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How to guard a museum

Here is an appealing problem which was raised by Victor Klee in 1973.
Suppose the manager of a museum wants to make sure that at all times
every point of the museum is watched by a guard. The guards are stationed
at fixed posts, but they are able to turn around. How many guards are
needed?

We picture the walls of the museum as a polygon consisting of n sides.
Of course, if the polygon is convex, then one guard is enough. In fact. the
guard may be stationed at any point of the museum. But, in general. the
walls of the museum may have the shape of any closed polygon.

Consider a comb-shaped museum with n = 3m walls, as depicted on the
right. It is easy to see that this requires no less than m = % guards. In
fact. there are n walls. Now notice that the point | can only be observed by
a guard stationed in the shaded triangle containing 1, and similarly for the
other points 2, 3, ... ,m. Since all these triangles are disjoint we conclude
that m guards are needed. But i guards are also enough, since they can
be placed at the top lines of the triangles. By cutting off one or two walls
at the end, we conclude that for any n there is an n-walled museum which
requires | 4| guards.

Chapter 26

A convex exhibition hall

A real life art gallery . ..
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A museum with n = 12 walls
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Schonhardt’s polyhedron: The interior
dihedral angles at the edges AB'. BC'
and C' A" are greater than 180°.

The following result states that this is the worst case,

Theorem. For any museum with n walls, | 5| guards suffice.

This “art gallery theorem™ was first proved by VaSek Chvital by a clever
argument, but here is a proof due to Steve Fisk that is truly beautiful.

B Proof. First of all, let us draw n — 3 non-crossing diagonals between
corners of the walls until the interior is triangulated. For example, we can
draw 9 diagonals in the museum with 12 walls to produce a triangulation.
It does not matter which triangulation we choose, any one will do. Now
think of the new figure as a plane graph with the corners as vertices and the
walls and diagonals as edges.

Claim. This graph is 3-colorable.

For n = 3 there is nothing to prove. Now for n > 3 pick any two vertices
w and v which are connected by a diagonal. This diagonal will split the
graph into two smaller triangulated graphs both containing the edge uv. By
induction we may color each part with 3 colors where we may choose color
1 for w and color 2 for v in each coloring. Pasting the colorings together
yields a 3-coloring of the whole graph.

The rest is easy. Since there are n vertices, at least one of the color classes,
say all vertices colored 1, contains at most | 4| vertices, and this is where
we place the guards. Since every triangle contains a vertex of color 1 we in-
fer that every triangle is guarded, and hence so is the whole museum. O

The astute reader may have noticed a subtle point in our reasoning. Does
a triangulation always exist? Probably everybody's first reaction is; Obvi-
ously, yes! Well. it does exist, but this is not completely obvious, and,
in fact, the natural generalization to three dimensions (partitioning into
tetrahedra) is false! This may be seen from Schonhardt’s polyhedron, de-
picted on the left. It is obtained from a triangular prism by rotating the
top triangle. so that each of the quadrilateral faces breaks into two triangles
with a non-convex edge. Try to triangulate this polyhedron! You will notice
that any tetrahedron that contains the bottom triangle must contain one of
the three top vertices: but the resulting tetrahedron will not be contained in
Schonhardt’s polyhedron. So there is no triangulation without an additional
vertex.

To prove that a triangulation exists in the case of a planar non-convex
polygon, we proceed by induction on the number n of vertices. For n = 3
the polygon is a triangle, and there is nothing to prove. Let n > 4. To
use induction, all we have to produce is one diagonal which will split the
polygon P into two smaller parts which can be pasted together as we did
above.

Call a vertex A convex if the interior angle at the vertex is less than 180°,
Since the sum of the interior angles of P is (n — 2)180°, there must be a
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How to guard a museum

convex vertex . In fact, there must be at least three of them: In essence
this is an application of the pigeonhole principle! Or you may consider the
convex hull of the polygon, and note that all its vertices are convex also for
the original polygon.

Now look at the two neighboring vertices B and C' of A. If the segment
BC lies entirely in P, then this is our diagonal. If not. the triangle ABC
contains other vertices. Slide BC towards 4 until it hits the last vertex Z
in ABC'. Now AZ is within P, and we have a diagonal.

There are many variants to the art gallery theorem. For example, we may
only want to guard the walls (which is. after all. where the paintings hang),
or the guards are all stationed at vertices. A particularly nice (unsolved)
variant goes as follows:

Suppose each guard may patrol one wall of the museum, so he
walks along his wall and sees anything that can be seen from any
point along this wall.

How many “wall guards” do we then need 1o keep control?

Gottfried Toussaint constructed the example of a museum displayed here
which shows that [ ;| guards may be necessary.

This polygon has 28 sides (and. in general. 4mn sides). and the reader is
invited to check that mn side-guards are needed. Itis conjectured that. except
for some small values of 1, this number is also sufficient. but a proof., let
alone a Book Proof, is not yet in sight.

References

[1] V. CHVATAL: A combinatorial theorem in plane geometry, J. Combinatorial
Theory, Ser. B 18 (1975), 39-41.

(2] S. Fisk: A short proof of Chvdial’s watchman theorem, 1. Combinatorial
Theory, Ser. B 24 (1978), 374.

[3] J. O'ROURKE: Arr Gallery Theorems and Algorithms, Oxford University
Press 1987.

[4] E. SCHONHARDT: Uber die Zerlegung von Dreieckspolyedern in Tetraeder,
Math. Annalen 98 (1928). 309-312.

et =

R T T

Y TeETT—= %



