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1. In a recent book’ one of us based a series of applications on the
following threc theorems.

I If

Al zlai= =2l
m is a non-negative integer, the &;s are arbitrary complex numbers, there is.
then an integer », such that
m+1=v,=m+n

and
fl n
A ) :l;l T an Z;, :* IZV/‘ N 7 N A 17l
II. With the above notations there is an integer », such that
mtl=v,=m+n
and

Yo R Pyl : o n n . .
lblzl szZ?z -, +anu 1 = [21]1 (mm) ' llnln ]bl_}_ "'_i—bji'
Ji=1..,n

HI. With the above notations and

o)~ ] -2
there is an integer v, such that '
m+l=v,=m-+n

0120+ 025+ 0,23 | =
n " 7w I ]
= (Zistar)- 1 ;

=1 1+ |Zl] - p— < |Zz
k=0, 1, ..., -1y =1 | @' (R)[(1+1]21])
In mentioned book® HI was discussed mainly as a matter of orientation and

had only one application in the investigation of integral functions of type

Z a,F(c,2)
r=1

t P. Turdn, Eine neue Methode in der Analysis und deren Anwendungen (Budapest,.
1953), Akadémiai Kiado,

and
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where F(z) is an integral function. Since that time the second of us found
some more applications of it. To show the essence of these three Theorems

I, I, Il we call the quantities

(1.1 Zlotials  jal,lal
J=

Ni(r, f) norms of f(»)= > b;z] (=1, 2, 3). Then the Theorems I, H and I
=1

can be expressed by saying that, for a suitable integer ¥, &2
. e
mated from below by the Ny(», f) norms (1.1) so, that the lower estimation

of their quotient should be -independent

vl .
bjz; | is esti-

a) of the z-values
(1.2) or
b) of the b; coefficients.

Theorems 1 and II are of a)-type, Theorem 1Hl is of b)-type. This formula-
tion of the theory is more symmetrical than that given in ', where only pro-
blems of a)-type were systematically treated. In connection with an applica-
tion® the necessity of dual theorems emerged where non-frivial upper esti-
mations of

1 E i
min 5f ( 7/)3
wHl S Zmin NI(/V)f)
7 integer

are needed even at the rate of simple geometrical restrictions on the 2z/s. In’
one can find detailed” motivation, on which way Theorems I, Il and HI can
be considered as generalisations of KRONECKER's and DIRICHLET's classical
theorems in the theory of diophantine approximations.

2, In' the emphasis was laid upon the applicability of these theorems
and no care was taken to besf-possible inequalities, though these have a
significance for some applications, foo. One can show this e.g. on the esti-.
mation® of N{(e, T), the number of zeros of L(s) (s= o if) in the parallelo-
gram 6=, 0<t=T

2.1 Nle, Ty — O(T20-+0-ty
which is uniformly valid for
(2.2) l—d=a=1

with a (small) numerical positive d. This constitutes the best-known estima-

2 P, Turin, On Lindeldf's conjecture, Acta Math. Acad. Sci. Hung., 5 (1954), pp.
145—163.
3 This is an unpublished sharpening of Theorem XXXVII of 1.
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tion in this range today. The proof of this is largely based on the case
(2.3) by=by=---=b,=1

of Theorem II; thereby the decrease of the numerical factor 24¢* since n is
“large* in this case, would result an increase of d in (2.2) which in turn
would result a decrease of the smallest known @ with the property

pmrl““pn == O(pw(?)
where p, denotes the n'" prime. The main aim of this paper is to review
the a)-type results in the first part of ! from this point of view, in particular
in the case (2.3), and to study certain (2,2, ..., 2,)-systems, which will
play a role in these questions. We suppose without loss of generality

(2.4) Zn.zl, 12{7};1 (j:I,..., fl)
in I and
(2.5) 2z =1, fzil =1 (J=1,...,n)

in IL In the case (2. 5) we ask for the ”smallest® numerical positive value
A,, for which

m+l =y =m+n
» integer

(2. 6) max ]z’f+z§’+-~+zﬂ|;(~ﬂﬁ—n)~)(

holds for an arbitrary non-negative integer m and positive integer n. We
shall show in 6—9 the following

THEOREM. We have for the A, defined in (2.6) the inequality
4

1,321 < A, < 2¢ " * (< 24).

The gap is still large but the upper bound is much better than the
previous 24e* ~ 177. That A, > 1,1, can already be shown taking

1 2
m=0, n=2, z=1, 22:-2—63 ;
in this case we have
/3 R 13
§21+22|:17’ IZH—Zﬁ\:*VZ—,
i. e.
y13 1 2
TE—’Z%_, Alé 1 >1,1.

I13
An interesting feature of the proof of the upper boundis the avoiding of the
use of H. CARTAN’s theorem and replacing it by a lemma of CHEBYSEV-type.

The new proof furnishes mutatis mutandis the following improvement of II.

2 Acta Mathematica V1;3—4
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Under the conditions of II we have

@.7) |t bzl = |2 (_“‘ d ) min (b b
2e “(m+n)

It will be sufficient to indicate only the changes, the proof of (2.7)
needs compared to that of the theorem.

3.-A further refinement of the upper estimation in the Theorem would
be given if the constant 2e in I could be diminished, even only in the special
case by ==-.-==b,==1. Asking for the ”smallest“ numerical positive value
A, for which in the case (2.4)

@.1) max |2+ 2

(3
( : )
o
m+l =y =m+n Ag_ (m + fl)
vinteger

holds for any positive integer n and non-negative integer m, nothing better
than
3.2) 1=A, =2e

can be asserted at the present. Something better can be said on the ’smallest
numerical positive value 4, for which in the case (2. 4)

n

AT el

3.3 max  |bz1+ - bz = (
m+l=v=wmtn
» integer

holds for any complex b,’s, positive integer n and non-negative integer m.
We shall show in 10 that

3.4) 1,27~%§A3§26~5,44.

4. The lower limitation of A, in the Theorem will be proved in 9 by
refining an idea of P. ERDGS, i.e. considering (2,2, ..., 2.)-systems with
the property
(4. l) SQZS;.}:"':Sn.lzo, Z]_:l

where s, stands for zi--25 - --- +2z,. This suggests for the sake of counter
examples the usefulness of the study of all (z, ..., z.)-systems with the.

property
Sp==83== = Sp1 = S == O;

or more generally with a prescribed non-negative integer m the determination:
of all those with
(4 2) Sitl == Stz =+ == Smpn-1 = 0.

We mention another reason why (4. 2) is interesting. The whole theory emerged
from the necessity to diminish the interval for »; in I, Il and HI as much as
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possible; the question arises now, whether or not for some integer values m
there is a non-trivial lower limitation for

!
ls,
max - 1_71]
mtl =r=m+n-1 IZI i
7 integer
or for
15y
max .
m+rl=vr=min-1 IZ”
»integer

That such a reduction of the interval for v is generally impossible, is triviat,
since in the case m==0 mod n we have for the n" roots of unity

Siil == Spa2 ==+ * == Span-1= 0.

Probably the same holds for all non-negative integer values m. As the Newton-—
Girard formulae show at once, for m=0 all the (z,, ..., 2,)-systems with

(4. 3) Si=8 =+ =8,1=0
are given by the zeros of an equation
4.4 Z'+a=0 (a arbitrary complex). .
We can determine all systems satisfying (4.2) with m=1 and m=2.
For m=1 we assert that all (z,, 2, ..., z,)-systems with the property
(4.5) Sy==Sy= =5, =0,
are formed by the zeros of an equation

an

4.6) gp,L(z, ay=2z"+ % P P 0 (a arbitrary complex).

An asymptotical determination of these systems for fixed g and 1 oo
follows at once from SzEGO’s* results. For m=2 we shall see in 11 that
all the (z,, zs, ..., z.)-systems with

(4'7) 83:\94:"':Sn_——sn-{-120
are formed by the zeros of an equation
(4 8) fn(zy a, l):zn_{_ill('.}i)_azlhl_i_ _}_L[,";('i)aaz:o’

where H,(y) stands for the v Hermite polynomial defined by
d’V
H, () = (—1yer o e,
()= (—1ye’ e

A denotes any zero of H,.(y)=0 and a is an arbitrary complex number.
An asymptotical determination of the zeros of f.(z,a,4) is not known. The

+ G. Szec6, Uber eine Eigenschaft der Exponentialreihe, Sifzungsber. der Berl. Math.
Ges., 23 (1924), pp. 50—63.

o
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result (4.5)—(4.6) can be easily® proved by Newton—Girard formulae so
we omit the details. It is interesting to remark a characteristic difference
between the cases m=1 and m==2. All solutions of (4. 5) can be derived
from the single equation

z 22 2
1+1—!+~2—!+-~+7ﬁ:0,
all solutions of (4. T), however, can be derived from the (n--1) equations

Z; _i;j’("kl 2¥=0 where H,.4 (l) =0.

5. Owing to the applicability to the approximative solution of algebraic
equations it is of interest to study II in the special case

(5. 1) m:O, bl’:bg:‘"':bn:l-
In this case we have to determine
(5.2) M, = mlin max |1+42z54 - 425
]']:‘;g:f.l-, 7 r=heow
In! we have shown
G.3) M, = — 110g2 —;
Ttz oty

according to a written communication of DE BRUIN this can be replaced by

log logn

G4 Mo>e—s

(c numerical positive constant),

what is for large n somewhat better. This makes still more probable the con-
jecture that M, = d, independently of n. As to the upper estimation of M,

/5—1

Mr. HyLTEN-CavaLLIUS showed M,= ~ 0,86 and found by con-

/2
sidering 2, ==0,1295+ 10,7063, z,— —0,5128 4 0,1508 the estimation
M; < 0,831.

6. Before turning to the proof of the Theorem we need the following
simple

LEMMA. Let be 0 =0 =1 and

CAY f@ =zt = [l ¢—2).
5 Another very elegant verification is due to E. Ecerviry. Using Euler’s formulae
k3 cd
Z Z(J ):0 (#»==0,1,..., n—2) valid for any polynomial ®(z) with simple z-zeros of
s RO €2)

-1
degree n and using ¢} (z;, @) —(n125) "™ the result follows at once.
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Then, there is a circle 'z|=r, with 0 =r,=1 such that on the whole
periphery

3

s@i=2[17%)

For the proof we introduce

6.2 F@=Ile— 2.
Owing to the classical theorem of CHEBYSEV “there is ‘a Ewith 0 =E=1and
. e 1———6 K3
6:3) re=237.
But on the circle |z|—=& we have
lz—zl = llzl—gll=E=lg5ll  (=12...,n),

i. e. multiplying, further using (6.2) and (6.3) we get
. 1—a "
s@i=zire=2(52

Hence the above § can be chosen as r,. Q.e.d.

7. Next we turn to the proof of our Theorem. We may suppose that
n = 2. Let be, with our numbers z;,

1) () = Ig e—2)

and let & be a positive number 0 =dJ =1 to be determined later. To this
w(z) and o there is, according to the Lemma, an r, with 0 =7, =1 and
such that for |z|=r,

(1.2) w(2)| = 2 (1;_(3)

Since each factor |z—z;| is at most 2, we have from (7.2) for |z|=7r, and
for any choice of the indices (1=) ii<i<---<ih=n (1=k=n)

k - ° n K
1"‘6 1 - 1——‘ () I
We investigate two cases.

Case a) All z/’s are absolutely =r,. Then, owing to I, there is an
integer v, with m+1 =», = m-}n and

4 Vi n " ) n B
1.4 T = ‘e 711,1 = | = mnl R )
(1.9 |20+ 4+ +2 I_ro(ZQ(m_an)) =d (28(m+n))
Case b) There is an index [/ with 1 =/ < n and
(1.5) l=alz iz = a>n>aalz - =2
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In the treatment of this case we shall suppose first that the z/s are all
different.

8. Let first be

n~1

(8. 1) fi(@) = ]] (z—z) = Zc“’ e P =1.
We have obviously

=7

= j .

Next let f.(z) be that polynomial of degree =1/—1, which assumes for
Z2=2,2, ..., 2 the values
1 1 1

6.2) 1= 2 maez,
=iy <L <y =i '

J

m+1f1(21) m+1f1(22) 4 1?14-1f1 (ZZ)
respectively. If =1, then
1 a
hO) = =0

Za{?-&»lfl (Z])

if 1 << n, then we can represent f,(z) as Newton-interpolatorical polynomial

£@) = +c@—2) + SG—z)(z—2) + - + i (z—2)z—2)- - (2—2-1).

Since the function is regular for |z| > r, and vanishes for 2= oo,

1
zm+1 fl ( Z)

we have according to NORLUND’s representation

9 1 dw
(8 3) CJ(' ) - 2Tl f wm+1fl(w) (w___ Z]).(w"“'z‘)) Ces (W—‘Zjﬂ)

wl=x,
(G=0,1,..,(—1).
But fi(w)(w—z) - (W—2z;1) is of type (7.3) with k=n—I-j+1 and
thus owing to (7.3) we have for |w|—=r,
———é n e 1‘—"6 i ]
A =) =2 - 2] =250 2210
i.e. from (8. 3)

e 1 (4 Y., 1 4 Y
2) l-y-r -t . = J
(8'4) ‘] |“—- zrgz (1 6) 2 - de (] 6) 2 ¢

But we need also fi(z) in the form

Jz(z)-Z P2

and we have to estimate the coefficients c(a’. We have

C} )1 = )1
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and if /> 1, for j=0 1, ..., (I—2)
TN PR
=r =5+2

1=r=j+ = =42
1-7-1 (2) '
-+ (_1) Ci-1 Z Zr &yt Z"z,jul y
1= <rg<. < rl—j«lél_l ‘

) =10+ (1) 1P 52 4+ e ).
Thus from (8. 4)

1-j-1 n . ,
®) — 2 4 J+1})1 J+2i1 —1 1 2
= () T U8+t <

1-j-1 "o [
(8.5) <227(_1é6) > /j;d)glg:
it - . -1 n

(i) B (7875 )
Let finally be
.6 FO=@ = 3 &7
It follows from the definition of fi(z) and f,(z) that
@7  fR)=hE)==fE)=1, filzm)="=Ffz)=0.

Replacing z in (8.6) by z; and® summing for j=—1,2,...,n we get,
using (8. 7) and writing
8.8) Ss=a 4+ +2,
the identity

M+

D Vs, |=

M+

> WP, =—

p=m+1 pr=m-1
1. €.
mn
4
8.9 = max |, | ( > [c§)l)
mtl=py=mtn j=—m-+1
» integer

But from (8.6) we have
) (1) (3)

G = Z G, Gy
n-U-fytjo=j-m-1

S ()3 e)

6 Jf we want to prove (2.7) instead of the upper estimation of the Theorem, we
have also to multiply by b, and then to sum for j.
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thus, usihg (8.2) and (8.5), we get

STy = 2 21-1( 4 )“_ ! ( 8 ]
=t 0" \1—o) 20" (1—9)"

Then we have from (8.9)

"

(8.10) max  |s,| = 20" (ﬂ) .
M+l =Sy =min 8
» integer

Now we choose J so, that

WRTI n u__ n l—d "
J (2e(m—1—n)) “d( 8 )’

G =0y

n
+?m—l—n

then from (7.4) and (8.10) we got
max |21 25+ 2] = 200 ™ (—-—n———) )

y=m+1, m+2, ..., m+n Ze(m + n)
But
n+n sn 4n
4n = -—
(1 —'}—*m =e°, 1. e dngHEQ ¢
whence

max 12T+~-'+zﬁl§2(———4—n—————),
r=m+1, m+2, ..., min 14—
2e °(m--n)
i. e. our Theorem is for different z;’s proved. We can get rid of the restric-
tion z,=F2, (u=F7) exactly on the same way as in the previous proof in'
and we do not detail it.

9. Now we turn to the lower estimation in the Theorem. Let 9 be a
positive constant, less than 1 and to be determined later, let z,=1 and
22, 23, .. -, 2o e determined by the conditions (with the notation (8. 8))

9.1) S ==, S8 == =81 =0
It is well known that these conditions determine uniquely the numbers
2z j=2,3,...,n); let us denote them by &, (5, =1, »=2,3,...,n). Let
further be

f@=z2+az"t4..-Fa,
the polynomial with the zeros &, (v=1,...,n). Then the Newton—Girard

formulae .give successively
~1

S% n—~1
(9.2) a¥=‘—s1;02:§‘!‘y a3:——3~!,...,am1=( 1) (ﬂ—"l)‘

K,
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Since §,=1 is a zero of f(z), we have

Sl % . -1
an:'——'(l +al+ “'—{_a“_l):_. (1~_|+2§?~ o _IL(~]) 1 T’;%m):

©-9) B X 1)j

—JL

Further, we have from Newton—Glrard formulae
Sy = Qy-1 S, — N = (—1)" (n 1)' +nes Zn(-—l)j.—!=
' g/
5 ' (—1Y ')~ —iL
( y( ) ng =05

J=n+l
and from (9. 3) and 9.4)

Sp1 = —1Sp—Ap$ =8 (Sn*an) =

(e + (=1 2 L ) Z (—w

9. 4)

(9. 5)
=8

Since 0 < 3 <1, the terms J— decrease monotonically if j = n, it follows

-+l
j+l Sl S1
J%l( D (il + D!’
i. e. from (9.4) and (9.5)
. 3[2 741 ‘911 “ 3’1 a1
lsnl §”(‘e—&n+é?)17!~)7 an+1| _—_—9‘?2 (ﬁ+1)e gn—f—(’l') ! ( n') .

i
Since k! >,(§) e, we get for n>10

1$.] =n

et el eH™ s', (1] = (1€ + 4 )

whence with m=1
max |s,|<4(n+17{e"" (9

mtl=py=min

If 3 is the (only) positive- zero «y of the transcendental equation

(9. 6) X==e*

then we have 0,2784 = ¢ = 0,2785 and for our &,’s

9.7) ,_max IS, = 8(n+1)ye .
" integer

It may occur that (2.5) is not fulfilled by the {,-system, i. e. some of them
are absolutely =1. If so, we can construct simply by contraction a {;-system
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satisfying (2. 5) and for which (9.7) holds a fortiori. Thus for an arbitrary
small ¢ >0 and for n > n,(¢) there is a {,-system satisfying (2. 5) such that

max |s,| = e @-an
0<,‘,<.n +1
» infeger

Hence, if for each integer n =1 and m = 0O the estimation (2. 6) is valid, then

n .
(__________) = e(~ag+£)11) i e, Al = e% ~ 1,32],

A(1+n)
indeed.
10. We are going to prove (3.4). Obviously we need only to show
4
A= =

We choose e. g. n big odd, m=n® and with a slight modification of idea
of P. STEIN’

T n"“l min 25 ~H—
(10 1) ZJ . eO(an)(J ]}, b,:'—lf (]——_1] g mtn) & 1) (j: 1, 2, o fl).

Then we get

f)= 2z = >, (el
2 E U=

7=1
— ( (T (y+5)+e' o (+5) )1 n- 1‘3 T ( 2 )?
= 2 )T R V20

Let us observe that for all sufficiently Iarge n’s

. 3 i ’ :"[
n- 1 9t-1 -1 _
j:EIb =C0s" pTE n) ==C0$ 49(,1 FIT) > €os" g > ; T

Hence for m =y = m-n we obtain

R ,,,;in)’“‘

Jj=1

e tlswen(s 2

—(m+n) |

Since for an arbitrary small ¢ >0 we have for n > ny(s)
1Y 4 1

(1 —iﬂn—);(n?»{- 1)< T]‘_—:J—,
we got
4
Asé_';(l——a) Q.e.d

7 See ]. E. Litr.ewoop, Math, Notes (12), An inequality for a sum of cosines, Journ.
of London Math. Soc., 12 (1937), pp. 217—222.



NEW THEOREMS IN THE THEORY OF DIOPHANTINE APPROXIMATIONS 253

11. In order to show (4. T)—(4. 8) we take
(11.1) Si=—2u, $,—=21" (v==0).
Then Newton—Girard’s formulae give

alzzu:ml(i),
v
24(£)H——2
{ u

[ u
a=grri(t)

denoting by H,(y) the »™ Hermite polynomial defined in (4.9). Suppose we
showed already

(11.2) an="0 HHL) (m=1,2,...,k)
for a k< n. Then

(k+ l)a};+1 - _(SI.:—H "[_ a Sy + e +vaksl)
and, using (4. 7) and (11. 2),

20,= — 8, — 8, = — 20V 410> = v

i)
v K

7 1

(k+1)ar = —(@ 18+ ars) = — =1 H,._, (%)2 + % H; (5—)211 =

(11. 3) Y orHL (»)+2 —Hk(il—)é.
k! v v v )

But as well known

(11.4) 2ka(x)—2ka‘.1(x):Hx.«+1(x),

i, e. from (11. 3)

s ( u )
Ay = (k + 1)' 3

what shows that (11. 2) is true for m=1,2,..., n. Conversely these values a,

assure that s3—s,—=---=35,=0. For s,;; we have
Sirt=—(@1$, -} -+ +Qu81) = — (Qu-182+ . 51),
i. e. from (11.1) and (11.2)
,Uaz+1 u
Sn+1——“(—n*__—1)THn 1 ) f'ln(}/—)
;n+1 (
—r 2iHn( ) 2nH, ”) ,
n: v v v )

or from (11. 4)

,Un+1 u
Swer =7 B | -
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Since v==0, s,y ==0 implies u==4v where
H?H—l (;v) —_— O.

This proves already (4. 7)—(4. 8).
For the value s,.. we have in our case

J+2
Snpg == ——((118n+1 + a8y + e —!_' auS'Z).: — a8 = _"2 Ej‘ﬂ‘" [{n(l),
i. e
(11.5) max (s, =200 H(®)]

v=3,4,..., (n4+2) !

If the minimal absolute value of the zeros of
(11.6) SHE@) . g
»=0 V!

is denoted by A,(2), then the maximal one of

popeld Gl
r== »!
is A(?L) Hence, if we choose »— A, (%), we obtained a (2}, ..., 2})-system
with
max |2j|=1
i=l
and
(1.7 max (| 2| — o ) A
r=34,..., 4+ ni

An asymptotical determination of A,(4) (or even a good upper estimation of
it) and a suitable choice of 4 would probably result a better lower bound
for A, in the Theorem.

(Received 29 January 1955)

O HEKOTOPBIX HOBBIX TEOPEMAX TEOPUU JUO®AHTOBBIX MMPUBJIAKEHUI
Bepa T. lHow u 1. Typau (Bypanewmr)

(Peswome)

Bropoit us asTopoB Hacrosieii paGoTEl BO CBOEH HEAABHO BBIMEAINCH KHUre aan
uenplii pap npumenenmit puotanroBeix mepasencts I, II, U, orrocdmpxes x pasnndsbiM
BETRBSIM AMANM3a M aHAMUTHYECKON Teopu: ducesn. YIyumICHHE STHX HEPABEHCTB BAKHO 1 C
TOYKN 3peHusi mpumeHennii. B HacTosuiell paGoTe aBTOPHI 3HAUMTENHHO YAyYINAOT TEOPEMY
II. B OfHOM M3 CaMmblX BXKHBIX [/Ifl NPHMCHEHHH C/Iy4aes 9TO YJy4YLIEHHE COCTOMT B Clefy~

owenm : Mycrs max [z} =1, u noycTe A o3HayaeT HAMMEHBIIYI0 YHCJIOBYIO HOCTOSIHHYIO,
j=1..,n
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st KOTOpO#

max_[s,[= . max 'ZH'“M‘E‘(;T@LM)

m+l =Zp=min m+l =y =mtn

(v IpUHUMAET Ue/ble 3HAYEHWS), TMPH BCEX UEBIX HEOTPHUATEABHBIX /11 M Heasx. . Torpa
.4

1
1,321 A< 2e °.

B cBsiau ¢ yiayylieHneM ONEHKH CHH3Y BOSHMKAET BONPOC O BCEX CHCTEMAX (Zy, .., 2,),
ANS1 KOTOPBIX
a) Sg==8g3=—-- =g =0,

b) ss=8=---=5 _,=0.

w1
Jlerxo A0OKa3aTh, YTO C TOUHOCTHIO [0 DPACTSIKEHHsT ¥ BpALCHWST €INHCTBEHHAs CucTeéma

L
.. z
(z;, ..., 2,), yLOBNETEOPSIIOII@si YCAOBUIO a) COCTOMT U3 KOPHEY YPABHEHMs E i =0.
P
v=0 M

Hecxonbro tpysnee poxasaTe, 4TO — ONATH € TOYHOCTHIO O PACTSKEHUS U, BPALICHHUS —

BCE cmcTemsl (2, ..., Z,), YAOBIETBOPSIIOLIME YCIOBMIO b) COCTOMT na xopmeidt n -1
ypasHenuil
n

> D =,
; Vi
r=0

rae H,(y) ectb muorowien dpmura crenesu », a 4 moGoH kOpeHp ypaswewust f, ., (y)="0.



