
Information Theory
lecture notes, Fall 2017

First lecture (September 6, 2017)

Two main problems in information theory are:
Source coding
Channel coding

Goal of source coding: compressing data, that is encoding data with reduced
redundancy.
Goal of channel coding: safe data transmission, that is encoding messages so
that one can still correctly decode them after transmission in spite of channel
noise. (This is achieved by increasing redundancy in some clever way.)

Variable length source coding

Notation: For a finite set V , the set of all finite length sequences of elements of
V will be denoted by V ∗.

Model: Source emits sequence of random symbols that are elements of the source
alphabet X = {x1, . . . , xr}.

Given code alphabet Y = {y1, . . . , ys} (with s elements) we seek for an encoding
function f : X → Y∗ which efficiently encodes the source.

meaning of ”efficient”: it uses as short sequences of yi’s as possible, while the
original xj will always be possible to be reproduced correctly.

meaning of ”short”: The average length of codewords should be small. The
average is calculated according to the probability distribution characterizing
the source: We assume that the emitted symbol is a random variable X and in
the ideal situation we know the distribution of X that governs the behavior of
the source.

Def. A uniquely decodable (UD) code is a function f : X → Y∗ satisfying that
∀u,v ∈ X ∗,u = u1u2 . . . uk,v = v1v2 . . . vm,u 6= v implies f(u1)f(u2) . . . f(uk) 6=
f(v1)f(v2) . . . f(vm) (where f(a)f(b) means the sequence obtained by concate-
nating the sequences f(a) and f(b)).

Prefix code: No codeword f(xi) is a prefix of another. A prefix code is always
UD.

Examples: (Codes given here with collection of codewords.) C1 = (0, 10, 110, 111)
is UD, even prefix. C2 = (0, 10, 100, 101) is not prefix, not even UD, 100 can be
f(x2)f(x1) as well as f(x3). But C3 = (0, 01) is UD, although not prefix.

Question: Why do we care about variable length and not simply use |X | code-
words of length dlogs |X |e each?
Answer: Average length may be better, see this example. Let the probabilities
of emitting the symbols be p(x1) = 1/2, p(x2) = 1/4, p(x3) = 1/8, p(x4) = 1/8.
The code f(x1) = 0, f(x2) = 10, f(x3) = 110, f(x4) = 111 has average length
1 · 1/2 + 2 · 1/4 + 3 · 1/8 + 3 · 1/8 = 1.75 < 2 = log2 4.

1

Kraft-McMillan inequality

Theorem 1 (McMillan): If C = (f(x1), . . . , f(xr)) is a UD code over an s-ary
alphabet, then

r∑
i=1

s−|f(xi)| ≤ 1.

Proof. Consider (
r∑
i=1

s−|f(xi)|

)k
=
∑
v∈Ck

s−|v| =

k·lmax∑
l=1

Als
−l,

where Al is the number of ways we can have an l length string of code symbols
when using our code and lmax is the length of the longest codeword f(xi). Since
the code is UD, we cannot have more than sl different source strings resulting in
such an l length string, so Al ≤ sl. Thus the right hand side is at most k · lmax

giving (
∑r
i=1 s

−|f(xi)|)k ≤ k · lmax. Taking kth root and limit as k → ∞, the
result follows. 2

Theorem 2 (Kraft): If the positive integers l1, . . . , lr satisfy

r∑
i=1

s−li ≤ 1.

then there exists an s-ary prefix code with codeword lengths l1, . . . , lr.

Proof. Arrange the lengths in nondecreasing order, i.e., l1 ≤ . . . ≤ lr. Define
the numbers w1 := 0 and for j > 1 let

wj :=

j−1∑
i=1

slj−li .

This gives wj = slj
∑j−1
i=1 s

−li < slj
∑j
i=1 s

−li ≤ slj , thus the s-ary form of wj
has at most lj digits. Let f(xj) be the s-ary form of wj ”padded” with 0’s at
the beginning if necessary to make it have length exactly lj for every j. This
gives a code, we show it is prefix. Assume some f(xj) is just the continuation
of another f(xh). (Then lj > lh, so j > h.) Thus cutting the last lj − lh
digits of f(xj) we get f(xh). This ”cutting” belongs to division by slj−lh (plus

taking integer part), so this would mean wh =
⌊

wj

slj−lh

⌋
=
⌊
slh
∑j−1
i=1 s

−li
⌋

=

slh
∑h−1
i=1 s

−li +
⌊
slh
∑j−1
i=h s

−li
⌋
≥ wh + 1, a contradiction. 2

2

Second lecture (September 13, 2017)

Convention: When no basis for a logarithm is given, we mean it to be of base
2.

Idea: Kraft’s theorem implies that there is a prefix code with codeword lengths⌈
logs

1
p1

⌉
, . . . ,

⌈
logs

1
pm

⌉
, since

1 =

m∑
i=1

pi =

m∑
i=1

slogs pi =

m∑
i=1

s− logs(1/pi) ≥
m∑
i=1

s−dlogs(1/pi)e.

Such a code has average length

m∑
i=1

pi

⌈
logs

1

pi

⌉
<

m∑
i=1

pi(logs
1

pi
+1) ≤

m∑
i=1

pi logs
1

pi
+
∑

pi =

m∑
i=1

pi logs
1

pi
+1.

The sum
∑m
i=1 pi logs

1
pi

is an important quantity in information theory. Usually
we define it with s = 2.

Def. The entropy H(P) of the probability distribution P = (p1, . . . , pr) is
defined as

H(P) = −
r∑
i=1

pi log pi.

For r = 2 we speak about the binary entropy function of the distribution P =
(p, 1− p) and denote it by h(p). Thus h(p) = −p log p− (1− p) log(1− p).

The quantity

Hs(P) :=

m∑
i=1

pi logs
1

pi
=

1

log s
H(P)

is sometimes called the s-ary or base s entropy of P .

Thus above we have proved the following.

Theorem 3 Let us have an information source emitting symbol xi ∈ X with
probability p(xi) = pi, (i = 1, . . . , r). There exists an s-ary prefix code for this

source with average codeword length less than H(P)
log s + 1.

Remark: The entropy function H(P) is often interpreted as a measure of the
information content in a random variable X that has distribution P . Intuitively,
one can think about log 1

pi
= − log pi as the information gained when observing

that X just obtained its value having probability pi. This interpretation would
then mean that the average information per observation obtained during several
observations is just H(P). We think that the information content is measured
in bits (binary digits) thus it has to do with the number of binary digits needed
for an optimal encoding. Theorem 3 together with Theorem 4 below gives
justification for this interpretation.

Theorem 4 Let us have an information source emitting symbol xi ∈ X with
probability p(xi) = pi, (i = 1, . . . , r). For any s-ary UD code f : X → Y∗ of this
source we have

r∑
i=1

pi|f(xi)| ≥
1

log s
H(P) =

1

log s

(
−

r∑
i=1

pi log pi

)
= −

r∑
i=1

pi logs pi,

where P stands for the distribution (p1, . . . , pr). Thus, for a binary (this belongs
to s = 2) UD code the average codeword length is bounded from below by the
entropy of the distribution governing the system.

3

For the proof we will need the following simple tool from calculus that is often
very useful when proving theorems in information theory. Recall the notion of
convexity of a function first.

Def.: A function g : [a, b] → R is convex if for every x, y ∈ [a, b] and λ ∈ [0, 1]
we have

g(λx+ (1− λ)y) ≤ λg(x) + (1− λ)g(y).

We say that g is strictly convex if we have strict inequality whenever 0 < λ < 1
and x 6= y.

Jensen’s inequality: Let g : [a, b] → R be a convex function. Then for any

x1, . . . , xk ∈ [a, b] and non-negative reals α1, . . . , αk satisfying
∑k
i=1 αi = 1, we

have

g

(
k∑
i=1

αixi

)
≤

k∑
i=1

αig(xi).

Moreover, if g is strictly convex, then equality in the second inequality occurs if
and only if all xi’s belonging to non-zero coefficients αi are equal.

Proof of Jensen’s inequality: We argue by induction on k. The base case is
k = 2, when the statement simply follows from the definition of convexity. (It
is also obviously true for k = 1, in fact then the statement is simply trivial,
stating that g(x1) ≤ g(x1). But we do need the k = 2 case in the proof, so it
would not be enough to consider k = 1 alone as the base case.)

Now assume the statement is true for all k < `, we now prove it for k = `. We
can write

g

(∑̀
i=1

αixi

)
= g

(
α`x` +

`−1∑
i=1

αixi

)
=

g

(
α`x` + (1− α`)

`−1∑
i=1

αi
1− α`

xi

)
≤ α`g(x`) + (1− α`)g

(
`−1∑
i=1

αi
1− α`

xi

)
≤

α`g(x`) + (1− α`)
`−1∑
i=1

αi
1− α`

g(xi) =

α`g(x`) +
`−1∑
i=1

αig(xi) =
∑̀
i=1

αig(xi)

as claimed. Here the first inequality follows by the definition of convexity,
while the second from the induction hypothesis applied to k = ` − 1. The
statement for the conditions of equality also follows: to have equality in the
first inequality we need either that α` = 0 or that α` = 1, or if neither holds
then x` =

∑`−1
i=1

αi
1−α`xi. To have equality also in the second inequality we know

from the induction hypothesis that we need that all xi’s with i ≤ `−1 belonging
to nonzero coefficients αi are equal. Then these are equal also to their weighted
average value

∑`−1
i=1

αi
1−α`xi, so if α` is neither 0 nor 1, then x` must also be

equal to this common value. 2

Corollary 1 If P = (p1, . . . , pk) and Q = (q1, . . . , qk) are two probability dis-
tributions, then

k∑
i=1

pi log
pi
qi
≥ 0,

and equality holds iff pi = qi for every i.

4

Convention: To make the formulas above always meaningful, we use the ”calcu-
lation rules” (for a ≥ 0, b > 0) 0 log 0

a = 0 log a
0 = 0 and b log b

0 = +∞, b log 0
b =

−∞.

Proof. The function − log x is convex, thus by Jensen’s inequality

k∑
i=1

pi log
pi
qi

=

k∑
i=1

pi

(
− log

qi
pi

)
≥ − log

(
k∑
i=1

pi
qi
pi

)
= − log

(
k∑
i=1

qi

)
= 0.

The condition of equality also follows from the corresponding condition in
Jensen’s inequality. 2

Proof of Theorem 4. We know from the McMillan theorem, that
∑r
i=1 s

−|f(xi)| ≤
1. Set b =

∑r
i=1 s

−|f(xi)| and qi = s−|f(x)|

b ≥ s−|f(x)|. Then

r∑
i=1

pi|f(xi)| = −
r∑
i=1

pi logs(qib) ≥ −
r∑
i=1

pi logs qi = − 1

log s

r∑
i=1

pi log qi.

Observe that
∑r
i=1 qi = 1 and qi ≥ 0 for every i (so (q1, . . . , qr) could be consid-

ered a probability distribution). Thus by the Corollary of Jensen’s inequality
above, we have that −

∑r
i=1 pi log qi ≥ −

∑r
i=1 pi log pi and the statement fol-

lows. 2

If we encode m-length sequences of xi’s in place of only one xi at a time, then
the same upper estimation still has only a plus 1 over H(X). If the source
outputs are independent (the source is memoryless) and identically distributed,
then H(X) = mH(X1) (for X being the random variable belonging to an m
length sequence of source outputs), so relative to one output the overhead in
the coding is only 1/m, which clearly tends to 0 as m goes to infinity.

Third lecture (September 27, 2017)

We give a second proof of Theorem 3 to introduce another code construction,
called the Shannon-Fano code:

We assume p1 ≥ p2 ≥ . . . ≥ pn. Let w0 = 0 and wj =
∑j−1
i=1 pi. Let the

codeword f(xi) be the s-ary representation of the number wj (which is always
in the [0, 1) interval) without the starting integer part digit 0, and with minimal
such length that it is not a prefix of any other such codeword. The latter
condition already ensures that the code is prefix.

This definition implies that the first |f(xj)| − 1 digits of f(xj) is a prefix of
another codeword and thus it must be the prefix of a codeword coming from a
closest number wh, thus wj−1 or wj+1. This implies

pj = p(xj) = wj+1 − wj ≤ s−(|f(xj)|−1)

or
pj−1 = p(xj−1) = wj − wj−1 ≤ s−(|f(xj)|−1).

By pj−1 ≥ pj in either case the first of the above two inequalities is holds. Thus
logs pj ≤ −|f(xj)|+ 1 implying

−pj logs pj ≥ pj(|f(xj)| − 1),

and thus

−
r∑
j=1

pj logs pj + 1 ≥
r∑
j=1

pj |f(xj)|.

2

5

We have seen two constructions giving average codeword length close to the
lower bound Hs(P), but nothing guaranteed that any of these codes would be
best possible. So the question of how to find an optimal average length code
comes up. This is answered by constructing the so-called Huffman code. We
study this only for the binaary case, i.e, when the size of the code alphabet is
s = 2.

Huffman code

Assume p1 ≥ . . . ≥ pr, pi = p(xi) and having an optimal binary code C =
(f(x1), . . . , f(xr)), li := |f(xi)|. By the foregoing we can assume that the code
is prefix.

Observe:
We may also assume

(1) l1 ≤ l2 ≤ . . . ≤ lr. This is true, because if this is not satisfied, then we may
exchange codewords without increasing the average length.

(2) ln = ln−1 and the two codewords f(xn) and f(xn−1 differ only in the last
digit. The first statement is true, because if not, then ln > ln−1 by (1) above
and since the code is prefix, deleting the last digit of f(xn) would result in a
prefix code with smaller average length, so the original code was not optimal.
The second statement is true, because exchanging the last digit of the codeword
f(xn) we should get another codeword (otherwise this last digit could have been
deleted without ruining the prefix property), and if this codeword is not f(xn−1)
but some f(xi) with i 6= n − 1, then we can simply exchange the two without
effecting the average length as these two codewords both have the same length
|f(xi)| = |f(xn)| = |f(xn−1)|.
(3) Cutting the last digit of the two codewords f(xn−1) and f(xn) we obtain
an optimal binary prefix code for the distribution (p1, p2, . . . , pn−2, pn−1 + pn).
This is true because the average length L of our code is L′+pn−1 +pn, where L′

is the average length of the code obtained by identifying the codewords f(xn−1)
and f(xn) by cutting their last digit. If there was a better (i.e., one with smaller
average length) prefix code for the distribution (p1, p2, . . . , pn−2, pn−1+pn), then
extending the codeword belonging to the probability pn−1 + pn source symbol
once with a 0 digit and once with a 1 digit, we would obtain a better code than
our original one, so its average length could have not been optimal.

From these three observations the optimal code construction is immediate: add
two smallest probabilities iteratively until only two distinct ones remain. Give
these the (sub)words 0 and 1 and then follow the previous ”adding up two prob-
abilities” process backwards and put a 0 and a 1 at the end of the corresponding
codeword.

Example:
P = (0.05, 0.10, 0.10, 0.11, 0.12.0.13, 0.14, 0.25)

. The in-between distributions:
(0.10, 0.11, 0.12, 0.13, 0.14, 0.15 = 0.10 + 0.05, 0.25);
(0.12, 0.13, 0.14, 015, 0.21, 0.25); (0.14, 0.15, 021, 0.25, 0.25);
(0.21, 0.25, 0.25, 0.29); (0.46, 0.25, 0.29); (0.46, 0.54).

And the code obtained(writing it backwards for each stage of the construction:
(0, 1); (0, 10, 11); (00, 01, 10, 11);
(110, 111, 00, 01, 10); (010, 011, 110, 111, 00, 10);
(000, 001, 010, 011, 110, 111, 10), and finally

(1110, 1111, 000, 001, 010, 011, 100, 10).

6

Exercises:

1. We have two dice with 1 dot on two faces, 2 dots on two faces, and 3 dots on
two faces. We roll the two dice together and want to encode the total number of
dots we see on the rolled faces of the two dice. Give the Shannon-Fano code for
alphabet size 2 and also for alphabet size 3 for this problem. Construct also a
binary code that has shortest average length, that is one, for which the expected
number of bits needed to encode the result of many rolls is as small as possible.

Solution: The result can be 2, 3, 4, 5, or 6 dots on the two faces seen, and their
probabilities can be calculated by the number of elementary events giving the
corresponding number. So the probabilities are 1/9, 2/9, 3/9, 2/9, 1/9, respec-
tively. The corresponding wi values are 0, 3/9, 5/9, 7/9, 8/9 in the Shannon-Fano
code construction. The binary Shannon-Fano code we obtain from these values
is (00, 01, 10, 110, 111), while the ternary Shannon-Fano code is (0, 10, 12, 21, 22).
To obtain shortest average length we have to construct a Huffman code for the
above distribution. Doing this we can get 000, 001, 01, 10, 11. (This shows that
the binary Shannon-Fano code also has optimal average length in this case.)

2. Two people made two different Huffman codes for the distribution p1 ≥
p2 ≥ p3 ≥ p4. The codewords of these codes are 0, 10, 110, 111 for one and
00, 01, 10, 11 for the other. Determine the distribution if we know that p3 = 1/6.

Solution: When constructing the code, in the first step both people had to
create the distribution (p1, p2, p3 + p4). In the next step, however, one of them
had to create (p1 + p2, p3 + p4), while the other created (p1, p2 + p3 + p4). If
both led to Huffman codes, that means both steps are optimal, so it did not
matter whether we add p1 or p3 + p4 to p2. This implies p1 = p3 + p4. All the
probability values can be obtained from this as follows.
Since p4 ≤ p3 = 1/6, we have p1 = p3 + p4 ≤ 1/6 + 1/6 = 1/3. On the other
hand, p1 ≥ 1

2 (p1 + p2) = 1
2 (1− (p3 + p4) ≥ 1

2 (1− 1/3) = 1/3. So p1 is not more
and not less than 1/3, thus p1 = 1/3. Thus p4 = p1 − p3 = 1/3 − 1/6 = 1/6
and p2 = 1− 1/3− 1/6− 1/6 = 1/3. So the distribution is (1/3, 1/3, 1/6, 1/6).
Note that the above two codes give indeed the same optimal average length 2
for this distribution.

3. Let p1 ≥ p2 ≥ p3 ≥ p4 be a probability distribution. Assume that the code
consisting of the four 2-length binary sequences gives optimal average length for
this distribution. What is the maximum possible value of p1?

Solution: To have optimal average length we have to construct a Huffman code.
The condition means that in the second step of Huffman encoding we will create
the distribution (p1 + p2, p3 + p4). In particular, p3 + p4 ≥ p1, otherwise we
would not add p1 and p2, but would add p2 and p3 + p4. Note that it does not
matter how the total probability p3+p4 is divided between p3 and p4, so we may
assume p3 = p4. Thus p1 ≤ p3 + p4 = 2p4, from which we have p4 ≥ p1

2 . On the
other hand, p1 = 1− (p2 +p3 +p4) ≤ 1− 3p4, so 1 ≥ p1 + 3p4 ≥ p1 + 3

2p1, which
implies p1 ≤ 2

5 . Thus p1 cannot be larger than 2
5 . Observe that p1 can be that

large, since we can consider the distribution, for which p1 = 2
5 , p2 = p3 = p4 = 1

5
and the said code is indeed optimal for this distribution.

7

Fourth lecture (October 4, 2017)

More on the entropy function

Notation:
p(x) = Prob(X = x),
p(y) = Prob(Y = y),
p(x, y) = Prob(X = x, Y = y),
p(x|y) = Prob(X = x|Y = y),
p(y|x) = Prob(Y = y|X = x).

H(X,Y) = −
∑
x,y

p(x, y) log p(x, y)

is simply the entropy of the joint distribution of the variable (X,Y).

Conditional entropy is defined as:

H(X|Y) =
∑
y

p(y)H(X|Y = y) =

= −
∑
y

p(y)
∑
x

p(x|y) log p(x|y) =

= −
∑
x,y

p(x, y) log p(x|y).

Theorem 5 a)
0 ≤ H(X) ≤ log n,

where n = |X |. H(X) = 0 iff X takes a fix value with probability 1, H(X) =
log n iff p(x) is uniform.

b)
H(X,Y) ≤ H(X) +H(Y)

with equality iff X and Y are independent.

Note the intuitive plausibility of these statements. (For example: The infor-
mation content of the pair (X,Y) is not more than the sum of the information
X and Y contain separately. And equality means that they ”do not contain
information about each other”, that is, they are independent.)

Proof of a). 0 ≤ H(X) is clear by log p(x) ≤ 0 for all x. Equality can occur iff
p(x) = 1 for some x, then all other probabilities should be zero.

Applying Corollary 1 to qi = 1/n ∀i gives H(X) ≤ log n and also the condition
for equality.

Proof of b). Follows by applying Corollary 1 for p = p(x, y) and q = p(x)p(y).
In details:

H(X) +H(Y)−H(X,Y) =

−
∑
x

(∑
y

p(x, y)

)
log p(x)−

∑
y

(∑
x

p(x, y)

)
log p(y)+

∑
x,y

p(x, y) log p(x, y) =

8

∑
x,y

p(x, y) log
p(x, y)

p(x)p(y)
≥ 0.

Equality holds iff p(x, y) = p(x)p(y)∀x, y, i.e. iff X and Y are independent. 2

Some properties of conditional entropy are proven next.

Theorem 6 a)
H(X|Y) = H(X,Y)−H(Y).

b)
0 ≤ H(X|Y) ≤ H(X).

c) (Chain rule)

H(X1, . . . , Xn) = H(X1)+H(X2|X1)+H(X3|X1, X2)+. . .+H(Xn|X1, . . . , Xn−1).

Proof of a). H(X|Y) = −
∑
x,y p(x, y) log p(x|y) = −

∑
x,y p(x, y) log p(x,y)

p(y) =

−
∑
x,y p(x, y) log p(x, y) +

∑
x,y p(x, y) log p(y) = H(X,Y) +

∑
y p(y) log p(y) =

H(X,Y)−H(Y).

Proof of b). 0 ≤ H(X|Y) follows from observing that H(X|Y) is the expected
value of entropies that are non-negative by 0 ≤ H(X) being valid in general.
H(X|Y) ≤ H(X) follows from a) as it is equivalent to H(X,Y) = H(X|Y) +
H(Y), while we have already seen that H(X,Y) ≤ H(X) + H(Y). This also
gives that the condition of equality is exactly the same as it is in Theorem 5 b),
namely that X and Y are independent.

Proof of c). Goes by induction. Clear for n = 1, and it is just a) for n = 2.
Having it for n− 1, apply a) for Y = Xn and X = (X1, . . . , Xn−1) in the form
H(X,Y) = H(X) +H(Y |X). It gives

H(X1, . . . , Xn) = H((X1, . . . , Xn−1), Xn) =

H(X1, . . . , Xn−1) +H(Xn|(X1, . . . , Xn−1)) =

H(X1) +H(X2|X1) + . . .+H(Xn−1|X1, . . . , Xn−2) +H(Xn|X1, . . . , Xn−1).

2

Corollary 2 For any function g(X) of a random variable X we have

H(g(X)) ≤ H(X).

Proof. Since g(X) is determined by X we have H(g(X)|X) = 0. Thus using
Theorem 6 a) we can write

H(X) = H(X)+H(g(X)|X) = H(X, g(X)) = H(g(X))+H(X|g(X)) ≥ H(g(X)).

We also see that the condition of equality is H(X|g(X)) = 0, which is equivalent
to g(X) determining X, i.e. to g being invertible. 2

From the above we see that

H(X)−H(X|Y) = H(X) +H(Y)−H(X,Y) = H(Y)−H(Y |X).

This quantity is thus intuitively the difference of the amount of information X
contains if we do and if we do not know Y . We can think about it as the amount
of information Y carries about X. And we see that we get the same value if we
exchange the role of X and Y . This interpretation is also consistent with the

9

fact that the above value is 0 if and only if X and Y are independent. These
thoughts motivate the following definition.

Def. For two random variables X and Y, their mutual information I(X,Y) is
defined as

I(X,Y) = H(X) +H(Y)−H(X,Y).

By the foregoing we also have I(X,Y) = H(X)−H(X|Y) = H(Y)−H(Y |X).

Later we will see that mutual information is a basic quantity that also comes
up as a central value in certain coding theorems

Exercise:

Let X and Z be independent random variables such that Prob(X = 1) = p,
Prob(X = 0) = 1 − p and Prob(Z = 0) = Prob(Z = 1) = 1/2. Let Y be
the random variable that is given as the modulo 2 sum of X and Z. Calculate
H(X), H(X|Z), H(X|Y), H(X|, Y, Z).

We have H(X) = h(p) (directly follows), H(X|Z) = h(p) (immediate by the
independence of X and Z), H(X|Y) = h(p) (follows by realizing that H(X|Y =
0) = H(X|Y = 1) = h(p)), and H(X|Y,Z) = 0 (since X is determined by the
pair Y,Z). It is worth noticing that H(X|Y) = h(p) = H(X) means that X
and Y are also independent.

Fifth lecture (October 11, 2017)

Def.: A source X1, X2, . . . is memoryless if the Xi’s are independent.

Def.: A source is stationary if X1, . . . , Xn and Xk+1, . . . , Xk+n has the same
distribution for every n and k.

If the source is stationary and memoryless, then H(X1, X2, . . . , Xn) = nH(X1).

Let f : X k → Y∗ be a UD code of the stationary and memoryless source
X = X1, X2,

We know there exists a (e.g. Shannon-Fano) code satisfying

L = E(f(X1, . . . , Xk)) ≤ H(X1, . . . , Xk)

log s
+ 1.

(Here E(.) means expected value.) Then the per letter average length of this

code is 1
kL ≤

1
k

(
H(X1,...,Xk)

log s + 1
)

= H(X1)
log s + 1

k . So 1
kL can get arbitrarily close

to the lower bound Hs(X1) = H(X1)
log s . (This was already hinted at the end of

the second lecture.)

Universal source coding, Lempel-Ziv type algorithms

Huffmann code gives optimal average length but it assumes knowledge of source
statistics: we expected we know the probabilities pi with which the characters xi
are emitted by the source. When we have to compress information it may not be
so. Or we want to compress earlier than we could know such statistics. (Think
about compressing a text. In principle we could first read it through, make the
source statistics and then encode. But we may prefer to encode right in the
moment we proceed with its reading) The term universal source coding refers to

10

coding the source in such a way that we do not have to know the source statistics
in advance. The following algorithms are devised to such situations. Although
they usually cannot provide as good compression as the Huffman code, they still
do pretty well. Perhaps surprisingly, it can be shown that their compression rate
approaches the entropy rate of the source, that is the theoretical limit. (We will
learn the technique without proving this.) The examples provided in different
files (see references to them below) are from the textbook written in Hungarian
by László Györfi, Sándor Győri, and István Vajda ”Információ- és kódelmélet”
(Information Theory and Coding Theory), published by Typotex, 2000, 2002.

First version: LZ77

There is s sliding window in which we see hw = hb+ha characters, where hb is the
number of characters we see backwards and ha is the number of characters we see
ahead. The algorithm looks at the not yet encoded part of the character flow in
the ”ahead part” of the window and looks for the longest identical subsequence
in the window that starts earlier. The output of the encoder is then a triple
(t, h, c), where t is the number of characters we have to step backwards to the
start of the longest subsequence identical to what comes ahead, h is the length
of this longest identical subsequence, and c is the codeword for the first new
character that is already not fitting in this longest subsequence. Note that the
longest identical subsequence should start in the backward part of the window
but may end in the ahead part, so t may be less than h.

For example, when we are encoding the sequence ...cabracadabrarrarrad..., the
...cabraca part is already encoded (so the coming part is dabrarrarrad...), and
we have hb = 7, ha = 6, then the first triple sent is (0, 0, f(d)) (where f(.)
is the codeword for the character in the argument), the second triple sent is
(7, 4, f(r)), etc., see the ”LZexamples” file. Note that for the next triple we will
have (3, 5, f(d)) showing an example when t < h.

Second version: LZ78

In LZ77 we build on the belief that similar parts of the text come close to each
other. The LZ78 version needs only that substantial parts are repeated but they
do not have to be right after each other. Also, LZ77 is sensitive to the window
size. In LZ78 we do not have this disadvantage.

We build a codebook and each time we encode we look for the longest new
segment that already appears in the codebook. The output is a pair (i, c)
where i is the index of the longest coming segment that already has a codeword
and c is the first new character after it. Apart from producing this output
the algorithm also extends the codebook by putting into it the shortest not yet
found segment, which is the concatenation of the segment with index i we found
and the character c. This new, one longer segment gets the next index and then
we go on with the encoding. For an example see again the ”LZexamples” file

Third version: LZW

This is the most popular version of the algorithm that is a modification of LZ78
as suggested by Welch. We now start with a codebook that already contains all
the one-character sequences. (They have an index which serves as a codeword
for them; we can think about their codeword as the s-ary, or simply binary
representation of this index.) We now read the longest new part p of the text
that can be found in the codebook and the next character, let it be a. Then the
output is simply the index of p, we extend the codebook with the new sequence
pa (that we obtain by simply putting a to the end of p) giving it the next index,

11

and we consider the extra character a as the beginning of the not yet encoded
part of the text. For an example see the file ”LZWexample”.

Remark: Huffman encoding can also be adapted to the situation when we cannot
create the optimal code in advance. Then we simply use the empirical source
statistics. This means that the probability of a character is considered to be
equal to the proportion of the number of its appearances up to a certain point
to the number of characters seen altogether up to that point. This statistics
is updated after every single character. For every new character we use the
Huffman code that would belong to the source statistics we calculated right
before the arrival of that character. We encode the character according to that
code and then update the statistics and modify the code accordingly. This can
be done simultaneously at the decoder (without communication), so the decoder
will always be aware of the code the encoder is using. For the latter we need
a rule how to handle equal probabilities that could result in different optimal
encodings, but such rules are not hard to agree on. Also, the encoder and the
decoder has to agree on a starting code. This can be one that assumes uniform
distribution on the source characters or one that estimates the source statistics
according to some a priori knowledge if that exists. (For example, if the source
is an English text, we can use the more or less known frequency of each letter
in the English language as the starting distribution and a Huffman encoding of
that.)

Sixth lecture (October 18, 2017)

When we say that the above methods give good compression rates we mean
that encoding this way provides average length of codewords per symbol close
to the entropy of the source. We did not define yet, however, the entropy of a
source in general. This comes next.

Entropy of a source

The entropy of a source in general is defined as follows.
Definition. The entropy of a source emitting the sequence of random variables
X1, X2, . . . is

lim
n→∞

1

n
H(X1, . . . , Xn),

provided that this limit exists.

The above limit trivially exists for stationary memoryless sources defined above.
Indeed, if the source is stationary and memoryless, then H(X1, X2, . . . , Xn) =
nH(X1), so we have limn→∞

1
nH(X1, . . . , Xn) = limn→∞

1
nnH(X1) = H(X1).

In fact, once a source is stationary it always has an entropy, it need not be
memoryless.

Theorem 7 If a source X1, X2, . . . is stationary then its entropy exists and is
equal to

lim
n→∞

H(Xn|X1, . . . , Xn−1).

12

Remark: Note that limn→∞H(Xn|X1, . . . , Xn−1) can be much smaller than
H(X1). Think about a source with source alphabet {0, 1} that emits the same
symbol as the previous one with probability 9/10 and the opposite with prob-
ability 1/10. In the long run we have the same number of 0’s and 1’s, Prob(X1 =
1) = Prob(X1 = 0) = 1/2, soH(X1) = 1, while limn→∞H(Xn|X1, . . . , Xn−1) =
H(Xn|Xn−1) = h(0.9) < 1.

Proof. By the source being stationary, we have

H(Xn|X1, . . . , Xn−1) = H(Xn+1|X2, . . . , Xn) ≥ H(Xn+1|X1, X2, . . . , Xn).

Thus the sequence H(Xi|X1, . . . , Xi−1) is non-increasing and since all its ele-
ments are non-negative, it has a limit.

From the Chain rule we can write

1

n
H(X1, . . . , Xn) =

1

n

(
H(X1) +

n∑
i=2

H(Xi|X1, . . . , Xi−1)

)
.

To complete the proof we refer to a lemma of Toeplitz that says that if {an}∞n=1

is a convergent sequence of reals with limn→∞ an = a, then defining bn :=
1
n

∑n
i=1 ai, we have that {bn}∞n+1 is also convergent and limn→∞ bn = a, too.

Applying this to an := H(Xn|X1, . . . , Xn−1) the statement follows. 2

Note that the proof implies that the sequence 1
nH(X1, . . . , Xn) is also non-

increasing.

Markov chains, Markov source

Def. A stochastic process Z = Z1, Z2, . . . is Markov (or Markovian) if for
every i we have P (Zk|Z1, . . . , Zk−1) = P (Zk|Zk−1). We say that the variables
Z1, Z2, . . .form a Markov chain.

Intuitively the above definition means that knowing just the previous Zi tells
us everything we could know about the next one even if we knew the complete
past. Such situations often occur.

Example. If Zi denotes the number of heads we have when tossing a fair coin
i times, then Zi+1 = Zi or Zi+1 = Zi + 1 with probability 1/2 − −1/2 and we
cannot say more than this even if we know the values of Zi−2, Zi−3, etc. Thus
Z1, Z2, . . . is a Markov chain.
The pixels of a picture can be modeled by a Markov chain: After a black pixel
we have another black pixel with high probability and a white one with small
probability and this can be considered independent of earlier pixels (though
clearly, this independence is not completely true).

A Markov chain Z is homogenous if P (Zn|Zn−1) is independent of n.

A Markov chain is stationary if all its stochastic parameters are invariant in
“time”, that is, they are not dependent on the indices of the Zi’s involved. In
particular, a stationary Markov-chain is always homogenous. However, being
stationary means more: it also requires that the distribution of Zi (and not only
the conditional probabilities P (Zi|Zi−1)) are independent of i. In particular,
for a stationary Markov chain already Z1 is distributed according to the same
stationary distribution according to which Zn is distributed for a (very) large
n.

13

The entropy of a homogenous Markov chain Z is H(Z2|Z1), this follows from
Theorem 7 above, cf. also the above Remark.

A general Markov source is a stochastic process X, for which each Xi can be
written as a function of two random variables, namely Xi = F (Zi, Yi) where Z
is a homogenous Markov chain and Y is a stationary and memoryless source
that is independent of Z.

A Markov source can model a situation where, for example, Z is a text or speech
and Y is the noise. When the noise does not effect the outcome of the source,
that is, F (z, y) = z for every z and y, then the entropy of the Markov source is
simply H(Z2|Z1)

Homogenous Markov chains tend to a stationary distribution whose entropy
might be much larger than the entropy of the Markov chain. When the homoge-
nous Markov chain has r states its behavior is described by an r × r stochastic
matrix (each row is a probability distribution) A defined by A[i, j] = Prob(Z2 =
j|Z1 = i). Then the stationary distribution p is the probability distribution
(p1, . . . , pr) for which pA = p.

Example: Let A be the 2×2 matrix with first row p, 1−p and second row 1−p, p.
Then the stationary distribution is 1

2 ,
1
2 , while the entropy of the Markov chain

is h(p).

Exercise: LetX1, X2, . . . be a Markov chain for which Prob(X1 = 0) = Prob(X) =

1) = 1
2 and let the transition probabilities for i ≥ 1 be given by Prob(Xi+1 =

0|Xi = 0) = Prob(Xi+1 = 1|Xi = 0) = 1
2 , while Prob(Xi+1 = 0|Xi = 1) = 0

and Prob(Xi+1 = 1|Xi = 1) = 1. Calculate the entropy of the source whose
outcome is the resulting sequence of random variables X1, X2,

Intuitively the solution is quite clear: This source emits some number (perhaps
zero) 0’s first, but after the first 1 it will emit only 1’s. As i gets larger and
larger, the probbility of Xi = 0 is smaller and smaller (in fact it will be 1

2i), so
if i is large, then Xi is almost certainly 1. Therefore the uncertainty about the
value of Xi approaches zero, so the entropy of the source should be 0.

This intuition is easy to confirm by calculation: by Theorem 7

H(X) = lim
n→∞

H(Xn|X1, . . . , Xn−1) = lim
n→∞

H(Xn|Xn−1) =

lim
n→∞

Prob(Xn−1 = 0)h(1/2) + Prob(Xn−1 = 1)h(0) =

lim
n→∞

1

2n−1
+ (1− 1

2n−1
)0 = 0.

Seventh lecture (October 25, 2017)

Source coding with negligible probability of error

A disadvantage of using variable length codewords is that if a codeword becomes
erroneous causing a mistake in the decoding this mistake may propagate to the
subsequent codewords. This will not happen if all codewords have the same
length. Then, however, we cannot achieve any compression once we insist on
error-free decoding. If the k-length codewords encode r messages over an s-ary
alphabet then we must have sk ≥ r and this is clearly enough, too. But this has
nothing to do with the source statistics, so this way we encode everything with
the same average length as if the r messages were equally likely thus providing

14

maximum entropy. To overcome this problem we allow a negligible, but positive
probability of error.

We will use block codes f : X k → Ym.

Def. A code f : X k → Ym is possible to decode with error probability at most
ε if there exists a function ϕ : Ym → X k such that

Prob(ϕ(f(X1, . . . , Xk)) 6= (X1, . . . , Xk)) < ε.

We can think about the code as the pair (f, ϕ) where we may select ϕ to be
the decoding function achieving the smallest error probability for f . (The error
probability is then defined as the above quantity on the left hand side, that is
as Prob(ϕ(f(X1, . . . , Xk)) 6= (X1, . . . , Xk)).

We are interested in codes with small error probability and small rate m/k. We
are able to give |Y|m distinct codewords, so we may have that many elements of
X k decoded in an error-free manner. Thus the error probability is minimized if
we choose the |Y|m largest probability elements of X k to encode in a one-to-one
way, while all the rest of the elements of X k will just be given some codeword
which will not be decoded to them.

Let N(k, ε) be the smallest number N for which if x1, . . . , xN are the N largest

probability k-length outputs of the source X, we have
∑N
i=1 p(xi) > 1− ε. The

quantity relevant for us is logN(k,ε)
k . The main result here is, that for a fairly

general class of sources this quantity tends to the entropy of the source. So even
in this setting it is the entropy of the source that gives the qualitative charac-
terization of the best encoding rate one can achieve. This verifies again the
intuition that interprets the entropy of the source as a measure of information
content in the source variables.

Def. We call a stationary source information stable if for every δ > 0

lim
k→∞

Prob

{∣∣∣∣−1

k
log p(X1, . . . , Xk)−H(X)

∣∣∣∣ > δ

}
= 0.

Some remarks:
1) If X is stationary and memoryless, then it is information stable. Here is the
proof:
Yk := − 1

k log p(X1, . . . , Xk) = − 1
k log(p(X1)p(X2) . . . p(Xk)) = 1

k

∑k
i=1(− log p(Xi)),

where the (− log p(Xi))’s are independent identically distributed (i.i.d.) random
variables. Observe that their expected value is just the entropy H(X) = H(Xi).
By the weak law of large numbers the Yi’s converge in probability to this com-
mon expected value which means exactly that

lim
k→∞

Prob

{∣∣∣∣−1

k
log p(X1, . . . , Xk)−H(X)

∣∣∣∣ > δ

}
= 0,

i.e. the information stability of the source.
2) The intuitive meaning of information stability is that if k is large enough
then there is a large probability set A ⊆ X k for which x ∈ A implies

p(x) ≈ 2−kH(X).

If Prob(A) is close to 1 this also implies

|A| ≈ 1

p(x)
≈ 2kH(X).

Thus encoding the elements of A in a one-to-one manner will require about
kH(X) bits.

15

Theorem 8 Let the stationary source X be information stable. Then for every
0 < ε < 1

lim
k→∞

1

k
logN(k, ε) = H(X).

Proof. Let Bk,ε be the set of the N(k, ε) highest probability k-length source
outputs and for every δ ∈ (0, 1) define

Ak,δ :=
{

x ∈ X k : 2−k(H(X)+δ) ≤ p(x) ≤ 2−k(H(X)−δ)
}
.

Then by

1 ≥ P (Ak,δ) =
∑

x∈Ak,δ

p(x) ≥ |Ak,δ|2−k(H(X)+δ)

we have
|Ak,δ| ≤ 2k(H(X)+δ).

By information stability, we know that P (Ak,δ) is close to 1 (in particular,
P (Ak,δ) > 1 − ε) for large enough k. Since Bk,ε is the smallest cardinality set
with probability at least 1− ε, we get that for large enough k

N(k, ε) = |Bk,ε| ≤ |Ak,δ| ≤ 2k(H(X)+δ),

and so
1

k
logN(k, ε) ≤ H(X) + δ.

Since δ can be arbitrarily small, this also implies

lim sup
k→∞

1

k
logN(k, ε) ≤ H(X).

For the reverse inequality let k be large enough for P (Ak,δ) > 1+ε
2 . Then

(denoting the complement of set U by U c) we have

1 + ε

2
< P (Ak.δ) = P (Akδ ∩Bk,ε) + P (Ak,δ ∩Bck,ε) < P (Ak,δ ∩Bk,ε) + ε,

that is

P (Ak,δ ∩Bk,ε) >
1− ε

2
.

We can thus write

1− ε
2

< P (Ak,δ∩Bk,ε) ≤ |Bk,ε| max
x∈Ak,δ

p(x) ≤ |Bk,ε|2−k(H(X)−δ) = N(k, ε)2−k(H(X)−δ).

So we get

N(k, ε) >
1− ε

2
2k(H(X)−δ).

Thus
1

k
logN(k, ε) > H(X)− δ +

1

k
log

(
1− ε

2

)
.

Since δ > 0 can be arbitrarily small and log
(
1−ε
2

)
is a constant independent of

k, the latter implies

lim inf
k→∞

1

k
logN(k, ε) ≥ H(X)

and thus the statement. 2

By the foregoing we have essentially proved the following coding theorem.

16

Theorem 9 Let X be a stationary source which is also information stable and
0 < ε < 1. Let us have a sequence of codes fk : X k → Ymk , (|Y| = s) which
encodes the source with less than ε probability of error. Then

lim inf
k→∞

mk

k
≥ H(X)

log s
.

On the other hand, for every 0 < ε < 1 and δ > 0 if k is large enough then there
exists an fk : X k → Ym code with probability of error less than ε and

m

k
<
H(X)

log s
+ δ.

The proof is immediate by realizing that if we want a code with probability
of error less than ε, then the best we can do is to encode the N(k, ε) largest prob-
ability elements of X k in a one-to-one way to codewords of length logsN(k, ε) =
logN(k,ε)

log s . Thus the compression rate will tend to limk→∞
1
k logsN(k, ε) = H(X)

log s .
The last coding theorem can be looked at from another point of view.

Namely, we can say that we consider, R = mk
k log s given, and ask about the

error probability of the best possible code with these parameters. Then the
theorem implies that the smallest possible error probability we can achieve as
k goes to infinity (while R = mk

k log s is fixed) can be arbitrarily close to 0 if
R > H(X), while for R < H(X) it will tend to 1. (The latter means that the
code is impossible to use with a tolerable error probability.)

Remark: It is also known that if the source is stationary and memoryless, then
the above error probability will tend to 0 exponentially as a function Pe(k,R)
of the length k when R > H(X). Similarly, for R < H(X) the difference
1− Pe(k,R) tends to 0 exponentially fast.

Eighth lecture (November 8, 2017)

Quantization

In many practical situations the source variables are real numbers, thus have a
continuum range. If we want to use digital communication we have to discretize,
which means that some kind of ”rounding” is necessary.

Def. Let X = X1, X2, . . . be a stationary source, where the Xi’s are real-
valued random variables. A (1-dimensional) quantized version of this source
is a sequence of discrete random variables (another source) Q(X1), Q(X2), . . .
obtained by a map Q : R→ R where the range of the map is finite. The function
Q(.) is called the quantizer.

Goal: Quantize a source so that the caused distortion is small.

How can we measure the distortion? We will do it by using the quadratic
distortion measure D(Q) defined for n-length blocks as

D(Q) =
1

n
E

(
n∑
i=1

(Xi −Q(Xi))
2

)
,

where E(.) means expected value.
Since our Xi’s are identically distributed we have

D(Q) = E((X −Q(X))2).

17

(Here X is meant to have the same distribution as all the Xi’s.)

Let the range of Q(.) be the set {x1, . . . , xN}, where the xi’s are real numbers.
Q(.) is uniquely defined by the values x1, . . . , xN and the sets Bi = {x : Q(x) =
xi}. Once we fix x1, . . . , xN , we will have the smallest distortion D(Q) if every
x is ”quantized” to the closest xi, i.e.,

Bi = {x : |x− xi| ≤ |x− xj | ∀j 6= i}.

(Note that this rule puts some values into two neighboring Bi’s (considering
x1 < x2 < . . . < xN , we have x = 1

2 (xi + xi+1) in both Bi and Bi+1). This can
easily be resolved by saying that all these values go to (say) the smaller indexed
Bi.)

If now we consider the Bi’s fixed then the smallest distortion D(Q) is obtained
if the xi values lie in the barycenter of the Bi, which is E(X|Bi) := E(X|X ∈

Bi) =

∫
Bi
xf(x)dx∫

Bi
f(x)dx

, where f(x) is the density function of the random variable X.

(We will always assume that f(x) has all the ”nice” properties needed for the
existence of the integrals we mention.)

The previous claim (smallest distortion is achieved for given quantization inter-
vals Bi when Q(x) = E(X|Bi) for x ∈ Bi) can be seen as follows.

This holds for all Bi separately, so it is enough to show it for one of them. By
the linearity of expectation

E((X − c)2) = E(X2)− c(2E(X)− c),

and this is smallest when c(2E(X) − c) is largest. Since the sum of c and
2E(X)−c does not depend on c, one can see simply from the inequality between
the arithmetic and geometric mean (a+b2 ≥

√
ab with equality iff a = b) that

this product is largest when c = E(X).

Lloyd-Max algorithm

The above suggests an iterative algorithm to find a good quantizer: We fix some
quantization levels x1 < . . . < xN first and optimize for them the Bi domains
by defining them as above: let yi = xi+xi+1

2 for i = 1, . . . , N − 1 and

B1 := (−∞, y1], Bi := (yi, yi+1], i = 2, . . . , N − 1, BN = (yN ,∞).

Notice that in general there is no reason for the xi’s to be automatically the
barycenters of the domains Bi obtained in the previous step. So now we can con-
sider these domains Bi fixed and optimize the quantization levels with respect
to them by redefining them as the corresponding barycenters:

xi :=

∫
Bi
xf(x)dx∫

Bi
f(x)dx

.

Now we can consider again the so-obtained Xi’s fixed and redefine the Bi’s for
them, and so on. After each step (or after each ”odd” step when we optimize the
Bi domains for the actual xi’s) we can check whether the current distortion is
below a certain threshold. If yes we stop the algorithm, if no, then we continue
with further iterations.

Remarks.
1) It should be clear from the above that if either of the two steps above changes
the xi quantization levels or the Bi domains, then the quantizer before that
step was not optimal. It is possible, however, that no such change is attainable

18

already and the quantizer is still not optimal. Here is an example. Let X be a
random variable that takes its values on the finite set {1, 2, 3, 4} with uniform
distribution. (That is P (X = 1) = P (X = 2) = P (X = 3) = P (X = 4) = 1/4.)
Let N = 2 that is we are allowed to use two values for the quantization. There
are three different quantizers for which neither of the above steps can cause any
improvement, but only one of them is optimal. These three quantizers can be
described by

Q1(1) = 1, Q1(2) = Q1(3) = Q1(4) = 3;

Q2(1) = Q2(2) = 1.5, Q2(3) = Q2(4) = 3.5;

Q3(1) = Q3(2) = Q3(3) = 2, Q3(4) = 4.

It takes an easy calculation to check that D(Q1) = D(Q3) = 0.5, while D(Q2) =
0.25. Thus only Q2 is optimal, although neither of Q1 and Q3 can be improved
by the Lloyd-Max algorithm.
2) Let us call a quantizer a Lloyd-Max quantizer if the two steps of the Lloyd-
Max algorithm have no effect on them. In the previous remark we have seen
that a Lloyd-Max quantizer is not necessarily optimal. Fleischer gave a sufficient
condition for the optimality of a Lloyd-Max quantizer. It is in terms of the
density function f(x) of the random variable to be quantized. (In particular,
it requires that log f(x) is concave.) This condition is satisfied by the density
function of a random variable uniformly distributed in an interval [a, b]. Thus
a corollary of Fleischer’s theorem is that there is only one Lloyd-Max quantizer
with N levels for the uniform distribution on [a, b]. It is not hard to see that this
should be the uniform quantizer: the one belonging to Bi = {x : a+(i−1) b−aN ≤
x ≤ a + i b−aN } and quantization levels at the middle of these intervals. (The
extreme points of the intervals belonging to two neighboring Bi’s can be freely
decided to belong to either of them.)

Ninth lecture (November 15, 2017)

Distortion of the uniform quantizer

The simplest quantizer is the uniform quantizer, we investigate it a bit closer.
For simplicity we assume that the density function of our random variable to be
quantized is 0 outside the interval [−A,A], and it is continuous within [−A,A].
The N -level uniform quantizer is defined by the function

QN (x) = −A+ (2i− 1)
A

N

whenever

−A+ 2(i− 1)
A

N
< x ≤ −A+ 2i

A

N
.

(To be precise: for x = −A we also have QN (−A) = −A+ A
N .)

The length of each interval for the elements of which we assign the same value
is then qN = 2A

N . The following theorem gives the distortion of the uniform
quantizer asymptotically (as N goes to infinity) in terms of qN .

Theorem 10 If the density function f of the random variable X staisfies the
above requirements (continuous in [−A,A] and 0 outside it) then for the distor-
tion of the N -level uniform quantizer QN we have

lim
N→∞

D(QN)

q2N
=

1

12
.

19

Proof. We will use the following notation. The extreme points of the quantiza-
tion intervals are

yN,i = −A+ 2i
A

N
, i = 0, 1, . . . , N,

while the quantization levels are

xN,i = −A+ (2i− 1)
A

N
, i = 1, 2, . . . , N.

With this notation the distortion can be written by definition as

D(Qn) =

N∑
i=1

∫ yN,i

yN,i−1

(x− xN,i)2f(x)dx.

We define the auxiliary density function fN (x) as

fN (x) :=
1

qN

∫ yN,i

yN,i−1

f(z)dz if x ∈ (yN,i−1, yN,i].

First we calculate the distortion D̂(QN) of QN with respect to this auxiliary
density function.

D̂(QN) =

N∑
i=1

∫ yN,i

yN,(i−1)

(x− xN,i)2fN (x)dx =

N∑
i=1

1

qN

∫ yN,i

yN,(i−1)

f(z)dz

∫ yN,i

yN,(i−1)

(x− xN,i)2dx =

N∑
i=1

1

qN

∫ yN,i

yN,(i−1)

f(z)dz

∫ qN
2

− qN2
x2dx =

q2N
12

N∑
i=1

∫ yN,i

yN,(i−1)

f(z)dz =
q2N
12
.

To finish the proof we will show that

lim
N→∞

D̂(QN)−D(QN)

D̂(QN)
= lim
N→∞

D̂(QN)−D(QN)

q2N/12
= 0,

that is clearly enough.

Since f is continuous in the closed interval [−A,A] it is also uniformly con-
tinuous. Thus for every ε > 0 there exists N0 such that if N ≥ N0 then
|f(x)− f(x′)| < ε whenever x, x′ ∈ (yN,(i−1), yN,i) (since |yN,(i−1)− yN,i| < qN ,
and qN → 0 as N →∞).
So we can write

|D̂(QN)−D(QN)|
q2N/12

=

12

q2N

∣∣∣∣∣
N∑
i=1

∫ yN,i

yN,(i−1)

(x− xN,i)2f(x)dx−
N∑
i=1

∫ yN,i

yN,(i−1)

(x− xN,i)2fN (x)dx

∣∣∣∣∣ ≤
12

q2N

N∑
i=1

∫ yN,i

yN,(i−1)

(x− xN,i)2|f(x)− fN (x)|dx ≤

20

12

q2N

N∑
i=1

∫ qN/2

−qN/2
z2εdz =

12

q2N
N
q3N
12
ε = qNNε =

2A

N
Nε = 2Aε

that can be made arbitrarily small by choosing ε small enough. This completes
the proof. 2

Channel coding

Channel model: stochastic matrix. Rows belong to input letters, columns belong
to output letters. Wi,j = W (yj |xi), which is the probability of receiving yj when
xi was sent.

Example. (The input and output alphabets are denoted X ,Y, respectively.)

Binary symmetric channel (BSC): X = Y = {0, 1}, W (1|1) = W (0|0) = 1 − p,
W (1|0) = W (0|1) = p.

Goal: Communicating reliably and efficiently.
Reliably means: with small probability of error.
Efficiently means: with as few channel use as possible.

Code: A(n invertible) function f : M → Xn, where M is the set of possible
messages. The relevance of M will be its size M := |M|. We can also think
about the code as its codeword set {c1, . . . , cM}.
We also need a decoding function ϕ : Yn →M that tells us which message we
decode a certain received sequence to. (One can also define codes as the pairs
of functions (f, ϕ).)

The probability of error if the message mi, that is the codeword ci, was sent is

Pe,i =
∑

ϕ(y)6=mi

Prob(y was received|ci was sent) =
∑

ϕ(y)6=mi

n∏
r=1

W (y(r)|c(r)i),

where y(r) and c
(r)
i denote the rth character in the sequences y and ci, respec-

tively.

We want small error independently of the probability distribution on the mes-
sages. So we define the average error probability that is the average of the Pe,i
values on the M messages:

P̄e =
1

M

M∑
i=1

Pe,i.

The efficiency of the code is measured by its rate:

R =
log2M

n
.

Shannon’s Channel Coding Theorem, one of the most fundamental results in
information theory, says that discrete memoryless channels have a characteris-
tic value, their capacity, with the property that one can communicate reliably
with any rate below it, and one cannot, above it. Here ”reliably” means ”with
arbitrary small probability of error”.

21

First we define the capacity CW of a discrete memoryless channel given by its
matrix W .

Def.
CW := max I(X,Y),

where the maximization is over all joint distributions of the pair of random
variables (X,Y) that satisfy that the conditional probability of Y given X is
what is prescribed by W .

The above expression can be rewritten as

CW = max

 ∑
x∈X ,y∈Y

p(x, y) log
p(x, y)

p(x)p(y)

= max

 ∑
x∈X ,y∈Y

p(x)p(y|x) log
p(y|x)∑

x′∈X p(x
′)p(y|x′)

The advantage of the last expression is that it shows very clearly that when
maximizing I(X,Y) what we can vary is the distribution of X, that is the input
distribution. (All other values in the last expression are conditional probabilities
given by the channel matrix W .)

Example: For the binary symmetric channel we can calculate the capacity as
follows. I(X,Y) = H(Y)−H(Y |X) and it follows from the channel character-
istics that H(Y |X = 0) = H(Y |X = 1) = h(p), so H(Y |X) = h(p) irrespective
of the distribution of X. So I(X,Y) = H(Y)− h(p) ≤ log 2− h(p) = 1− h(p).
Observing that if we let X have uniform distribution, then Y will also have
uniform distribution (that results in H(Y) = 1), we conclude that this upper
bound can be achieved. Thus the capacity of the binary symmetric channel is
1− h(p).

Now we state the Channel Coding Theorem:

For every rate R < C there exists a sequence of codes with length n and
number of codewords at least 2nR such that the average probability of error P̄e
goes to zero as n tends to infinity.

Conversely, for any sequence of codes with length n, number of codewords at
least 2nR and average error probability tending to zero as n goes to infinity, we
must have R ≤ C.

In short one can say that all rates below capacity are achievable with an arbi-
trarily small error probability, and this is not true for any rate above capacity.

Tenth lecture (November 22, 2017)

First we prove the converse statement. Even that we first show in a weaker
form, namely we show that for zero-error codes we must have R ≤ C. We will
use the following lemma.

Lemma 1 Let Y n be the output of a discrete memoryless channel with capacity
C resulting from the input Xn. Then

I(Xn, Y n) ≤ nC.

22

Proof.
I(Xn, Y n) = H(Y n)−H(Y n|Xn)

= H(Y n)−
n∑
i=1

H(Yi|Y1, ..., Yi−1, Xn)

= H(Y n)−
n∑
i=1

H(Yi|Xi) ≤
n∑
i=1

H(Yi)−
n∑
i=1

H(Yi|Xi)

=

n∑
i=1

I(Xi, Yi) ≤ nC.

Here the second equality follows from the Chain rule, and the third equality
used the discrete memoryless property of the channel, which implies that Yi
depends only on Xi among Y1, ..., Yi−1, X1, . . . Xn and thus the used equality
of conditional entropies. (The other relations should be clear: the first and
fourth equality follows from the definition of mutual information, the first “≤”
is a consequence of the standard property of the entropy of joint distributions,
while the final inequality follows from the definition of channel capacity. 2

Now assume that we communicate over a discrete memoryless channel of ca-
pacity C with zero-error, that is we have a code of length n with M = 2nR

codewords and P̄e = 0. Then
R ≤ C.

Here is the proof. Let the random variable that takes its values on the message
set M (that is its value is the index of the message mi to be sent) be denoted
by U . (We assume that U is uniformly distributed, so its entropy is logM .)
Now we can write

nR = H(U) = H(U |Y n) + I(U, Y n) = I(U, Y n) = I(Xn, Y n)

≤
n∑
i=1

I(Xi, Yi) ≤ nC.

Here we used that if the code has error probability zero then the message U sent
is completely determined by the channel output Y n, therefore H(U |Y n) = 0.
This explains the third equality above (the first two come from the appropriate
definitions). The fourth equality I(U, Y n) = I(Xn, Y n) follows from considering
the coding function establishing a ono-to-one correspondence between U and the
input codeword Xn. (In some discussions Xn is considered as a “processed”
version of U and then I(U, Y n) ≤ I(Xn, Y n) follows, which also properly fits
the chain of inequalities above.) The last two inequalities are just proven in
Lemma 1 above. Now dividing by n we just get the required R ≤ C inequality.
2

To strengthen the above proof so that we get R ≤ C also for negligible (but not
necessarily zero) error probability codes we will need another lemma, known
as Fano’s inequality. This will help us to bound H(U |Y n) from above in the
setting when we cannot simply say that it is zero.

Lemma 2 (Fano’s inequality) Let us have a discrete memoryless channel where
the input message U is uniformly distributed over 2nR possible messages. After
sending the codeword belonging to U through the channel we receive the output
Y n from which we estimate U by Û . The error probability is P̄e = P (Û 6= U) =
1

2nR

∑
Pe,i. Then we have

H(U |Û) ≤ 1 + P̄enR.

23

Proof. Let E be the random variable defined by

E ∈ {0, 1}, E = 1⇔ Û 6= U,

i.e., the indicator variable for decoding the received word with an error. Clearly,
E is determined by the pair (U, Û), so H(E|U, Û) = 0

Then using the Chain rule to expand H(E,U |Û) in two different ways, we can
write

H(U |Û) = H(U |Û) +H(E|U, Û) = H(E,U |Û) = H(E|Û) +H(U |E, Û)

≤ h(P̄e) + P̄e log 2nR ≤ 1 + P̄enR,

giving the statement. For the inequalities we used that conditioning cannot
increase entropy and that H(U |Û , E = 0) = 0 since E = 0 means that U = Û ,
thus H(U |E, Û) = P (E = 0)H(U |Û , E = 0) + P (E = 1)H(U |Û , E = 1) ≤
(1− P̄e)0 + P̄e log 2nR. 2

In the proof below we will use the intuitively clear, but not yet explicitly stated
property of conditional entropy expressed by the following lemma. It can be
proven with a little work from Jensen’s theorem.

Lemma 3 If X,Y are two random variables and Z = g(Y) is a function of Y ,
then

H(X|Y) ≤ H(X|Z).

Proof of the converse of the channel coding theorem. We follow the proof we
have seen for zero-error codes and plug in Fano’s inequality at the appropriate
place. (The notation is identical to that used in Fano’s inequality.)

nR = H(U) = H(U |Û) + I(U, Û) ≤ 1 + P̄enR+ I(U, Û) ≤

1 + P̄enR+ I(Xn, Y n) ≤ 1 + P̄enR+ nC.

Here the first inequality is by Fano’s inequality. The second inequality is a
consequence of Û being a function of Y n and thus I(U, Û) = H(U)−H(U |Û) ≤
H(U)−H(U |Y n). We consider Xn and U having a one-to-one correspondence
between them, so we can write H(U) −H(U |Y n) = H(Xn) −H(Xn|Y n). (In
a more general way we can refer to the so-called data processing inequality
that expresses that if the random variables A,B,Z form a Markov chain then
I(A,Z) ≤ I(A,B). In that case we can write the inequality even if we consider
Xn simply a function, not necessarily a on-to-one function of U .)

So dividing by n we have obtained above that

R(1− P̄e) ≤ C +
1

n
.

Now letting n go to infinity we know that P̄e → 0 and 1
n → 0, so we get

R ≤ C

as stated. 2

Examples for calculating channel capacity.

1. Binary erasure channel: X = {0, 1}, Y = {0, 1, ∗}, W (1|1) = W (0|0) = 1− p,
W (1|0) = W (0|1) = 0, W (∗|0) = W (∗|1) = p.

We need to calculate C = max I(X,Y) = max{H(Y)−H(Y |X)} = max{H(Y)−
h(p)}. So our task is to maximizeH(Y) (since h(p) is a fixed value). Let E be the

24

indicator variable taking value 1 when an erasure occurs, that is, when Y = ∗,
and 0 otherwise. Note that E is a function of Y , so H(Y) = H(E, Y). Then by
the Chain ruleH(Y) = H(E, Y) = H(E)+H(Y |E) = h(p)+P (E = 1)H(Y |E =
1) +P (E = 0)H(Y |E = 0) = h(p) + p · 0 + (1− p) ·H(Y |Y 6= ∗) ≤ h(p) + 1− p.
Note that if the input distribution is set to be uniform then the last inequality
is an equality, so we get maxH(Y) = h(p) + 1− p and thus

C = max I(X,Y) = max{H(Y)− h(p)} = 1− p.

2. “Z” channel: X = Y = {0, 1}, W (0|0) = 1, W (1|0) = 0, W (1|1) = 1 − p
W (0|1) = p. We consider the example when p = 1/2.

Let us use the notation q = P (X = 1), thus P (X = 0) = 1− q.

C = max I(X,Y) = max{H(Y)−H(Y |X)} =

max
q
{H(Y)− (qH(Y |X = 1) + (1− q)H(Y |X = 0))} =

max
q
{H(Y)− qh(1/2)} = max

q
{H(Y)− q}.

We used that H(Y |X = 0) = 0 since if the input is 0, then Y = 0 with
probability 1. Now note that P (Y = 0) = 1

2q+(1−q) = 1− 1
2q, P (Y = 1) = 1

2q,
so

H(Y) = h (q/2) .

Thus
max I(X,Y) = max

q
{h (q/2)− q} .

Simple calculation shows that the derivative of the binary entropy function is
h′(x) = log 1−x

x . So

d

dq
(h (q/2)− q) =

1

2
log

1− q/2
q/2

− 1

and this is 0 when 1−q/2
q/2 = 4, that is q = 2

5 . The 0 value of the derivative marks

here the maximum of the function, indeed, and thus we obtain that

C = max
q
{h(q/2)− q} = h(1/5)− 2/5 = log 5− 2 = log

5

4
.

Eleventh lecture (November 29, 2017)

We proved the direct part of the Channel Coding Theorem. The proof of this
part is well sketched at the wikipedia article at

https://en.wikipedia.org/wiki/Noisy-channel coding theorem

(See also the book Cover-Thomas: Elements of Information Theory, Section 7.7,
pp. 199–205 for more details. The lecture closely followed the discussion there.)

Here we quote only a few hints.

The main idea of the proof is to randomly select d2nRe codewords (for some R <
C according to the input distribution achieving the channel capacity C. Once
the set of codewords is given there is an optimal decoding function belonging
to it. However, for making the analysis more convenient a special decoding
function is defined (which, though suboptimal, asymptotically still achieves the
result we need). This is based on joint typicality. The set of jointly typical
sequences (for some small ε > 0) is defined as

25

A(n)
ε = {(x,y) ∈ Xn × Yn

2−n(H(X)+ε) ≤ p(x) ≤ 2−n(H(X)−ε)

2−n(H(Y)+ε) ≤ p(y) ≤ 2−n(H(Y)−ε)

2−n(H(X,Y)+ε) ≤ p(x,y) ≤ 2−n(H(X,Y)−ε)}.

When a codeword is sent and y ∈ Yn is received at the output, we decide on the
codeword that is jointly typical with the received sequence, if there is a unique
such codeword. Thus we make a mistake if either

1. the received word is not jointly typical with the codeword sent, or
2. there is another codeword, which is jointly typical with the received word.

It can be shown that the average value (over all codes) of the probability of
both of these events goes to zero as n goes to infinity (when R < C that we
ensured). Thus there must exist a code for which the error probability tends to
zero, while it has the required size, that is achieving the rate R. This proves
the statement in thedirect part of the Channel Coding Theorem.

26

