Definitions

The most celebrated invariant in all of graph theory is the chromatic number.
Recall that an n-coloring of a graph G is an assignment of one of n colors to
cach vertex so that adjacent vertices receive different colors. The chromatic
mumber of G, denoted x (G), is the least n for which G has an n-coloring.
The fractional chromatic number is defined as follows. A b-fold coloring
of a graph G assigns to each vertex of G a set of b colors so that adjacent
vertices receive disjoint sets of colors. We say that G is a: b-colorable if it has
2 b-fold coloring in which the colors are drawn from a palette of a colors. We
sometimes refer to such a coloring as an a: b-coloring. The least a for which
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G has a b-fold coloring is the b-fold chromatic number of G, denoted x;(G).
Note that x1(G) = x(G).
Since x446(G) = xa(G) + xp(G), we define the fractional chromatic

number to be G G
Xb( )=meb( ).
b b b
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(See §A.4 on page 188.)

We can also use the methods of Chapter 1 to describe the fractional chro-
matic number. Associate witha graph G its vertex-independent set hypergraph
'H defined as follows. The vertices of H are just the vertices of G, while the
hyperedges of H are the independent sets of G. Then k() is the minimum
number of independent sets of vertices needed to cover V(G). Since a subset
of an independent set is again independent, this is equivalent to the minimum
number of independent sets needed to partition V (G), i.e., the chromatic num-
ber. (See also exercise 7 on page 17.) Thus k(H) = x(G). Furthermore, the
b-fold chromatic number of G is just the b-fold covering number of H and so
xr(G) = ks (H).

We know from Corollary 1.3.1 on page 5 that x ;(G) is a rational number

and from Corollary 1.3.2 that there is a b so that x 7 (G) = x,(G)/b. If G has
no edges, then x7(G) = 1. Otherwise, xr(G) = 2.

Proposition 3.1.1 For any graph G, x7(G) = v(G)/a(G). Furthermore, if
G is vertex-transitive, then equality holds.

Proof. Immediate from Proposition 1.3.4 on page 7. 0

What is the dual notion? There is a natural interpretation of p s () (where
H is the vertex-independent set incidence hypergraph of G). Note that p(H)
is the maximum number of vertices no two of which are together in an inde-
pendent set. Stated another way, p(H) is the maximum size of a clique, so
p(H) = w(G). Thus ps(H) is the fractional clique number of G, denoted
wy(G). By duality, x7(G) = wr(G).

The fractional clique number can also be defined as follows. For a graph
G and positive integers a, b, we call a multiset of vertices K an a: b-clique if
| K| = a and if for every independent set of vertices S the number of vertices
of K N (a8) (counting multiplicities) is at most b. The b-fold clique number

of G, denoted w,(G), is the largest a such that G has an a: b-clique, and then

wp(G) —w wp(G)
b bP b
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Figure 3.1. The Petersen graph Ks.,.

A graph G is called perfect if x(H) = w(H) for all induced subgraphs
W H. Perfection becomes trivial in fractional graph theory: for all graphs G,
2 H) = wy(H) for all induced subgraphs H of G! See also exercise 9 on
pase 72.

Proposition 3.1.2 Xf(C21n+l) =24 (1/m)

Proof. Since cycles are vertex-transitive and a(Ca,,41) = m, the result follows
Som Proposition 3.1.1 on the facing page. a

Homomorphisms and the Kneser graphs

n positive integers a and b, define a graph K., as follows: the vertices
the b-element subsets of a fixed a-element set. There is an edge between
of these vertices if they are disjoint sets. The graphs K., are known as
Kneser graphs and they play a central role in the theory of the fractional
matic number. As an illustration, K., is pictured in Figure 3.1.

We restrict attention to the case where a > 2b, since otherwise K., has
edges. Note that K;.; = K, the complete graph on a vertices. The graph
2 is just L(K,), the complement of the line graph of the complete graph
a vertices.

Suppose that G and H are graphs. A homomorphism ¢ : G — H
2 mapping from V(G) to V(H) such that ¢(v)¢(w) € E(H) whenever
= E(G).
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Figure 3.2. The graph G s s from Proposition 3.2.2. Note that a(Gies) = 5 (black
vertices) and (G 16.5) = [16/5] = 3 (thick edges). See also exercise 1 on page 72.
We prove this theorem
There is a simple connection between graph coloring and graph homo- following proposition.

morphisms, namely, a graph G is n-colorable if and only if there is a homo-
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We know that xs can take only rational values and that x(G) = 0,
Theorem 3.2.3, a(Kap) =

x7(G) = 1, 0r x 7(G) = 2 (see exercises 2 and 3 on page 72). In fact, all
such values are actually achieved.

xr(Kq
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Proposition 3.2.2 Let a and b be positive integers witha > 2b. Let G, be
the graph with vertex set V(G) = {0, 1,...,a — 1}. The neighbors of vertex
vare {v+b,v+b+1,...,v+a— b} with addition modulo a.

Then x(Gap) = a/band % (Gup) =a.

Think of the vertices of G, as equally spaced points around a circle,
with an edge between two vertices if they are not too near each other; see

Figure 3.2.
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Proof. Note that G, ; has a vertices and is vertex-transitive. The maximum
mdependent set of G, 4 are all those of the form {i + 1,i + 2, ... ,i + b},
50 @(Gyp) = b (exercise 1 on page 72). By Proposition 3.1.1 on page 42,
%7(Gap) = a/b. This implies x;,(G) > a so it remains to exhibit an a: b-
coloring of G, . Letthe colors be {0, 1, ...,a— 1} and assign to vertex v the
colorset {v, v+1, ..., v+ b — 1} with addition modulo a. Itis easy to check
Sat if vw € E(G,,p) then the color sets assigned to v and w are disjoint. O

Another graph whose fractional chromatic number is a/b is the Kneser
graph K. There is a close connection between this fact and the following
well-known theorem [55] of extremal set theory, which has a simple phrasing
= terms of the independence number of the Kneser graphs.

Theorem 3.2.3 (Erdds-Ko-Rado) If a and b are positive integers with a >
25, then
a-—1
Kop) = :
o a.b) (b = ])

We prove this theorem below and, in fact, show that it is equivalent to the
Sollowing proposition.

Proposition 3.2.4 x/(K,,) = a/b.

We provide two proofs, both very short. The first proof uses the Erdés-Ko-
#ado theorem 3.2.3. The second uses composition of graph homomorphisms
#nd is independent of Theorem 3.2.3. We may thus use Proposition 3.2.4 to
grove the ErdSs-Ko-Rado theorem without circularity.

Proof 1. The Kneser graph K., has (g) vertices and is vertex-transitive. By
Theorem 3.2.3, @(Ky) = (§}). Hence, by Proposition 3.1.1

a -1
tto=(2) /(6 war :

f 2. Let G, 5 be the graph of Proposition 3.2.2 on the facing page. That
It tells us that there is a homomorphism ¢ : Gap — Kgap. Suppose that
&+ hasac: d-coloring; in other words, suppose that there is a homomorphism
W - Kup — K. Then ¥ o ¢ would be a homomorphism from G, j to K .4,
G,4.» would have a ¢: d-coloring. Hence 3 2 @) = g-. We conclude
the natural a: b-coloring of K, (i.e., the identity coloring) is optimal. O




