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Let oy, oy, - - -, 0 irrational numbers, p, ¢ positive integers, and
) def . e
min|go— p| = [lg .
P

As a theorem of Dirichlet it is well known, that there exist infinitely
many ¢ ’s, so, that

1
(1) el <—  w=1,2,....k
A
which means, that the numbers oy, o, - . ., o, are simultaneously well approxi

mable with rational numbers p—”(with common denominators). In the case k = 1

q
the continued fraction algorithm gives a satisfactory process for the construction
and characterization of the ¢ ’s, for which

2) ol <.
q

In case k > 1 until now no algorithm corresponding to the continued fraction
algorithm is known, and this is why ,,exact theorem” of simultaneous approxi-
mation in case k > 1 are not known.

P. TurAN raised the question what sort of a localisation can be glven for the
integers ¢ satisfying (1). After Turan’s first results P. SzUsz solved in [1] that
fork=1 0<v<l

1
llgorl| < E

has a solution in the interval N<g<N'*? for any N. He proved moreover, that
this result is best-possible in the sense, that the exponent 1 + @& generally
cannot be replaced by any universal 4" << 1 4+ & (and even a slightly stronger
result.)

~ We prove a theorem corresponding the general case k > 1. This theorem
goes for k = 1 into Sziisz’s result, apart from the constant factor. In contrary
to the case k = 1 (i. e Sziisz’s result) we cantot prove that our localisation
is best possible.
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THEOREM. Lef oy, ..., o be irrational 0 < & < 'R The inequalities

9k+1
an"“<?k V=1,2,...,k

have for all N always a solution with q integers satisfying the condition

_ 1+9
N < g < N&=oG6=D,

This means for example, that the ,,generally best possible* approximation

2k+1
“qa”H< 1 V= 1)2)' ,k
q?
is attainable under the condition
N < g < Nk+1,

For the proof we need the following
LeMMA. Let o irrational, 0 << o<1, q; < ¢, < ... < gy positive integers.
There are at least [M p] positive integers
1 <g2 < ... <(gimq
of the form ¢, = ¢., — ¢; (£ qu) (i fixed, v =1, 2, ..., [Mp]) for which
llgy e < 8.
(For example in case the ¢, = v, (v = 1, ..., M) there are at least [Mp]integers
under the condition 0 < ¢’ < M for which
9" ol < )

For the proof of this Lemma we consider the circle with unitperiphery.
From a starting point O we put on the arcs with length « in positive direction
once, twice, ..., n-times. We shall call the end-points of these arcs as o-,
20, ..., n a-points. If we consider the ¢,a-, g0~ ... gy a-points on
the circle, there is somewhere on the circle an arc with length g, which
contains at least Mp points among these. Let these points be the ¢,, o-,
G 0=y ooy Qipme 0-points, (¢, < ., < ... < @rimg)- Since the mao-, and no-
points (m < n) on the circle have the same relative position and distan-
ce,as the 0 and (n — m) «-points, the

0,(¢e —gu) oy - - -, (gr1aa — Gur) o
points all are in an arc with length o and containing the point 0. This means,

that ) ‘
H(qr,-_q01)°‘“<9 i=12,...,[Mg]
and this proves the Lemma.
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For the proof of the theorem in what follows let v >1, 6s%-

v and é will to be determined later. Accordingr the Lemma — applied with
def

M, =[N7] and 6= 1-\}; — we can assert that

© loeall <5

ha< at least M [NV"’] solution in q ’s with 1 < ¢ < N». Let these ¢’
(1) < q(l) < < q(l’

If we consider the ¢V o, -points for v = 1, 2, . M2 , we can assert —according
to Lemma — that there exist at least M3 = [N7-#] multipla, for which
the inequality

1
4) g of| < No

holds. We denote these by
g < g <...< g
Owing to the Lemma, we have with a suitable i
q(2):____q(1)___q(1) v=1,2,...,M,.
Since the ¢2’s satisfy (4) and the ¢\t ’s satisfy (3), we have
!fq‘”a,-||<-2~, 1.;21,2,...,M3
N° i
Continuing this construction k-times, we get the

def
qik)=lh v = 1)2v" ) Mk+1: [NV*M]

multipla, with 1 < ¢, < N” having the property

[ 5 Qe v=1,2,..., M
5 O < &y ’ k41
(6 gy o] = i—12.. %
If there among these is a g, with N < g, < N¥, then for this we get
2k 2k .
6) [;q0a|l<7v—< T i=12,...,k
do”
If we have

l<¢,<N,
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for.any v=1,..., M, , = [N""*]
then we have among these at least one g, with

() SN L g (< N).
We define integers ¢, and p with

def ,
N<pq05q9<2N.
From this and (7) we have

®) : < p <2NVG=9 .
and therefore, according to (5) and (8)
2k 2k—1+y+(k—1)¢5

Tt 1] 1— (ko) |} 1 | — ; d
1;qoa|!<2N ’ ||qooc[]< e m_ < P i=12,...,k.

So we obtained in any case that there isagwithN<qg< N~ for wh1ch either
(6) or (9) holds. Restricting our v and é by

3:y——(k——l)(‘i—l; 6:_y_11
Y
. we obtain that there is ¢ in any case with N < ¢ < N7 for whxch
2k+1 :

|goul| < ——— .i=1,2,...k.
y—1
g 7&—D+1
" Finally, choosing y so, that
. —1 K 1+ 9

y(k—1)+1 YT k=10

there is
149
N <q<N1—G10
for which
' k+1 ]

[]qoc,]|< l=1,2,...,k,

which proves our Theorem.
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