
Information Theory
Exercises

1. A homogenous Markov chain has three states: A, B, and C. From state A
it goes to state B with probability 1. From state B it goes to state C with
probability 1/3 and stays in state B with probability 2/3. From state C it
goes to state A with probability 2/3 and stays in state C with probability
1/3. Determine the entropy of the source formed by this Markov chain.
(That is, the source emits a symbol after each state transition of the given
Markov chain and the output is simply the new state.)

Sketch of Solution: Let the stationary distribution be (a, b, c). Then we
can write a = 2

3c, b = a + 2
3b, c = 1

3b + 1
3c, plus a + b + c = 1 (Note that

this system of equations is redundant.) Solving it, we obtain: a = 2
11 , b =

6
11 , c = 3

11 . The entropy of the source is then

H(X) =
2

11
· 0 +

6

11
· h(1/3) +

3

11
· h(1/3) =

9

11
(log 3− 2/3).

2. Let X = (X1, X2, . . .) be a stationary source with entropy H(X). Decide
whether the entropy of the following sources exists and determine it if it
does.

a) Xa = (X1, X1, X2, X2, X3, X3, . . .) (all random variables are repeated
once)

b) Xb = (X1, X1, X2, X3, X3, X4, X5, X5, X6, . . .) (only the odd indexed
random variables are repeated)

c) Xc = (X1, X2, X2, X3, X3, X3, X4, X4, X4, X4, . . .) (the random vari-
able with index i is repeated i times)

Sketch of Solution:

a)

H(Xa) = lim
n→∞

1

2n
H(X1, X1, X2, X2, . . . , Xn, Xn) =

1

2
lim

n→∞

1

n
H(X1, X1, X2, X2, . . . , Xn, Xn) =

1

2
lim

n→∞

1

n
H(X1, X2, . . . , Xn) =

1

2
H(X).

b)

H(Xb) = lim
n→∞

1

1.5n
H(X1, X1, X2, X3, X3, X4, X4 . . . , Xn) =

2

3
lim
n→∞

1

n
H(X1, X1, X2, X3, X3 . . . , Xn) =

2

3
lim

n→∞

1

n
H(X1, X2, . . . , Xn) =

2

3
H(X).

c)

H(Xb) = lim
n→∞

2

n(n + 1)
H(X1, X2, X2, X3, X3, X3 . . . , Xn, . . . , Xn) =

lim
n→∞

2

n + 1

1

n
H(X1, X2, X2, X3, X3, X3 . . . , Xn, . . . , Xn) =

lim
n→∞

2

n + 1

1

n
H(X1, X2, . . . , Xn) =

lim
n→∞

2

n + 1
H(X) = 0.
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3. Let the random variable X have density function f(x) given as follows.

f(x) = x + 1 if x ∈ [−1, 0], f(x) = −x + 1 if x ∈ [0, 1],

and f(x) is 0 outside the interval [−1, 1]. Perform the first iteration of the
Lloyd-Max algorithm for a two-level quantizer of the variable X starting
with initial quantization values −0.5, 0.5.

Solution: The arithmetic mean of the two quantization levels is 0, so we
have B1 = [−1, 0), B2 = [0, 1].

∫ 0

−1 xf(x)dx∫ 0

−1 f(x)dx
=

∫ 0

−1 x
2 + xdx

1/2
= 2

[
x3

3
+

x2

2

]0
−1

= −1

3
.

Similarly,

∫ 1

0
xf(x)dx∫ 1

0
f(x)dx

=

∫ 1

0
−x2 + 1dx

1/2
= 2

[
−x3

3
+

x2

2

]1
0

=
1

3
.

Remark: The Bi’s do not change, so this is a Lloyd-Max quantizer.

4. A source X = X1, X2, . . . works as follows. Each Xi is equal to either
0 or 1, Prob(X1 = 0) = Prob(X1 = 1) = 1/2 and similarly Prob(X2 =
0) = Prob(X2 = 1) = 1/2. For i ≥ 3 the rule is the following. If
Xi−1 = Xi−2 then Xi = 1 − Xi−1 for sure (that is, with probability 1).
If Xi−1 6= Xi−2, then Xi = 0 and Xi = 1 has equal probability, that is
Prob(Xi = 0|Xi−1 6= Xi−2) = Prob(Xi = 1|Xi−1 6= Xi−2) = 1

2 . Give the
entropy of the source X if it exists.

Sketch of Solution: We know by a theorem that

H(X) = lim
n→∞

H(Xn|X1, X2, . . . , Xn−1).

In this case

lim
n→∞

H(Xn|X1, X2, . . . , Xn−1) = lim
n→∞

H(Xn|Xn−1, Xn−2),

since the equality or non-equality of Xn−1 and Xn−2 determines the dis-
tribution for Xn. We can think about the system as a Markov chain with
two states A and B, where A means that the last two outputs were equal,
B means that they were not. Then the transition probabilities are: from
A the system goes to B with probability 1, from B it goes to both A and
B with probability 1/2. Calculating the stationary distribution the usual
way we get that Prob(A) = 1/3, P rob(B) = 2/3. Thus

lim
n→∞

H(Xn|Xn−1, Xn−2) =

lim
n→∞

(Prob(Xn−1 = Xn−2)H(Xn|Xn−1 = Xn−2)+

+Prob(Xn−1 6= Xn−2)H(Xn|Xn−1 6= Xn−2)) =

1/3 · 0 + 2/3 · h(1/2) = 2/3.
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5. We have two channels, both with input alphabet {0, 1, 2} and output al-
phabet {0, 1}.
The probabilities describing channel A are as follows:

WA(0|0) = 1,WA(1|0) = 0

WA(0|1) = 0,WA(1|1) = 1

WA(0|2) = 1/2,WA(1|2) = 1/2

The probabilities describing channel B are as follows:

WB(0|0) = 1,WB(1|0) = 0

WB(0|1) = 1,WB(1|1) = 0

WB(0|2) = 0,WB(1|2) = 1

a) Give the capacity of both channels

b) Give the capacity of the channel we obtain by using the above two
channels together. This means we send every bit via both, and the re-
ceived two bits (one on each channel) thus provide four possible outputs:
00, 01, 10, 11

Sketch of Solution: a) Both channels have capacity log 2 = 1. Neither
can be larger as C = max I(X,Y ) = max(H(Y )−H(Y |X)) ≤ log 2, since
H(Y ) ≤ log 2 (as the output is binary) and H(Y |X) ≥ 0.

This maximum value is attainable in both cases. For channel A by choos-
ing the input probability of 2 to be 0 and equal (that is 1/2) for 0 and 1.
For channel B we attain it if the input probability is 1/2 for 2. (It will
not matter how we distribute the remaining 1/2 probability on 0 and 1,
but the calculation is simplest if we concentrate it on, say, 0.)

b) For the two channels used together a 0 input results in 00 at the output,
input 1 in 01 for sure and input 2 in 10 or 11. So the input can be
told from the output with certainty, thus H(X|Y ) = 0. So I(X,Y ) =
H(X)−H(X|Y ) is largest when H(X) is largest. This is when the input
distribution is uniform on the three input letters. Thus the capacity of
this combined channel is log 3, that is larger than that of the individua
ones.
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