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3.3 Kneser’s Conjecture

One of the earliest and most spectacular applications of topological methods
in combinatorics is Lovéasz’s 1978 proof [Lov78] of a conjecture of Kneser.
Kneser posed the following problem in 1955:

Aufgabe 360: £ und # seien zwei natiirliche Zahlen, & = #; N sei eine
Menge mit #» Elementen, N die Menge derjenigen Teilmengen von N, die
genau % Elemente enthalten; f sei eine Abbildung von N}, auf eine Menge M,
mit der Eigenschaft, daB f(K,) &= f(K,) ist falls der Durchschnitt K; ~ K,
leer ist; m(k, n, f) sei die Anzahl der Elemente von M und m(k, n) =
M}n m(k, n, f). Man beweise: Bei festem % gibt es Zahlen m, = m,(k) und
1y =Ny (k) derart, daBm (k, n) = n—myistfiirn = n,; dabei ist m, (k) =2k — 2
und #,(k) = 2k— 1; in beiden Ungleichungen ist vermutlich das Gleich-
heitszeichen richtig.

Heidelberg. MARTIN KNESER.

Let k and n be two natural numbers, k < n; let N be a set with n
elements, Ny the set of all subsets of NV with exactly k elements; let f
be a map from Ny, to a set M with the property that f(K;) # f(K>2)
if the intersection K; N K5 is empty; let m(k,n, f) be the number
of elements of M, and m(k,n) = miny m(k,n, f). Prove that for
fixed k there are numbers mgo = mo(k) and no = no(k) such that
m(k,n) = n—mg for n > ng; here mo(k) > 2k—2 and no(k) > 2k—1;
both inequalities probably hold with equality.

We will use a slightly different notation, and recast this in a graph-
theoretic language. We take N = [n], we write ([Z]) instead of Ny for the

collection of all k-subsets of [n], we take ([Z]) as the vertex set of a graph,
and we connect two vertices by an edge if the corresponding k-sets are dis-
joint. Then the mapping f becomes a coloring of the graph, where M is the
set of colors, and Kneser asks for the chromatic number of the graph!

We recall that a (proper) k-coloring of a graph G = (V, E) is a mapping
c¢:V — [k] such that c(u) # c(v) whenever {u,v} € E is an edge. The
chromatic number of G, denoted by x(G), is the smallest k£ such that G has
a k-coloring.

Let X be a finite ground set and let 7 C 2% be a set system. The
Kneser graph of F, denoted by KG(F), has F as the vertex set, and two sets
F1, Fy € F are adjacent iff F; N F; = @. In symbols,

KG(F) = (F{{FR, B} R,BeF, ANE =0}).
Let KGy, ; denote the Kneser graph of the system F = ([Z]) (all k-element

subsets of [n]). Then Kneser’s conjecture is x(KGy ) = n—2k+2 for n >
2k—1.
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3.3.1 Examples.

KG,, 1 is the complete graph K, with x(K,) =n.

KGog—1,k is a graph with no edges, and so x(KGag—1) = 1.

KGap, i is a matching (every set is adjacent only to its complement), and
X(KGap ) =2 for all k > 1.

The first interesting example is KGs 2, which turns out to be the ubiqui-
tous Petersen graph:

{1,3}

{2,5} A {2,4}
P

{1,2}
{1,4} ¢ * {3,5}

This graph serves as a “(counter)example for almost everything” in graph
theory (see, e.g., [CHW92], [HS93]). Check that 3 colors suffice and are
necessary!

As we have already mentioned, Kneser’s conjecture was first proved by
Lovéasz.

3.3.2 Theorem (Lovasz—Kneser theorem [Lov78]). For all k > 0 and
n > 2k — 1, the chromatic number of the Kneser graph KG,, ; is x(KG,, 1) =
n—2k+2.

The Kneser graphs KG,, ; are very interesting examples of graphs with
high chromatic number. For example, note that for n = 3k—1, they have no
triangles, and yet the chromatic number is k+1. One of the main reasons
for their importance, and also probably a reason why the proof of Kneser’s
conjecture is difficult, is that there is a large gap between the chromatic
number and the fractional chromatic number. (There are very few examples
of such graphs known.)

The fractional chromatic number x¢(G) of a graph G is defined as the
infimum (actually minimum) of the fractions ¢ such that V(&) can be covered
by a independent sets in such a way that every vertex is covered at least
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b times. We always have x¢(G) < x(G), and many methods for bounding
X(G) from below actually estimate x;(G). This means that they do not give
good results for graphs that have high chromatic number x(G), but low
fractional chromatic number x (@), as in the case of the Kneser graphs.
For example, the well-known lower bound in terms of the maximal size of
independent sets, x(G) > |V(G)|/a(G), is just a part of the chain

% < (G < xG),

where a(G), the independence number of G, is the maximum size of an inde-
n

pendent set in G. However, for the Kneser graph, we have x;(KGn 1) = ¥
(Exercise 1). So, for example, x 7 (KGsr—1,1) < 3.

Upper bound for the chromatic number. It is simple to show that the
chromatic number of KG,, ; cannot be larger than n—2k+2. We color the
vertices of the Kneser graph by

X(F) := min{min(F),n—2k+2}.

This assigns a color x(F) € {1,2,...,n—2k+2} to each subset F' € ([Z]).
If two sets F, F' get the same color x(F) = x(F') = i < n—2k+2, then
they cannot be disjoint, since they both contain the element i. If the two
k-sets both get color n—2k+2, then they are both contained in the set
{n—2k+2,...,n}, which has only 2k—1 elements, and hence they cannot
be disjoint either. )

All known proofs of the tight lower bound for x(KG,, ) are topological
or at least imitate the topological proofs. We begin with the simplest known
proof, recently discovered by Greene.

First proof of the Lovasz—Kneser theorem. Let us consider the Kneser
graph KG,,  and set d:=n—2k+1. Let X C S? be an n-point set such that
no hyperplane passing through the center of S¢ contains more than d points
of X. This condition is easily met by a set in a suitably general position,
since we deal with points in R¥*! and require that no d+1 of them lie on a
common hyperplane passing through the origin.

Let us suppose that the vertex set of KG,, . is ()k(), rather than the usual

([Z]) (in other words, we identify elements of [n] with points of X).

We proceed by contradiction. Suppose that there is a proper coloring of
KGy, 1 by at most n—2k+1 = d colors. We fix one such proper coloring and
we define sets Ay, ..., Aq € S% For a point € S%, we have & € A; if there
is at least one k-tuple F' € ()k( ) of color i contained in the open hemisphere
H(z) centered at = (formally, H(z) = {y € S%: (z,y) > 0}). Finally, we
put Ad+1 =94 \ (A1 U--- UAd).

Clearly, A; through A4 are open sets, while A4y, is closed. By the version
of the Lyusternik—Shnire'man theorem mentioned in Exercise 2.1.6, there
exist i € [d+1] and = € S¢ such that =, —x € A;.
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If i < d, we get two disjoint k-tuples colored by color i, one in the open
hemisphere H(x) and one in the opposite open hemisphere H(—x). This
means that the considered coloring is not a proper coloring of the Kneser
graph.

If i = d+1, then H(x) contains at most k—1 points of X, and so does
H(—z). Therefore, the complement S\ (H(x)U H(—x)), which is an “equa-
tor” (the intersection of S¢ with a hyperplane through the origin), con-
tains at least n—2k+2 = d+1 points of X, and this contradicts the choice

of X. ]_

Notes. Kneser’s conjecture was formulated in [Kne55]. Garey and
Johnson [GJ76] established the case k = 3 by elementary means; also
see Stahl [Sta76]. As was already mentioned, the conjecture was proved
by Lovész [Lov78]; a variation on his proof will be shown in Sec-
tion 5.9. The short proof explained in this section by Greene [Gre02]
was inspired by a proof by Barany [Bar78], which we will present in
Section 3.5. Still other proofs were found by Dolnikov [Dol'81] (see Sec-
tion 3.4) and by Sarkaria [Sar90] (see Section 5.8). In [Mat03], Kneser’s
conjecture was derived from Tucker’s lemma by a direct combinato-
rial argument, without using a continuous result of Borsuk—Ulam type.
Since the required instance of Tucker’s lemma also has a combinato-
rial proof, the resulting proof of the Lovasz—Kneser theorem is purely
combinatorial, although the topological inspiration remains notable.
Generalizations of the Kneser conjecture to hypergraphs and re-
lated results will be discussed in Section 6.7.
Exercises
1. (a) Show that the fractional chromatic number of the Kneser graphs

satisfies .
X5 (KGnp) < 2 (n > 2k >0).

(b) Show that the inequality in (a) is actually an equality. Hint: (Look
up and) use the Erdés—Ko-Rado theorem.
2. Show that KGy, 1, has no odd cycles of length shorter than 1+ 2: [ﬁ] )

What about even cycles?
3. What is the maximum number of vertices in a complete bipartite sub-
graph of KG,, ;7

3.4 More General Kneser Graphs: Dol’'nikov’s
theorem

The proof of the Lovasz—Kneser theorem shown in the previous section pro-
vides a more general result for free: a lower bound for the chromatic number
of the Kneser graph KG(F) for an arbitrary finite set system F.
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First we recall the important notion of the chromatic number of a hyper-
graph (or of a set system). If F is a system of subsets of a set X, a coloring
c¢: X — [m] is a (proper) m-coloring of (X, F) if no edge is monochromatic
under ¢ (|e¢(F)| > 1 for all F € F). The chromatic number x(F) is the small-
est m such that (X, F) is m-colorable. In this section we are interested only
in 2-colorability.

Next, we define a less standard parameter of the set system F. Let the
m-colorability defect, denoted by cd,,(F), be the minimum size of a subset
Y C X such that the system of the sets of F that contain no points of Y is
m-colorable. In symbols,

cdm (F) = min{|Y| (X\YA{FeF: FnY =g} is m—colorable}.

For example, for m = 2, we want to color each point of X red, blue, or white
in such a way that no set of F is completely red or completely blue (but it
may be completely white), and cda(F) is the minimum required number of
white points for such a coloring.

blue

3.4.1 Theorem (Dol'nikov’s theorem [Dol'81]). For any finite set sys-
tem (X, F), we have
X(KG(F)) = cdz(F).

It is fair to remark that this bound for x(KG(F)) need not be tight, and
that cds(F) is not easy to determine in general.

If F consists of all the k-point subsets of [n], n > 2k, then after deleting
any n—2k+1 points we are left with the system of all k-element subsets of
a (2k—1)-element set. In any red-blue coloring of that set, one of the colors
has at least k& points and contains a monochromatic k-element set. Thus
cda(F) > n—2k+2, and we see that Theorem 3.4.1 generalizes the Lovasz—
Kneser theorem.

Proof of Dol'nikov’s theorem. Let d:=x(KG(F)). As in the above proof
of the Lovasz—Kneser theorem, we identify the ground set of F with a point
set X C S?in general position (no d+1 points on an “equator”). For & € S,
we define @ € A; if the open hemisphere H(x) contains a set F' € F colored
by color i, i € [d]. As before, we set As.; = S?\ (A U---U Ay). The
appropriate version of Lyusternik—Shnirelman yields an « with x, —x € A;
for some 1.
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We cannot have i < d, for otherwise, we would have two sets of F of color
i lying in opposite open hemispheres. So i = d+1. We color the points of X
in H(x) red, those in H(—x) blue, and the remaining ones (on the “equator”
separating the two hemispheres) white. There are at most d white points by
the general position of X, and so cdy(F) < d. )

Another proof of Dol’nikov’s theorem. Let us explain Dol'nikov’s original
proof, somewhat more complicated but elegant. It is based on a geometric
statement slightly resembling the ham sandwich theorem.

3.4.2 Proposition. Let Cy,Cs,...,Cq be families of nonempty compact con-
vex sets in R?, and suppose that for each i = 1,2,...,d, the system C; is
intersecting; that is, C N C' # & for C,C" € C;. Then there is a hyperplane
(transversal) intersecting all sets of Ule Ci.

Proof. For a direction vector v € S?~!, let £, denote the line containing v
and passing through the origin, oriented from the origin toward v. Consider
the system of the orthogonal projections of the sets of C; on the line £,,:

Each of these projections is a closed and bounded interval, and any two of
them intersect. It is easy to see (directly, or by the one-dimensional Helly
theorem) that the intersection of all these intervals is a nonempty interval,
which we denote by I;(v). Let m;(v) denote the midpoint of I;(v).

We define an antipodal mapping f:S%"! — R¢, by letting f(v); =
(mi(v),v) be the oriented distance of m;(v) from the origin. This is a con-
tinuous antipodal map, and we claim that for any such map, there is a
point v € St with fi(v) = fa(v) = --- = fa(v). To see this, we de-
fine a new antipodal map g, this time into R¢~!, by letting g; = f; — fa,
i = 1,2,...,d—1. This g has a zero by the Borsuk—Ulam theorem, and if
g(v) = 0, then fi(v) = fo(v) = -+ = fq(v) as required. For a v with this
property, all the d midpoints m;(v) coincide, and so the hyperplane passing
through them and perpendicular to /4, is the desired transversal of all sets of

CLUCsU---UCy. &

Second proof of Theorem 3.4.1. Suppose that there is a d-coloring of
the Kneser graph KG(F). This means that F can be partitioned into set
systems Ji,Fs, ..., Fq such that each two sets in J; have a common point,
1=1,2,...,d.
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We place the points of the ground set X into R? (note that in the first
proof the points were placed in R¥*!!). We require general position: X is such
that no d+1 points lie on a common hyperplane. We define the d families of

convex sets in R? by
Ci; = {conv(F) : F € F;}.

These C; satisfy the assumptions of Proposition 3.4.2 above, and so there is
a hyperplane h intersecting the convex hulls of all F' € F.

We color the points of X in one of the open half-spaces bounded by h
red, those in the opposite open half-space blue, and those lying on i white.

blue

There are at most d white points, and this coloring shows that cd(F) < d.
Theorem 3.4.1 is proved. (=

Y

Notes. Theorem 3.4.1 is a special case of results of Dol'nikov [Dol'81]
(also see [Dol92], [Dol94]). It was also independently found by Kiiz
[Kri92], in a more general form for hypergraphs (see Section 6.7).

The first proof in the text is a straightforward generalization of
Greene’s proof. For yet another proof of Dol'nikov’s theorem see Sec-
tion 5.8.

Exercises

1. For set systems F with y(KG(F)) < 2, prove Dol'nikov’s theorem by a
direct combinatorial argument.

2. Find 2-colorable set systems F with x(KG(F)) arbitrarily large.

3. (a) Show that every graph is a Kneser graph. That is, given a (finite)
graph G, construct a set system F such that KG(F) is isomorphic to G.
(b) Generalize the definition of KG(F), in the obvious way, to the case
where F is a multiset of sets (some sets may occur several times in F).
For example, the complete graph K,, is isomorphic to the Kneser graph
of the collection F consisting of n copies of @. Given a graph G, we want
to find a multiset F of sets with KG(F) isomorphic to G and with || F|
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as small as possible. Rephrase this problem in graph-theoretic notions
speaking about G. (Hint: It is a minimum-cover problem.)

3.5 Gale’s Lemma and Schrijver’s Theorem

Here we present another geometric proof of the Lovdsz—Kneser theorem. An
extension of this approach leads to a result that the methods considered in
the previous two sections seem unable to provide.

This proof was found by Barany [Bar78] soon after the announcement of
Lovész’s breakthrough. It is similar to Greene’s proof shown in Section 3.3, or
rather, Greene’s proof is similar to Barany’s, which came much earlier. But
the points are placed on a sphere of one dimension lower, using the following
lemma.

3.5.1 Lemma (Gale’s lemma [Gal56]). Foreveryd > 0 andeveryk > 1,
there exists a set X C S¢ of 2k+d points such that every open hemisphere
of S¢ contains at least k points of X.

First let us see how this implies the Lovasz—Kneser theorem.

Another proof of the Lovasz—Kneser theorem. We consider the Kneser
graph KG, ; and we set d:=n—2k (this dimension is one lower than in
Greene’s proof). Let X C S? be the set as in Gale’s lemma. We identify
[n] with X, so that the vertices of KG,, j are k-point subsets of X.

For contradiction, let us suppose that a proper (d+1)-coloring of KG,
has been chosen. We define sets Ay,..., Agy1 C S¢ by letting & € A; if there
is at least one k-tuple F' € ()k() of color i contained in the open hemisphere
H(x) centered at x.

This time Aj,...,A4.; form an open cover of S¢ since each H(x)
contains at least one k-tuple by Gale’s lemma. By (LS-o) (Lyusternik—
Shnirel'man for open covers), there are i € [d+1] and € S? with @, —x € A;.
This leads to a contradiction as before: We have two disjoint k-tuples of color
i, one in H(x) and one in H(—x). R

Proof of Gale’s lemma. We prove the following version (equivalent to
the above formulation using the central projection to S%): There exist points
V1,V,...,Vopeq in R¥T! such that every open half-space whose boundary
hyperplane passes through 0 contains at least k of them.

The construction uses the moment curve (Definition 1.6.3), but we lift it
one dimension higher, into the hyperplane z; = 1. That is, let

7= {(1,t,£%,...,t1) e R¥* . t ¢ R}.

We take any 2k+d distinct points on 4 and label them w;,ws, ..., w2k tq
in the order in which they occur along the curve. For example, we can take
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w;:=7(i) for 1 < i < 2k+d. We call the points ws, wy,... even and the
points wy,ws, ... odd. Further we define v; := (—1)w;.

Let h be a hyperplane passing through 0, and let A% and h® be the two
open half-spaces determined by it. We want to argue that both h® and h®
contain at least k points among the v;; we formulate the argument for h®.
Since v; = w; for i even and v; = —w; for i odd, we need to prove that the
number of even points w; in h® plus the number of odd points w; in h® is
at least k.

Using Lemma 1.6.4, we see that every hyperplane h through the origin
intersects 4 in no more than d points. Moreover, if there are d intersections,
then 4 crosses h at each of the intersections.

Given an arbitrary hyperplane h through the origin, we move it con-
tinuously to a position where it contains the origin and exactly d points of
W:={w,..., w421}, while no point of W crosses from one side to the other
during the motion. This is possible: Having already some j < d points of W
on h, we rotate h around some (d—2)-flat containing these points and 0, until
we hit another point of W.

We thus suppose that h intersects 7 in exactly d points, which all lie in W.
Let Won be the subset of the d points of W lying on h, and let Wg := W\ Won
be the remaining 2k points. At every point of Woyp, 7 crosses from one side
of h to the other.

We color a w; € Wyg black if either it is even and lies in A® or it is odd
and lies in h°. Otherwise, we color w; white. It is easy to see that as we
follow ¥, black and while points of W g alternate:

Indeed, let w and w' be two consecutive points of W g along ¥ with j points
of Won between them. For j even, both w and w' are in the same half-space,
and one of them is odd and the other is even, so one is black and one white.
If 7 is odd, then w and w’ are in different half-spaces, but they are both even
or both odd, and so again one is black and one white. So the number of black
points is at least |1|W,g|] > k. This proves Gale’s lemma. ()

A strengthening. Almost the same proof establishes a stronger theorem,
found by Schrijver [Sch78] soon after Kneser’s conjecture was proved.

3.5.2 Definition (Schrijver graph). Let us call a subset S € ([Z]) stable
if it does not contain any two adjacent elements modulo n (if i € S, then
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i+1 ¢ S, and if n € S, then 1 ¢ S). In other words, S corresponds to an
independent set in the cycle C,,. We denote by ([Z])Stab the family of stable
k-subsets of [n]. The Schrijver graph is

amno((5).)

It is an induced subgraph of the Kneser graph KG,, 1, and as it turns out, it
has the same chromatic number. For example, for KGs o, the Petersen graph,
SGs.2 is a 5-cycle.

3.5.3 Theorem (Schrijver’s theorem [Sch78]). For all n > 2k > 0, we
have x(SGp k) = X(KGp i) = n—2k+2.

In fact, Schrijver showed that SG, . is a vertez-critical subgraph of KG,, j;
that is, the chromatic number decreases if any single vertex (stable k-set) from
SGy, i, is deeted (Exercise 1).

Proof of Schrijver’s theorem. We proceed exactly as above for the
Lovasz—Kneser theorem, with the following strengthening of Gale’s lemma:

There ezists a (2k+d)-point set X C S? such that under a suitable
identification of X with [n], every open hemisphere contains a stable
k-tuple.

And this is precisely what the above proof of Gale’s lemma provides: The
black points form a stable set if the points of X are numbered along 7. )

Notes. Gale’s proof of Lemma 3.5.1 is different from the one shown;
it goes by induction on d and k. On the other hand, our argument
is also based on Gale’s work, namely, on the investigation of cyclic
polytopes, which are convex hulls of finite point sets on the moment
curve. The possibility of proving both Gale’s lemma and the stronger
version needed for Schrijver’s graphs by the above simple construction
was observed by Ziegler.

As was shown in [MZ02], Bardny’s method of proof (together
with the Gale transform, well-known in the theory of convex poly-
topes) yields the following “generalized Barany bound” for the chro-
matic number of Kneser graphs: Given a set system F on a finite set
X, we define the abstract simplicial complex K:={S C X : F ¢
S for all F € F}. If K is isomorphic to a subcomplex of the bound-
ary complex of a d-dimensional simplicial convex polytope P, then
X(KG(F)) > | X| — d. In particular, if we choose P as the cyclic poly-
tope, we obtain Schrijver’s theorem.
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Exercises

1x

2.

3

(a) Show that the graph SG,, j, is vertex-critical (for chromatic number);
that is, for every k-tuple A € V(SGy, k), there is a proper coloring of the
vertex set of SGy, r by n—2k+2 colors that uses the color n—2k+2 only
at A. (This is not easy; a solution can be found in Schrijver’s paper.)
(b) Show that not all SG,, s, are edge-critical (an edge may be removed
without decreasing the chromatic number).

Show that the Schrijver graph SGy, j, is not regular in general; that is, its
vertices need not all have the same degree. What can you say about the
symmetries of the Schrijver graphs?

(Due to Anders Bjorner) Let u(n, k) be the minimal number of monochro-
matic edges in a coloring of KG, , by n—2k+1 colors. Show that:

(a) p(n, k) < (**.1).

(b) Equality holds for the cases k¥ = 2 and n = 2k+1. (Hint: Use Schijver’s
theorem.)



