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1. Let 0 < e < 1. Starting out in positive direction from a point O of a circle
K with unity periphery we put up the arc with length « n-times; the endpoint of
this we shall call the ne-point. In connection with the problems of diophantine
approximation it is obviously important the investigation of the geometrical struc-
ture of the ne-points. It is possible to give on that way a geometrical theory
and generalisation of continued fractions® by which the classical theorems of
the diophantine approximations can be rather simply treated as well as new
results obtained.® In this paper we shall give on this way simple proofs for
some theorems conjectured by H. STEINHAUS, some in sharper form, and
a simple characterization of the geometrical order of the ne«-points.

To the above defined ne-points refers a very surprisingly sounding
conjecture of H. STEINHAUS.* Considering the. above defined ne-points for
n=1,2,..., N, together with O they determine N-1 disjoint arcs of the
periphery ; the conjecture of STEINHAUS asserts that their respective lengths.
can have at most three different values, for every N and e.

Denoting among them the maximal resp. minimal length by Hy resp.
hy, the further conjectures of STEINHAUS refer to the behaviour of Hy and
hy if N— oo and assert that if the digits® of the regular continued fraction
of @ are unbounded, then

liin_N-/zN=O ]i_mN~HN=1
1.1 ol oo
( ) lim N-Ay=1 lim N- Hy= oc.
N> N>

1 The subject of this paper was part of my dissertation, defended at 21. June 1€57.

2 In the present paper the geometrical treatment of the continued fraction will only’
be sketched; a more detailed version treated in On the theory of diophantine approxima-
tions. 1, Acta Math. Acad. Sci. Hung., 8 (1957), 461—4T71.

3 A lanctortek egy geometriai interpreticidja és alkalmazasai. Matematikai Lapok,
8 (1957), 248—263.

4 This was proved independently in the mean-time by P. Erpss, G. Hajos, N.
Swieczkowski, P. Szusz and ]. Surénv. (See J. Surinyi, Uber die Anordnung der Vielfachen
einer reellen Zahl mod 1, Annales Univ. Sci. Budapest, Sectio Math., 1 (1958), 107—111.)

5 “partial quotients”.
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These conjectures in (1-1) were proved using the theory of continued
fractions first by S. HARTMAN.®

As we shall see, the geometrical order of the ne-points is determined
by the sa-points with the property, that one of the two closed arcs on the
circle determined by O and the se-point contains no ne-points with
1 =n<s. In what follows we shall call these s«-points “adjacent to 0” and
the corresponding s-multipla “adjacent multipla”. For a fixed « let the
sequence of the adjacent multipla be denoted by

(1.2) (1)1 <H< oo <8p < oee.

‘Obviously for any irrational « the s,-s form an infinite sequence. Further we
denote the empty arc bordered by O and the s,a-point by 4,. We call the
Sye-point also sometimes as the endpoint of 4,. We emphasize, we mean 4,
directed, i.e. positive resp. negative, when the empty arc goes from O in the
positive resp. negative direction. The directed length of 4, we denote by d,.
For the s, adjacent multipla we shall see the

LEMMA I Let s,« and s, « (k positive) two adjacent points on the
opposite side of O so that no ne-points with 0 <n<s, lie on the closed arc,
bordered by the s,e-point and s, e-point and containing 0. Then we have
the recursive formulae :

(1.3) Spi1 =Sy + S»_i,
(1. 4) : 0y41=0, 4 0ps.

This Lemma means obviously that one obtains the endpoint of A,
taking the absolutely greater arc among 4, and 4,, and from its endpoint
measuring back the absolutely smaller arc.

We can now describe the geometrical order of the ne-points (n—
=1,2,...,N), ie to determine the (k,k, ..., ky)-permutation of
(1,2, ..., N) with”

O<tho)<(hha)y<---<(kyva)<1,
or

O<(kyve)<(ky1@) < - <(ka)<1
by these s, adjacent multipla. Let for the sake of simplicity « be irrational.
‘Then this is given by the

THEOREM 1. For our given N we determine v by
S =N < Sppt

6 S. Hartman, Uber die Abstinde von Punkten n& auf der Kreisperipherie, Annales
de la Société Polonaise de Mathematique, 25 (1954), 110—115.
“ (x) denotes, as usual, the fractional part of x:
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and s, should be defined as in Lemma I. Starting from the point O in the
direction of 4,.. let the consecutive multipla of e« be ke =s, e, ke,...,
kyae, kxe =s,a. With the numbers k,=s,_. and ky=s, the whole per-
mutation (ki, k., ..., kx) is exactly determined, namely :

A) km=k-+k if Oskh=N—k
B) kii=k—ky—k) if N—k<hk<ky
C) k1+1=k[—k;\' lf kx=k =N.

(This has a sense since from (1.3) N<k,+kx.)

Since the directed arc between the ne-point and me-point (m > n)
equals to that among O and the (m— n)e-point,” the Theorem I obviously
gives a proof for STEINHAUS’s threelength-conjecture, giving at the same time
an explicit determination of the lengths in question. This explicit determina-
tion allows e.g. to prove the existence of an infinity of N’s for whose the
number of different arcs is only two.

In 6 we shall give simple proofs for HARTMAN’s above mentioned
theorems in the frame of the above mentioned considerations.

2. PROOF OF LEMMA I. We consider an ne-point in 4,44, ; then
obviously n>s,. Since the length of this arc is |0,|+|d,|, there are
two cases:

a) the distance on the circle of the ne-point and s, e-point (within
A, + 4,-1) is not greater then |d,_;|,

b) the distance of the ne-point from the s,.;e-point (in the above
sense) is less than |0, .

Consider first the case a). We remark that the directed distance between
the ne-point and the s, e-point is the same as that of the (n—s,) e-point

and O; hence the (n—s,)e-point lies in 4,_;. Thus from the definition
of s, it follows

@1

In the case b) similarly we get

n—S8y = Sy-k)

n=s,+Svn

n=s,+Sy-rx.

Hence the smallest possible n-value is s, s,-»; the remark® shows at once,
that the (s, $,-x) @-pont lies indeed in 4, -4,.x, which completes the
proof of Lemma L

3. PROOF OF THEOREM I. We shall treat separately all cases; the
common feature of the proofs is that we always show that if an ne-point

8 The content of this remark we shall quote in the sequel as remark 5.
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lies “between’” the k; e-point and the ki1 a-point,” assigned by our theorem,
we have always n > N.

Case A. We consider separately the n’s with

3. 1) n>k
resp. with
3.2) n<k.

In the case (3.1) using remark® to the
ke-, ne-, (ki+k)ea-
points, the directed distances on circle K are the same as between the
0-, (n—k)e-, hkie-
points, hence owing to the definition of k, it follows
n—k > N,

: n>N
indeed. In the case (3.2) applying remark® to the
(ki+k)e-, na-
points the directed distances are the same as between the
(ki+ki—n)e-, 0-
points, — and thus, owing to the definition of ki,
ki+ki—n> N.

But then we have a fortiori k,-+k; > N, which contradicts the restriction
of case A).

Case B. Using the remark® to the

kia-, ne-, (ki+ki—ky)e-
points, it follows that the directed distances on X are the same as between the
3.3) kxe-, (n+ky—k)e-, kia-
points. Owing to the definition of 4, and ky and since now ky =k we have
n+ky—k =0, thus (3.3) can occur either if

n+kn—k=0

which implies owing to ky =k,

i. e.

n=0
or if
nt+ky—k >N
which implies again owing to ky =k
n> N.

9 I e. from the %, a-point in the direction of the sign of J,_, towards the k, 41 @-point-
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Case C. We shall consider separately the n’s with

(3.4) n>k—ky
and
(3.5) n<ki—ky.

In the case (3.4) we use the remark® to the
kea-, ne-, (kl——kN)a—

points; according to this the respective directed distances are the same as
those among the

kya-, (l‘l——kl+kN)Ct-, 0-
points. Thus, if the ne-point would lie between the ke« and (ki— k) e-point,
then the (n—k -+ ky)«-point would lie between the kye«-point and the 0-
points, and thus, owing to the definition of kv

H—kz+kN>N

and owing to k > ky a fortiori n> N indeed. In the case (3. 5) applying the
remark® to the

(3.6) ke-, ne-
points their directed distance on k is the same as that of the
(kk—n)e-, O-

points. But if the ne-point would lie “petween” the k e-point and the
(k,—kx) e-point, then the directed distance on K of the points (3.6) would
be less than the distance on K of the ka-point and the (ki—kx)e-point,
i.e. less, than the distance of the kye-point and the O-point. Hence the
(ki—n) e-point would lie “between’ the ky e-point and the O-point, and thus

owing to the definition of ky
kk—n>N

in contradiction to k& = N.

4. It follows from Theorem I that the three different lengths of arcs,
to which the periphery of K is divided by the ne-points (n=1,2,..., N) are

(4 1) \61/', Idv—k’, ldv'l + ld"’—kl'

Theorem 1 gives answer to the question, how often these arc-lengths occur.
The arc-length |d,.| occurs exactly

N—k+1=N—s,+1
times, the arc-length |d,| exactly
N—ky+1=N—s,+1

[
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times, and finally the arc-length |d,|-|0,-x| exactly
kn+ki—N—1=s,4-5, . — N—1

times. Thus, if

(4. 2) N: Sy + Sy-k —1= Syl — 1,

then the arc-length |d,|4-|d, x| does not appear, i.e., there are an infinity
of values N jfor whose there are only two different arc-lengths.

5. Before turning to the simple proofs of the mentioned theorems of
S. HARTMAN, we mention the connection of our above considerations with the
theory of regular continued fractions.™ Our s, adjacent multipla are identical
with the denominators of the convergents and of the “Nebenbriiche” of the
regular continued fraction™ of «. Those s,-adjacent multipla, for whose d,
and d,.1 are of opposite sign, are the denominators of the convergents. This
subsequence of the s,-multipla for whose d, and 0, have opposite signs
(and thus |d,| < |d,_«|), we denote by

G.1) (I=)g1<ga< - <qu< -+
and the corresponding d, quantities we denote by
(5.2) (e=)di<da< - <dp< -
The digits a; of the regular continued fraction™ of « are given by
||
5.3) a=|| % |

Corresponding to the well known recursion-formula™ of the g¢,-s we
have

(5.4) |Gyt | = | -1 | —ax | di].

6. Next we turn to the proofs of the theorems of S. HARTMAN, described
in (1.1). We shall prove them in the following form.

10 See 1. and 2.

NI g=-—ro with positive integer a,-digits is the regular continued fraction
B
a -+ L
; 1
of «, then the finite fractions %:—v are the convergents and the fractions
N
a,+ — 1
! QG+ -+ T
k
P )

»=12...,aq, —1') the “Nebenbriiche”.

;1 =+ 4,
12 Which follows also quite easily from the considerations of 2.
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If k£ is an index, for which a; is “large”, then

I. for N=Ni=gq; the hy is “small” compared to ~1]\7,
[I. for N—=N:=qi-1-+(ar—1) qx the hy is “nearly 1"’ compared to %,
1

III. for N=Ns=gqi-1+ (ax + 1)q: the Hy is “nearly 1"’ compared to —,

IV. for N=N4Eq;;_1+|:%qu the Hy is ‘“large” compared to %

Proor oF I. First of all we remark that owing to (4. 1), and the defini-

tion of ¢i in 5,
hy, = |dx|.

But we assert that |di.| is the minimal arc-length even for N = N,.
Namely in this case the roles |d,| and |d,..| are played by |di| and
|di-1| — (@ —1) |di| according to the remark after Lemma I; but owing
to (5.4) we have

|t — (@ —1) [di| = [dir| +[ @] > | di]
indeed. But then we have
1 1 1 1 1 1

hy, = hy, = =

N ot @—Dq Sa—1 ¢ a—1 Ny’

which proves I.

Proor of Il. We assert that
6. 1) Hy,=|d:| (=hy).
Namely, for N= N; the roles of |d,_x| and |d,| in (4.1) are played by
|d 1| — ai|di| = |dra| and  |di| — |dis1],
i.e. the largest arc is |d,| indeed. Hence

he — H e b 1 _ 1 gt (@—1) g
a % =N, Gt @+Dg gt (@—D)q: g1+ (an+1) g
(6. 2) /Z _H >l.ak—1
w=Hw>5 005

which proves 1L

Proor oF IIL
L_ 1 <ak~l—1 . L
N gt (@—1)g “a—1 N,

Hy,=hy,=

similarly as in IL
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PROOF OF IV. For the case N= N, the role of |0,x| and |d,|. in (4. 1)
is played by ‘
{dk_1|—[%hdk; and |d|
so we have, owing to (5. 3), »

HN4=]d,.._1|—[%]|dk|+|dkl > ac|di| —([%]—1)|dk1 >

a 1

Qe g —F g % L
>*2—'dkl—2 h1\2>6 N,

using- (6. 2), which proves IV.



