ON THE LOTTERY PROBLEM

by

H. HANANI¹, D. ORNSTEIN² and VERA T. SÓS³

The general form of the lottery-game - as it is well known - is the follow-

ing:

On each lottery-ticket there are the integers $1, 2, \ldots, n$ from which one has to select k numbers. After this l numbers are drawnout from $1, 2, \ldots, n$. If the set of numbers selected on a lottery ticket has exactly d common elements with the set of l numbers which have been drawn ($d \le l \le k$), we say, that we obtained a d-hit on the lottery-ticket.

The so-called lottery-problem in question is the following: what is the minimal of lottery-tickets, so, that suitably selecting the k numbers on them, we can be sure to have at least one d-hit? (In the case of the lottery in Hungary

 $n = 90, k = l = 5, 1 \le d \le 5$).

The general combinatorial problem according to this is the following: Let k, l, d, n be positive integers, $1 \le k \le n$, $1 \le l \le n$, $1 \le d \le \min(k, l)$ and E a set with n elements. We call a subset of k elements of the set E a k-tuple of E. Let S be a system of k-tuples of E. We say, that S has property P, if to each l-tuple L of E there exists at least one k-tuple of E belonging to S, which has at least d common elements with L. (We can say, that the d-tuples of the k-tuples belonging to S represent all l-tuples of E.) Denote by N the number of k-tuples belonging to S. The problem is as follows:

What is the minimum of N, depending on n, k, l, d?

We call an S-system with property P a minimal-system $S_0(n, k, l, d)$,

if for this the value $N_0(n, k, l, d)$ is the possible smallest.

We give in this paper a lower bound for N_0 in case d=2, and an asymptotic formula for it in case for fixed k, l, d=2 and $n\to\infty$. We can determine the exact value of N_0 and the minimal system S_0 only in the case $k\le 5$ d=2 and for special values of n satisfying some congruences. (For example for the case n=84 or n=100 and k=5). So we can consider the lottery-problem essentially solved only in the case, when we want to be sure of a 2-hit.

Theorem. Given a set E of n elements, integers $k, l \ge 2$ and a minimal-system $S_{\underline{0}}(n, k, l, 2)$ (with property P) then for the number $N_{\underline{0}}$ of k-tuples in $S_{\underline{0}}$

we have the inequality

(1)
$$N_0 \ge \frac{n(n-l+1)}{k(l-1)^2}$$

¹ Technion, Haifa

³ University of Budapest.

² Stanford University, Stanford.

and

(2)
$$\lim_{n\to\infty} N_0 / \frac{n(n-l+1)}{k(l-1)^2} = 1$$

If $k \leq 5$ and $\frac{n}{l-1}$ is integer, further

$$\frac{n}{l-1} \equiv 1 \bmod k(k-1)$$

(3) or

$$\frac{n}{l-1} \equiv k \bmod k(k-1)$$

hen there exists a minimal-system So for which the equality

$$N_0 = \frac{n(n-l+1)}{k(l-1)^2}$$

holds.4

Proof. For the proof we use the following three results:

1. Theorem of Turán P. ([1]): (in a specialized form). Let E be a set with n elements, and let an integer l be prescribed ($3 \le l \le n$, l-1|n). If B is a system of N pairs of elements from E with the property, that each subset of E with l elements contains at least one pair belonging to B, then the inequality

$$N \ge (l-1) \left(\frac{n}{l-1}\right)$$

holds.

Equality holds for and only for the following system B: we divide the elements of E into mutually disjoint subsets each having $\frac{n}{l-1}$ elements. The minimal system B_0 contains all pairs (and only those) whose elements are from the same class.

2. Theorem of Hanani ([2]): Let the set E have m elements and let H be a system of k-tuples of E with the property, that each pair of elements from E is contained at least in one k-tuple of H. Then from the number M of k-tuples in H we have obviously

$$M \ge \frac{m(m-1)}{k(k-1)}$$

If $k \leq 5$ and

$$m \equiv 1 \mod k(k-1)$$

⁴ Equality holds also in the case k=p, and $\frac{n}{l-1}=p^{\nu}$ or k=p+1 and $\frac{n}{l-1}+p+p^{\nu}$ where p is a power of a prime and ν an arbitrary positive integer. The proof goes on the same way only instead of Hanani's theorem in [2] we have to use a result from [5].

or

$$m \equiv k \mod k \ (k-1)$$

then there exist minimal systems H_0 for which equality holds in (5)⁵.

3. Theorem of Erdös—Hanani [3] (see also [6]): With the above notations when M_0 is the number of k-tuples in a minimal-system H_0 :

$$\lim_{m\to\infty}\frac{M_0}{\frac{m(m-1)}{k(k-1)}}=1.$$

To prove our theorem, let us suppose that we have a system S of k-tuples with property P. Then, if we consider all the pairs of elements in these k-tuples; they represent all the l-tuples of E; i.e. each l-tuple of E contains at least one pair from these. But then, according to Turán's theorem, the number of different pairs in the k-tuples of S is at least (l-1). $\left(\frac{n}{l-1}\right)$. Equality can hold only

in the case, if these pairs are the following: We divide the n numbers into l-1 equal classes, and the k-tuples in S contain all the pairs — and only these — the two elements of which belong to the same class. Since each k-tuple contains $\binom{k}{2}$ pairs, and the "best" case is, when all the pairs in the k-tuples are different — (no two k-tuple in S has two common elements) — S has obviously at least

$$\frac{(l-1)\left(\frac{n}{l-1}\right)}{\binom{k}{2}}$$

k-tuples. This proves (1).

In case when (3) holds, using Hanani's theorem and constructing a minimal-system H_0 with $m = \frac{n}{l-1}$, for each of the l-1 classes we get a minimal-system S_0 which has

$$\left(rac{n}{l-1}
ight)igg|igg(rac{k}{2}igg)$$

k-tuples, and this proves (4).

As to the asymptotic case, using the theorem of Erdős and Hanani again for each of the l-1-classes and $m=\frac{n}{l-n}$ we get (2).

⁵ For the construction of such a system see [2]. Evidently for such a minimal system each pair of elements of E is contained in exactly one k-tuple of H.

Remark. If in the lottery-problem we want to construct in a similar way a minimal-system S which assure a 3,4 or 5-hit, we would need a generalization of Turán's theorem⁶ and a generalisation of Hanani's theorem and construction.

(Received December 6, 1963)

REFERENCES

[1] Turán, P.: "Egy gráfelméleti szélsőértékfeladatról". *Mat.-Fiz. Lapok*, **48** (1941). [2] Hanani, H.: "The existence and construction of balanced incomplete block design." Annals of Math. Statistics 32 (1961) No. 2.

[3] Erdős, P.-Hanani, H.: "On a limit theorem in combinatorial analysis". Publicationes Mathematicae (in print).

[4] Turán, P.: Research problems. Publ. of the Math. Inst. of the Hung. Acad. of Sci. 6 (1961) (Problem 3).
[5] MANN, H. B.: Analysis and design of experiments, New York, Dover, 1949.

[6] Erdős, P.-Rényi, A.: "On some combinatorial problems". Publ. Math. Debrecen 4 (1956) 398-406.

О ЛОТЕРНОЙ ЗАДАЧЕ

H. HANANI, D. ORNSTEIN W V. T. SÓS

Резюме

Пусть будут $k,\ l,\ d,\ n$ положительные целые, $1 \leq k,\ l \leq n,\ 1 \leq d \leq n$ $\leq \min(k, l)$ и E — множество, состоящее из n элементов. Пусть будет s некоторая система подмножеств E, состоящих из k элементов. Мы говорим, что в имеет «представительное свойство», если для каждого подмножества L, состоящего из l элементов от E, существует элемент от s, который имеет с L общие элементы не меньше d. Пусть обозначает $N_0=N_0(n,\,k,\,l,\,d)$ наименьшее число элементов s с «представительным свойством». В случае d=2доказана.

Теорема.

 $N_0 \ge \frac{n(n-l+1)}{k(l-1)^2}$

и

$$\lim_{n\to\infty}\,\frac{N_0}{n(n-l+1)}=1\;.$$

$$k(l-1)^2$$

Eсли $k \le 5$, $\frac{n}{l-1}$ целое, и

$$\frac{n}{l-1} \equiv 1 \pmod{k(k-1)}$$

тогда

$$N_0 = \frac{n(n-l+1)}{k(l-1)^2}$$
.

⁶ The necessity of generalizing Turán's theorem, which is raised in [4], turned up already in several questions.