Information Theory Third Midterm November 23, 2017

- 1) Give the definition of quadratic distortion of a quantizer Q.
- 2. State the converse part of the Channel Coding Theorem
- 3) Let the random variable X have density function f(x) given as follows.

$$f(x) = x + 1$$
 if $x \in [-1, 0]$, $f(x) = -x + 1$ if $x \in [0, 1]$,

and f(x) is 0 outside the interval [-1,1]. Perform the first iteration of the Lloyd-Max algorithm for a two-level quantizer of the variable X starting with initial quantization values -0.5, 0.5.

4) U, Z, W are independent binary (0-1 valued) random variables on the figure and \oplus means modulo 2 sum. The scheme shown by the figure gives a channel with binary input U and binary output V. What is the capacity of this channel if P(Z=1)=p and P(W=1)=q?

5) Let the input alphabet of a discrete memoryless channel be $\mathcal{X}=\{0,1,3,4\}$ and the output alphabet be $\mathcal{Y}=\{0,1,2,3,4,5\}$. The transition probabilities are given by W(i|i)=1-p for all $i\in\{0,1,3,4\}$, W(2|0)=W(2|1)=p and W(5|3)=W(5|4)=p. All other transition probabilities are equal to 0. (See figure below.) Give the capacity of this channel.

