ON A PROBLEM IN THE THEORY OF SIMULTANEOUS APPROXIMATION

By VERA T. SÓS

Mathematical Institute, Eötvös Loránd University, Budapest (Received April 20, 1961)

To the memory of Professor L. Fejér

Let $\alpha_1, \alpha_2, \ldots, \alpha_k$ irrational numbers, p, q positive integers, and

$$\min_{p} |q \alpha - p| \stackrel{\text{def}}{=} ||q \alpha||.$$

As a theorem of Dirichlet it is well known, that there exist infinitely many q 's, so, that

which means, that the numbers $\alpha_1, \alpha_2, \ldots, \alpha_k$ are simultaneously well approximable with rational numbers $\frac{p_{\nu}}{q}$ (with common denominators). In the case k=1 the continued fraction algorithm gives a satisfactory process for the construction and characterization of the q's, for which

$$||q\,\alpha||<\frac{1}{q}.$$

In case k > 1 until now no algorithm corresponding to the continued fraction algorithm is known, and this is why "exact theorem" of simultaneous approximation in case k > 1 are not known.

P. Turán raised the question what sort of a localisation can be given for the integers q satisfying (1). After Turán's first results P. Szüsz solved in [1] that for k = 1, $0 < \vartheta < 1$

$$||q \alpha|| < \frac{1}{q^{\vartheta}}$$

has a solution in the interval $N \le q \le N^{1+\vartheta}$ for any N. He proved moreover, that this result is best-possible in the sense, that the exponent $1 + \vartheta$ generally cannot be replaced by any universal $\vartheta' < 1 + \vartheta$ (and even a slightly stronger result.)

We prove a theorem corresponding the general case $k \ge 1$. This theorem goes for k = 1 into Szüsz's result, apart from the constant factor. In contrary to the case k = 1 (i. e Szüsz's result) we cannot prove that our localisation is best possible.

THEOREM. Let $\alpha_1, \ldots, \alpha_k$ be irrational $0 < \vartheta \le \frac{1}{k}$. The inequalities

$$||q \alpha_{\nu}|| < \frac{2^{k+1}}{q^{\vartheta}}$$
 $\nu = 1, 2, \ldots, k$

have for all N always a solution with q integers satisfying the condition

$$N \le q \le N^{\frac{1+\vartheta}{1-\vartheta(k-1)}}.$$

This means for example, that the "generally best possible" approximation

$$||q \, \alpha_{\nu}|| < \frac{2^{k+1}}{q^{\frac{1}{k}}} \qquad \nu = 1, 2, \dots, k$$

is attainable under the condition

$$N \le q \le N^{k+1}$$
.

For the proof we need the following

Lemma. Let α irrational, $0 < \varrho < 1$, $q_1 < q_2 < \ldots < q_M$ positive integers. There are at least $[M \ \varrho]$ positive integers

$$q_1' < q_2' < \ldots < q_{|M_{\ell}|}'$$

of the form $q'_{\nu}=q_{e_{\nu}}-q_{i}~(\leq q_{M})$ (i fixed, $\nu=1,~2,~\dots,~[M_{Q}]$) for which

$$||q_{\nu}'\alpha||<\delta.$$

(For example in case the $q_{\nu} = \nu$, $(\nu = 1, ..., M)$ there are at least $[M_{\varrho}]$ integers under the condition $0 \le q' \le M$ for which

$$||q'\alpha|| < \varrho.$$

For the proof of this Lemma we consider the circle with unitperiphery. From a starting point 0 we put on the arcs with length α in positive direction once, twice, ..., n-times. We shall call the end-points of these arcs as α -, 2α -, ..., n α -points. If we consider the $q_1 \alpha$ -, $q_2 \alpha$ -, ..., $q_M \alpha$ -points on the circle, there is somewhere on the circle an arc with length ϱ , which contains at least $M\varrho$ points among these. Let these points be the q_{ν_1} α -, $q_{\nu_2} \alpha$ -, ..., $q_{\nu_1} M\varrho_1 \alpha$ -points, $(q_{\nu_1} < q_{\nu_2} < \ldots < q_{\nu_1} M\varrho_1)$. Since the $m \alpha$ -, and $n \alpha$ -points (m < n) on the circle have the same relative position and distance, as the 0 and $(n - m) \alpha$ -points, the

$$0, (q_{\nu_2} - q_{\nu_1}) \alpha^{-}, \ldots, (q_{\nu[M\varrho]} - q_{\nu_1}) \alpha^{-}$$

points all are in an arc with length ϱ and containing the point 0. This means, that

$$||(q_{\nu_i}-q_{\nu_1})\alpha||<\varrho \qquad i=1,2,\ldots,[M\varrho]$$

and this proves the Lemma.

For the proof of the theorem in what follows let $\gamma > 1$, $\delta \le \frac{\gamma}{k}$. γ and δ will to be determined later. According the Lemma — applied with $M_1 \equiv [N^\gamma]$ and $\delta = \frac{1}{N^\vartheta}$ — we can assert that

$$||q \alpha_1|| < \frac{1}{N^{\delta}}$$

has at least $M_2 \stackrel{\text{def}}{=} [N^{\gamma-\delta}]$ solution in q's with $1 \le q \le N^{\gamma}$. Let these q's be $q_1^{(1)} < q_2^{(1)} < \dots < q_{M_2}^{(1)}$.

If we consider the $q_{\nu}^{(1)}$ α_2 -points for $\nu=1,2,\ldots,M_2$, we can assert—according to Lemma — that there exist at least $M_3\equiv [N^{\gamma-2\delta}]$ multipla, for which the inequality

$$||q \, \alpha_2|| < \frac{1}{N^{\delta}}$$

holds. We denote these by

$$q_{1}^{(2)} < q_{2}^{(2)} < \ldots < q_{M_{3}}^{(2)}.$$

Owing to the Lemma, we have with a suitable i

$$q_{\nu}^{(2)} = q_{e_{\nu}}^{(1)} - q_{I}^{(1)}, \qquad \nu = 1, 2, \dots, M_{3}.$$

Since the $q_{\nu}^{(2)}$'s satisfy (4) and the $q_{\nu}^{(1)}$'s satisfy (3), we have

$$\|q_{v}^{(2)} \, lpha_{i}\| < rac{2}{N^{\delta}} \; , \qquad \quad v = 1, 2, \ldots, M_{3} \ i = 1, 2.$$

Continuing this construction k-times, we get the

$$q_{\nu}^{(k)} \stackrel{\text{def}}{=} q_{\nu}$$
 $\nu = 1, 2, \dots, M_{k+1} = [N^{\gamma - k\delta}]$

multipla, with $1 \le q_{\nu} \le N^{\gamma}$ having the property

(5)
$$||q_{\nu} \alpha_{i}|| < \frac{2^{k-1}}{N^{\delta}} \qquad \begin{array}{c} \nu = 1, 2, \ldots, M_{k+1} \\ i = 1, 2, \ldots, k. \end{array}$$

If there among these is a q_0 with $N \leq q_0 \leq N^{\gamma}$, then for this we get

(6)
$$||q_0 \alpha_i|| < \frac{2^k}{N^{\delta}} \le \frac{2^k}{q_0^{\frac{\delta}{\gamma}}} \qquad i = 1, 2, \dots, k.$$

If we have

$$1 \leq q_{\nu} \leq N$$

for any $\nu=1,\ldots,M_{k+1}=[N^{\gamma-k\delta}]$ then we have among these at least one q_0 with

$$N^{\gamma-k\delta} \leq q_0 \, (< N).$$

We define integers q'_0 and p with

$$N$$

From this and (7) we have

$$(8) 1 \leq p < 2N^{1-(\gamma-k\delta)}$$

and therefore, according to (5) and (8)

$$||q_0'\alpha_i|| < 2N^{1-(\gamma-k\delta)}||q_0\alpha_i|| < \frac{2^k}{N^{\gamma-(k-1)\delta-1}} < \frac{2^{k-1+\gamma+(k-1)\delta}}{q_0'^{\gamma-(k-1)\delta-1}}, \qquad i=1,2,\ldots,k.$$

So we obtained in any case that there is a q with $N \le q \le N^{\gamma}$ for which either (6) or (9) holds. Restricting our γ and δ by

$$\frac{\delta}{\gamma} = \gamma - (k-1)\delta - 1; \quad \delta = \frac{\gamma - 1}{k - 1 + \frac{1}{\gamma}}$$

we obtain that there is q in any case with $N \leq q \leq N^{\gamma}$ for which

$$||q \alpha_i|| < \frac{2^{k+1}}{q^{\frac{\gamma-1}{\gamma(k-1)+1}}} \qquad i = 1, 2, \ldots k.$$

Finally, choosing γ so, that

$$\vartheta = \frac{\gamma - 1}{\gamma(k-1) + 1}; \qquad \gamma = \frac{1 + \vartheta}{1 - (k-1)\vartheta}$$

there is

$$N \le q \le N^{\frac{1+\vartheta}{1-(k-1)\delta}}$$

for which

$$||q \alpha_i|| < \frac{2^{k+1}}{q^{\theta}} \qquad i = 1, 2, \ldots, k,$$

which proves our Theorem.

Reference

[1] P. Szüsz, Bemerkungen zur Approximation einer reellen Zahl durch Brüche, Acta. Math. Acad. Sci. Hung., 6 (1955), 203—212.