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In what follows we denote by (x> the fractional part of the positive x;
and by ¢ any number with O0<e-<1. As well known,
A\VT
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mysre=g

We put for an «
3 N
Z<na>—*:CG(N)'
= 2
As A. OsTrowsk! [1]* has shown, for any irrational « the quantity
Co(N) is unbounded. In the same paper he raised the question whether or
not C.(N) can for an appropriate « be onesidedly bounded. In this paper
we are going to give to this question an affirmative answer, i. e. to prove
the following

THEOREM. There is an irrational ¢ and a constant C such that for

N=1,2,... the inequality
C.(N)>C
holds.

A slight modification of our construction gives at the same time the
existence of a set of such e’s having the power of the continuum.

As A, ReENvI remarked, the constant C of our theorem cannot be =0;
a slight modification of our censtruction would show that for C we could
prescribe any negative number. We shall omit this modification.

In the proof we start from a geometrical  interpretation of continued
fractions which is applicable also to other questions of diophantine approxi-
mations. So I intend to return in this sequence of papers to a theorem of -
A. KHINTCHINE, i. e. to the lower estimation of

s%p ig‘fO xjex+ 56—yl

y, zintegers

1 The results of this sequence of papers were contained in my dissertation, defended
in June 1937, and [ lectured on some parts of it in Lublin and Lodz in September 1956.
2 The numbers in brackets refer to the Bibliography given at the end of the paper.
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investigated previously by A. KHINTCHINE [2], S. Fukasawa [3], H. DAven-
PORT [4] and A. V. Prasap [5], and to the upper estimation of
inf inf Xx|lex4 68—y,

o n=0
x, y integers

investigated by J. W. S. CasseLs [6]. Further applications I shall publish
elsewhere.

In §1 of this paper we give this geometrical interpretation of continued
fractions and announce some lemmas whose proof will be postponed owing
to their - general character to the Appendix. In §2 we deduce from it an

~

“exact formula‘ for > {ne> (Main Lemma). In § 3 we prove the announced

s==1

theorem.
§1
Starting from a fixed point O of the periphery of a circle £ with unity
periphery we put up in positive direction the arc with the length ¢ (0<e<1)

once, twice,..., n-times,.... The endpoints of these arcs we shall call the
“ne-points” (n=1,2,...). We need the following

DerFINITION. We call the se-point “adjacent to O, and the corresponding
s an “adjacent multiplum of O“, if no ne-point with 0<n<s is contained
in one of the two closed arcs determined by O and the se-point.

So we obtained to our fixed ¢ a sequence

(1.1) O:SO, 1':5‘1<SQ<33<"'

of adjacent multipla; we shall denote the “empty*‘ open arc corresponding to the
s,a-point by 4,, the length of this arc by d,. We shall use also the direct-
ed “empty* arc between O and the s,e-point, the sign of its length being
positive and negative, respectively, according to the direction in which the
arc 4, starts from O. This length with sign we shall denote by d,.
Particularly important are those s,-multipla from (1. 1) for which 0, and

d,+1 have different signs. We shall call these s,,,Sy,,..., Sy, ..., forming a
subsequence of the sequence sy, S,,..., Sy,..., the “jumping-multipla“ and
-denote them by

(1’2) g, sy ooy qu:SwL.;-'v-

In the case when %<a<l, the definition needs an additional remark, it is

suitable to define ¢,=¢,—=1. If k>1, then ¢..1>¢s. The corresponding
quantities 0, and d,, we shall denote simply by 4. and d;, respectively.
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We define dy==1. Next we define

d-
(1.3) ay = {J:]—] (k=1,2,..)).
dlc
LEMMA L. If the s,e-point is adjacent to O and from the opposite side
of O the nearest to O among the «-,2a-, ..., Sya-points is the s,..;c-point (1 po-
sitive integer), then we have

(1 . 4) Sys1 == Sy + Sy-1y
(1 . 5) da”.—l - (57' + ()1'—7-

The geometrical meaning of Lemma I is that one obtains the arc 4,4
from the arcs 4, and 4,.; in the following way: considering the larger of
4, and 4,, from its endpoint different from the point O we draw back the
smaller of the arcs 4, and 4,.;. This remark will be often used explicitly
or implicitly.

Lemma Il. We have jor the above-defined quantities the recursive for-
mulae for k=1,2,...:

(1.6) Qi1 == Qr-1 + Qi Qe

(1.7) 1 == di-1 + Qrdy, divt = dior —ard,

(1.8) Syar = qr-1 -+ 1qs,

(1.9) Oppr = e+ 1, Opyr = By — 1y O<r<a,
(1. 10) Qreaadi + @rth =1

LEmMmA lIL. If the positive integer n is not an s from (1.1), then there
exists an s, with s, <n and
(1.11) 8,0, < nt,
where
L=min{Kne>, 1—ned).
Further, if s, is not a q. from (1.2), then there is a qp<s, such that

Qi < Sy <{gr+1
and

(1 " l 2) ql.'+1 E/ﬁkl < Sy 01' .

The proof of these lemmas will follow in the Appendix. This shows
that the s,-multipla in (1.1) are identical with the set of all denominators
and by-denominators (Neben-Nenner) of the convergents of the continued
fraction of «, whereas the ¢-multipla in (1.2) are the denominators of its
convergents and the a;’s its digits.?

4 In this paper we use the term ”digit* instead of the usual ”partial quotient.
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Moreover we shall need the following special

Lemma IV. An arbitrary positive integer N can be represented in the form
(1.13) N:S‘LLI%;—AS‘M?_{M...—{-S#L:
where the s.u‘,-numbers are the adjacent multipla of an arbitrarily prescribed
irrational « in the sense of (1.1), further

Uy 2> My >0 2>
and*
i

(1.14) B=N— 5 <sun (J=1,2,..., k).
s
PrOOF. Is N one of our s,-numbers, we have nothing to prove. If not,

then there is an index u; with

Sy <IN < Sppq1.
Owing to (1.4) we have

Ny = N-—S8u, < Su 1~ Sy, == Sy, 1 == S, -1+
Next there is an index uw, with w,< gy, and

Sjy = My < Syi1 -
Again we have, using (1. 4),

Ny == Iy — S, < Sp,41—— Su, = Sp,-1

and this process is obviously finished after a finite number of steps.

§ 2

Let N be a positive integer, ¢ a positive irrational number and we
represent N in the form (1.13). Then we assert the following

MaIN LEMMA.” With the notation of § 1 and the representation (1.13)
the formula

v
‘ hl N Y s :+ 1 1 . o
Ce(N)= D ne>— 5= ((),% *——#Az — Wf) sign dy,, +
=1 . )
2.1 C, \
e S . L
—z—;_:_{ 10 T+S#j+1—r +S“L~I ~~2~\: Sign oy,
holds.

t In the case when g, =1, the last inequality for n, must be dropped.
5 An exact formula occurs also in Ostrowskr's paper [1]. His formula contains ouly
the denominators of the convergents of the continued fraction of .



ON THE THEORY OF DIOPHANTINE APPROXIMATIONS. I 465

For the proof we shall need the following lemmas:
LEMMA V. The Main Lemma z's true in case of k=1,

, & Iy su“l‘] 1(
2<nc>— 5 2Ssxgn()

ProoOF. The ne-points (=0, 1,2, ...,s,) divide the periphery of the
circle E into (s,+ 1) disjunct arcs; starting from the point O in positive
direction we denote the length of these arcs_ by 1,4, .. "tﬂu respectively.
Since the arcs with the length {ne> put up on £ from O in positive direc-
tion (n=0,1,...,s,) cover the arc with the length #, (/=0,1,...,s,) ob-
viously (s.—/)-times, we have on the one hand

2.2) Ninay = (s~
n=1 =0

On the other hand, we can determine the sum on the left side putting up
the arcs ¢, 2¢, ..., s.« in the negative direction, starting from the s,«-point.
These points in their totality coincide obviously with the ne-points
{(n==0,1,...,s,). Thus now the s,«-point plays the role of O and we have
to sum the distances of our points from the s,«-point.

Case I. 0,>0 (i. e. d,=1t,). Then expressing our sum again by means
of the #’s we obviously get

(2.3) Z ey = suty+ (su— Dy, + (.= 2)bs s+ -+ + 2t - 1.

n=1

Adding (2.2) and (2. 3) we obtain

(2.4) i‘ ney==suty-+ §

n=1

1 (f1+t2+'.‘+tsy}'

Since
ht+ti+ -+ b, =1,
{2.4) gives

55, 1
Z <na>=7(sp—l + (st 1)ty =

g Setl 1 < Sl b
R e T

Case . 0,<0 (1. e. O0u=—1s,). Then the identity corresponding to
(2.3) is

SP‘ .
(2. 5) Z<HC£>ZS,LZ‘S#_1—}—(SH 1)2‘5# __:""‘I—2t1+f0.

a=l
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Adding (2.2) and (2.5) we obtain

l .+ . 1t 1
Sy =20 ) = () —
(2.6) r=t , , \
CSu Y Sut 1(_Sp]§ Su+1 [
=2 o T T Ty TgsiEnde

Further we need the simpler

Lemma VI. Let m, S be positive infegers and let us consider the (m+j)a-
points (j=1,2,...,S). If one of the arcs determined by O and the me-point
is empty and the directed length of this empty arc is d(m), then we have

g«m )6y = <>+ Sd(m).

Proor. The directed distance from the je-point to the (m-j)e-point
on the circle is the same as between O and the me-point, i. e.

{m+J)e>—<jer =d(m)
from which summation for j=1,2,..., S already proves the lemma.
Finally we prove the

LEmmA VII. Using the representation (1.13) it holds for j=1,2,...,k
that one of the two arcs of the circle E determined by O and the (S, + -+ =+ Sy ) e~
point does not contain any ne-point whenever
(2.7) Su e Sy <M= Sy A Sy

ProOF. From the point O we can reach the (s, -8y, -+ -+ -+ su;)e-point
starting from O going first to the s, ¢-point along the arc 4., then from
the s, a-point to the (su, 4 Su,)e-point along the arc with the directed length
0., and so forth, and finally from the (s, - +S,Lj,1)cc-point to the
(Sp, 4+ ~i—s,lj)c4—point along the arc with the directed length dy;. We shall
prove our lemma a fortiori by showing that for the n’s in (2. 7) no ne-points.
lie in these arcs with the directed length dy,, d,,, ..., 0y, First of all from
(2.7) it follows that for i=1,2,...,/

2.8) N> Sy A Sy,

If for an n the ne-point would lie on the above-mentioned arc with the:
directed length d. _ , then the ordering of the points

(Sp b su)a, ne, (Sy+ -+ S, )e
would be the same as the ordering of the points

O, (n—Su,—++—Su)&, Sy, &
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- Taking into account (2.8) and the definition of s, it would follow

vﬂ—S.ul—"‘—Sp.izs‘uH1+17
i. e.

n= 3!11+ T _i—sltg +S,ui+1+1-
But owing to Lemma IV

Suiaret > Sugog Tt Suys
i. e. n>N would follow, which is a contradiction.
From the above lemmas the proof of the Main Lemma can be com-

pleted as follows. We write

Sy Sy ST Ty
ll
> ney = > >+ D Lned - > {nep.
H,—l =1 ”—’ui = >Illf 1-9”} 11

Owing to Lemma VII, Lemma VI is applicable; using also Lemma V we obtain.

N { i
=L hsf‘l \§~—- S‘;ﬁ—}—l _is s
2, (nay =g 0, =5 — — o signdu+
Uy "-\ Su, 1 1 \ 1
(2.9) R 72 Sig G 53, d(5) +

Su — SL,—;—I 1 .
—l"i 3() i /A2 __2~$ $igN Oy, + S, A (S, -+ ++ + S,

From what has been said in the proof of Lemma VII it follows
d(Su+ - +SFL‘/‘):(SN'1+ b0y
Putting it into (2.9) the proof of the Main Lemma is complete.

§ 3

We shall prove the announced theorem. We use again the representation
(1.13) of N and divide the s,'s into two classes according to the sign of
the corresponding J,;. Let

(3. 1) Sruj B S#J.) d,u.) == ()‘5’ for d“’j > O,
Su; = S, duj == OHJ. for (5,%. <0.

Introducing this notation in the Main Lemma we get

ca(zv):jz;d@,(s” > sy,) 2

9/\.5'

iy

(3.2) , -
y 1 o [ e 1 — .
R T, 2 = S
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Omitting from 2; the positive terms Z Sy, and taking into account that

QLL7< <’uJ

N\ U4
2 , St S Sep
B

from Lemma 1V

we obtain from (3. 2)

1 3~ v e
B3 ey X — y D=2

This suggests as a guide for the choice of « that for the s, -multipla
‘we should have s;,d], ~1 .and, on the other hand, the products s J;;; should
be small, i. e. O should be approached “badly from the positive side and
‘well from the negative one.

The actual construction of such an « can be performed as follows.
Denoting the digits of the continued fraction of an ¢ by a;,a.,...,

1 1 i

TaF ot ot
‘we define
(3 4) a1 = 1,(
3.5) P 5 (k=1,2,...);

owing to a,==1 we have %< « <1 and owing to the additional remark on p. 462

(3 6) %Z(}z:lv
The formulae (1.6) and (1.7) give
(3.7 ok = §on-1 + Qor-2,
(3.8) Gorr1 = @1 4 K°qar,
(3.9) oy = o1 + dorsa,
(3.10) o1 = Koo+ doras.
From (1.10) and (3. 8) we obtain
(3.11) (oo = ! < i
Qorgr | oy G2rst Kk
A T
qax Ao
Again (1.10) gives
— 1
(3.12) qorv1dar =

Jor+2 _I_dzwz
G141 d-zr_.-+1
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(3.10) gives at once

CYQ]H-‘l 1
= <
Aoy K
and from (3.7) and (3.8)
Qoe2  Gorts Qo <14 19;
gors1 Gorrt K
putting this into (3.12)
doy > S1—2
(3.13) Qorr1 o 5 PER
1+ i

In order to extend the estimations (3.11) and (3.13) to all s.d,’s we

remark first that owing to (3.4) all s.’s are at the same time ¢’s, i. e. also
with some £

— - 1
(3- 14) Sﬂdff == Qoo < R
As to the s;’s (3.13) and Lemma IIl give for all s;’s with
(3 15) Gor < St < Qonn

the estimation

= — 2
SLOp > Qopsr Aoy >1—

7;-3_)
i e _
=, 2
(3.16) $u0—1>— 7.
Now (3.14) and (3.3) give at once
(.17) 2.;>———§’—Zl;>—3.
k=1

To obtain a lower bound for 37 by the aid of (3.16) we have to con-
sider how many terms belong to the same k for any fixed k. The number
of the s,~“Neben-Nenner” satisfying (3. 15) is owing to a«==k° obviously £°;
we need only an upper bound for the number of those which beside fulfil-
ling (3.15) also occur in the representation (1.13) of N. Let these s’s be

S ks St ky oo ey S,u,., k
where

(3.18) Su; % == Jan-1 -1 WGy (i <pp <o < ).
We have to find an upper bound for r. Owing to the representation (1.13).

we have
Spyk o+ Spy 1,k << Sp, k= (ot = Qop-1 k3q2k-

14 Acta Mathematica Vill/3—4
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Using (3. 18) this gives a fortiori
W1 +A”2 + cet _}_Au'V—l <K.
Since

Myt e e =124 +(r_1):f("2~’),

we ' get

k3>’i(r; Do rcae

Hence, by (3.3) and (3.16), we obtain
2{>—~23k3"'2i.,,.
Je==1 k

This and (3.17) complete the proof.

Appendix

As told in the introduction, we shall prove here the first three lemmas.

Proor oF LEmma [. We denote by 4, the arc with the endpoints O
and the s,e-point; then owing to the definition of /, 4, and 4,., have no
common point except O. Let the me~point fall into 4,--4,.,, then we have

m>s,.

Since the length of the arc 4,-+4,, is d,--0,.,, there are two possibilities.

Case I. The length of the arc with the endpoints s,e-point and me-
point (within 4, +4,.)) is =0,..

Case 1. The length of the arc with the endpoints s, ;e-point and me-
point (within 4,+4,.)) is <0,. '

In Case I the directed distance from the s,e-point to the me-point on
the circle is the same as that from O to the (m—s,)e-point and this last
point lies on 4,_, or in the s, e-endpoint. Owing to the definition of s,.;
we have in this case m—s,=s,, i. e.

4.1 mz=s,+58,..
In Case Il the analogous reasoning gives
“.2) m>8,+5,.1.

The smallest m for which the me-point falls into 4, +4,; is, according
to the definition, s,.1; from (4.1) and (4.2) it follows that

Swil ; S» + Sy-1.
On the other hand, the (s, S,-7)e-point lies on the arc A, 4,.;, indeed,
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since the directed arc length on the circle from the s, «-point to the (s, - s,_1) -
point is the same as that from O to the s,,e-point. This proves (1.4) and
(1.5) consequently.

Proor oF LEmma II. It follows from the definition of the q;;’s that the
arc of the circle £ which is bordered by O and the g¢:.ie-point, contains
none of the «-, 2e-, ..., gre-points. Hence, according to Lemma I,

31/];1—1 ={-1 + gi,s
dw/ﬁﬂ = -1+ .
The remark after Lemma 1 in § 1 and the definition (1.3) of the digits a
give that on the one hand the s, ;1-, ..., S,44,¢-points lie on the same side

of O as the ¢:.;e-point, and on the other hand the Syra1@-point on the
opposite side, i. e.

(4 4) Grr1—= S’sz+uk .

4.3

(4. 3) and the repeated use of Lemma I give already (1. 3) and, as easy to

see, also (1.9). Owing to (4.4) the special case r=a, gives already (1. 6)
and (1.7).

_ Since ¢,=0, ¢;=1, dy=1, di=« and from (1.6) and (1.7) ¢,—a,
,==1—a,ez, we have

fhazﬂ"%gl =1
and (1.10) follows from (1.6) and (1.7) by an easy induction.

Proor oF Lemma lII. (1.11) follows clearly from the definition of the
s’s, since if the ne-point is not adjacent to O, this gives the existence of
an integer 1'=s,<n for which the s,a-point is nearer to O than the nea-
point. ’
(1.12) follows from (1.8) and (1.9) in the following way :
Sr 51/ = Swh-w gw;ﬁr = (qk+1 - (alr."r) l]z.-)(é?/:ﬂ + (ah I I') El.) =
_ d.
= q7.'+1d7;+1 (1_(ak‘—”r)—qi) (1 —%—(a];,——"r) :_—}L)
Gra d

h41/

_ 1
On account of d, > dyiy, ¢r< e and 0 < ap—r<a;
%

) Sy —51/ >>qk,+1 dl.t—H 3
indeed.

{Received 9 September 1957)

14%
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