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1. Introduction. The present paper concerns itself with the following
pair of problems posed by Erdos, Sziisz and Turdn [2]:

ProRLEM 1. For 4 >0, ¢ =1, let

S(N, A, ¢) = set of £¢[0,1] which satisfy b —a| < Ab~" for
some integers a, b with N < b < c¢N,(a,d) =1.

Does
(L1) - Lim | §(N, 4,0)|

exist, and if so, what is #ls value? (If C is a seb, |O] denotes its Lebesgue
measure. )

If [bE—a| < (2b)7", then a/b must be a continued fraction convergent
_of £ ([5], Chapter 10.) The next problem is therefore clogely related to
problem 1.

PrOBLEM 2. For ¢ =1, let

T(N, ¢) = set of £¢[0,1] which have at least one continued
fraction convergent pn/¢, With N < n < eN.

Does
(1.2) lim |T'(N, ¢)|

N—co
ewist, and if 8o, what is its valuel
Originally, these problems were treated by means of the methods
of the article immediately following this one [7]. T+ was noticed, however,
by the second author that a much simpler, almost self contained treat-
ment of these problems is possible and it is our aim to present this treat-
ment here.
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As one could more or less expect, the limits (1.1) and (1.2) indeeq
exist. We give the explicit value for a more general expression than (1.2)
in Theorem 1 and use this to show the existence of (1.1). The explicit
value of (1.1), however, is not found. The limit (1.1) has bheen evalnated
though for 4 <¢~' by another method ([2], [6]). Estimates for (1.1)
have also been given'in [1] and [4]. We introduce some notation to give
a more precige statement of the results.

Denote the regular continued fraction of an irrational (1) (2) g¢(0, 1) by

1

[ﬂ'l{E}J ﬁg{&'}, ...T e ol _1

Gy (§) + e
1(6) Wy (&) ...
and its nth convergent by p.(£)/g.(&). One has the well-known recursion
formulae ([5], chapter 10)

(1.3) =1, G=0a, Gni1= Ous1lutuy,
(1.4) _ D=0, p,=1, Prr = Qi Pn+Proy.
Infroduce also
(1.5) Mypy = Gnyr(£) = Oni1+[Onyny Gpigy -..]

1 1

= Gyt e NG
1 Gn-t-5
Oy p 0+

By - - -
and
: ! i ' ; gﬂ
(1.6) It = Gn1{€) = Gpy G+ Qpy = Ins1+ —3 = QtH-! .

Oypg Apya
The main tool we use ig
LEMMA 1. Let ky >k, =1, (ky, ko) = 1 and 2 = 1. Pul

Aleyy oy 3) = {£:0 < & <1, there emists an n =1 for which
G-y = Ky, fn == kg, ﬂf-:vr.+1 == 8}
Then

2
(L7 T W e
) |4 (%, g3 )| kg{ﬂ?ﬂg-}fﬁl}

By means of this lemma it is easy to solve problem 2. In fact, we
Prove a more general result.

(*) We shall ignore rational '8 all the time. They form a set of measure zero
and therefore do not influence the metric results.

(*) We use the notation of chapter 10 of [5] except that we drop a,(£) = [£]
from our formulae, since @o(£) = 0 in all our considerations.
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THEOREM 1. Pul
m = m(N, &) = largest n with ¢,(&§) < N
and let
(1.8) U(N,a,9,2) ={&0<EKT, gmyy < 2N,
Gy g1 > YN, Gy gyin = 2}

Then
. 12 f1. #+%E
lim) U, 0, 4, 9| = 68, 5,9 = 5 | Tlog "2 at
N—+oo w J ¥ i
; v
where
(1.9) F = min(l, ), ¥ = max(l,¥) and Z = max(l,z).

Since T'(N,c) is the complement with respect to [0, 1] of the set
of & for which the last ¢,(£) <eN is actually < N, one has T(N,c¢)
=[0,1]—U(eN, ¢, 1,1) (recall that g¢m., = N and Gynye == 1 for all ).
Thus the answer to problem 2 is given by

- 12 1 1
N—pma T 1 i ot

1
12
e fimg{l Lo)do.
0
a—l

T

In section 3 we shall indicate how theorem 1 can be used to prove
the existence of the limit in (1.1). In principle this existence proof even
points the way how to compute the value of this limit for apecific values
of A and ¢ but the necessary computations are too complicated to be
carried out.

2. Solution of problem 2. We begin with the

Proof of lemma 1. We use the well-known formulae (see chapter 10
of [5] and formula IT.11.3 in [9])

Palf) (=LY Pn (—1)*
81 + Fe : ===
@ T OGn® | G n(@niatia)
and
(2.2) In o, OpQn—1-+ Gn—2 S—" __l_ e i 1
Gn—1 Gn—1 Gn-1/dn—2 dn-1+-.

= ap+[ap_1y .-y ]



136 . H. Eesten and V. T. 868

Now k,/k; has exactly two expansions as a simple continued fraction,
one with an even number of convergents and one with an odd l'lT]m'be,r
at convergents (theorem 158 of [5]). Let the two possible expangions for
ks /¥y be

, .
(2.3) f = @At [Oim—1y o+ v B1]
1
and
ka 1 2 2
e ﬂzm+1+[ﬂ'nm: ? EIIJ
1
; k
(2.4) (@zm =1 and agy,,., =1 smcek—z Sy,
1

Then we concluge from the above that if &,, k, are denominators of two
consecutive convergents of &, say p,_;/¢u—: and P,/¢,, then one must
have either m =2m and (&) =i, 1<?1<2m or n =2m-+1 and
@;(§) = ai, 1 <i<2m-+1. In either case p, is determined by (1.4)
with a; replaced by a; resp. ai. Denote the two possible values of p, by
p* and p? and put
Pt p! 1 7
i ['?T o Tealea )
and

B I:jjz 1 FE'
[ ko (2ky Iy ) "o |

We conclude from (2.1) that

{2.5} A{kl? ki] ﬁ] = Ii"-.) Ig-

Observe that I, n I, consists of at most one point. This is obvious if
Pt = p* and in case p* # p? it follows from

1 2 S 2
ky Feo (Roy--K,) kg (2, +ky)

which is valid because k, > %k, >1 and 2 > 1. Thus

2
ko (2ky+Fy)

and the lemma will follow once we show that

(I v Iy =

(3w Lo—A (ky, ky, 2)| = 0.
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For this purpose, take

1 1
n = 1 = = I:ﬂ'uji, ey ﬂ;m_” ﬂ-ém'T —"]
d+—— 4 ¥
Gy ",

L 1
“zm-l— e
Y

for some ¥ = 2. Then ay(n) = [1/n] = al and in general, by the continued
fraction algorithm (see [5], chapter 10.6),

agn) =ai, 1<i<2m and Ggmir (W) = ¥
Moreover,
1 1 ! 1 1 Ty
[atsy -y Gym—1] = — and  [a1y... Gam] = —
8 89
are the (2m—1)st and 2mth convergent to y. Hence s,, s, are the values
obtained in (1.3) for gum—; Te8D. gam When a; is replaced by a;. As a resuls,

(2.6) 7a8;—T18, = —1 and (s,,8,) =1 (theorem 150 of [6])
and

8 k
(2.7) E—E I iy B1] = f (see (2.2) and (2.3)).

1 1

Since also (&4, ks) = 1, (2.6) and (2.7) imply k, = 8., k; = 8,, and together
With @fmsq(n) =y >2 this implies ned(k, k,,#). On the other hand
(see p. 140 of [B]),

1 Yry+7y Ts 1
= all o ﬂ.l —l——-]: :—+___-.-.-
4 [ R ys; 8, 82 82(Y8at8y)
and 7, is the value of p,;, obtained in (1.4) when a; is replaced by ag.
But this is precisely the number we denoted by p* so that

o, 3
ﬂ ke ko (yls+Ky) ‘

This is & generic element of I,, and as y varies from 2 to oo, 7 FUNS through
all of I,, except for an endpoint, i.e. I, —A (ky, &y, #) cODBISES of one point
only. A similar argument for I, completes the proof of lemma 1.

We now turn to the

Proof of theorem 1. Let U be as in (1.8) and %, ¥, 2 a8 in (1.9).
Since, by definition of m = m(N, &),

Im < N < gmn
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and, by (1.5), @ =1, one has
U[Nr ®, Yy, 2) = U(N, E, ¥, 2).

Therefore, we may and will assume # <1 <y, 1 < 2. Notice now that if

(2.8) @a(f) <N < N < YN < g4:(8),
then automatieally )
(2.9) m(N, &) = n.

If we also take into account that
Aky, kyy2) =@ 3 (B, k) # 1
(by theorem 150 of [5]), then we find

(2.10) U(-N:' Ty Uy #:J = U A{.RM ky, 2)
(Fey ey Je=1
fo s E N UV < kg
At the same time we see from (2.8), (2.9) that the summands in (2.10)
are disjoint since ¢,,(£) and ¢u,(£) are uniquely determined by £ and N
Thus

(211) T gyl = Ak, ks, )
(Rpakeg) =1
kl{mN{yN{km
2 ' 1

aky -+,

T
kg>uN % fjaN

where )" involves only %, for which (%,, ky) = 1. We evaluate the asymp-
totic behavior of the primed sum for fixed %, in a glightly more general
sefiting.

Levya 2. There ewists a constant K, independent of Ty, such that (?)

. 1 D(k,) D4-EC

_o), d (k)
DBk, Ek, D-+EB

(2.12) Pis

‘gfz
' B<ky<C
whenever B < 0, B > 0 and D+EB = 0.

Proof. Recall that the sum 2, containg only those %, for which
(ky, k) = 1. In view of (%) ([6], theorem 263)
1 if " =1,

d) =
2#{} lﬁ it a>=1

am

) '[.s} @ denotes Euler’s funotion and 4 the Mdbina function ; d{k,) = the number
of divisors of F,.
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one has therefore

1
D+E}s1 E D+E T' u(@)

Bk =C B<lky=C ks rI|[Fal ka)

S 2‘1 1

=4 ,l] (d} ——. e

dik B<in=C D+ Bk,
|y

Y p(d) 1
P “a 2 D(Bd)"

diley Bi—1<nsCd—1

Inequality (2.12) now follows from the well-known formulae

| i D+EC ~
D(Ed)™ ' +n g D-+EB

Bi~lengod—!

DiEdy~1+0d~1
1 oo f dt‘
. Z D(Bd)"*+n t
Bi~langCd—1 DEdgy~ 1+ Ba—1

o K
= BT L Bd™?

for suitable K

and ([5], formula (16.3.1))

2 }W[d] ( n}

djky

An application of (2.12), with the proper choices of B—H, to the
right-hand gide of (2.11) leads to the following estimate:

(2.13) |U(N, o, ¥, 5” =

2 Qf*( 2}1 2k, +oN ﬁ(?ﬁi}).
kg uN

0
ka kg g 5}":3 +1 (EB}FN R:

The error term tends to zero as N — oo since d(k) = O(k’) for any 6 >0
([6], theorem 315; a better estimate could be derived from theorem 318).
Since, [3],

Bk 6
m, — —-"—n——'—ﬂ

P k T
% Foem 1

it follows from a simple summation by parts that ®(ks)k;" in the right-
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hand side of (2.13) may be replaced by its “average value” 6n™" Conse-
quently

2ho [N @ 1
E dNF1N W

“1 ot
r!? ( )dt.

This is just the statement of theorem 1 for # <1 <y, 1

. .12 N
(2.14) lim | U(N, ¥, 2)] = llm-—n- E —1lo
N Ne—apa T =N ?ﬂg

J_J

= 7.

3. The existence of lim|§(N, 4,c¢)| in problem 1. Since no explicit
.

values for the limit in (1.1) can be found by the present method, we restrict
ourselves to an indication of the proof of its existence. As a first step
we give a lemma which is almost a direct corollary of theorem 1.

LemMA 3. For each k =1, the joint distribution of

Gm-1(8)  @nlE)  dnsr(£) !Ir:t+1['5]' mx(E) Q:u-r‘k(f]

{3'1} _I‘;"' 1 .N | Bl _N H) N gy z';lr 1 _N

has.a limit.as N — oo. I.e. the measure of the set

{£:0 <6<, gnrb<wN, gm(E) < N, gmey(&) > 4N,
Em-pj{ﬂ N for 1 <j <R}
has a limit as N — oo,
Proof. From (1.3), (1.5), and (1.6) one has the following relations

Trmi—1 Tmi1 Om1 N Om

3.2 e = :

ARSI T R A 1 Gm
3.3 ST L e :
(8.4) N Fm-+i+1 A @ N N i Gmya N
i fm+i+1 ’ Om+j Omtg—
(3.4) =gt
and
(3.5) KA .

N !I;nH —Qm+q ‘

These relations recursively express all variables in (3.1) as functions of

lE"-l'i'l- ﬂ r
(3.6 I B s,
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If thege functions were continuous, it would follow immediately from the
fact that the variables in (3.6) have the joint limiting distribution @
(theorem 1) that also the variables in (3.1) have a joint limiting distribution
(see [8], p. 425). Even though the functions in (3.2)-(3.5) are not contin-
wous it i8 possible to show that the conclusion remains valid because the
functions in (3.2)-(3.5) are “sufficiently nice” and G iz “sufficiently
gmooth” :

We are now able to give a partial answer to problem 1.

TaeorREM 2. The limil

lim| 8 (N, 4, ¢)
Nesoa

exists for all A = 0,¢ = 1.
Proof. It is well known (see theorem 2.18 of [9]) that

g g 1
(3.7) min |bé—a| = min |(bE—a| = |[gnéE—Pm| =
a,1<be N iﬂﬁr{ fm+1

(here again m = m (N, &) and in the last step we used (2.1)). This implies
for fiwed b (i.e. the minima in (3.8) are over a only) such that

(&) < b < gnpalé),

(3.8) dn ‘ ’
= @u|gn & —Pnl| < g min |bé—a| < b min [bF—af.
Int+1 (a.b)=1 (@b)=1

Consequently, if ., < ¢N, then (b is the variable in the first min and a
in the second min)

(3.9) min  min bjpé—a| = min q?“ )
Ut 1=beN (a,b)=1 nﬁ?-.ziNl n41

Let us write M, for the right-hand side of (3.9) if gm4 < ¢N and take
M, = oo otherwise. Note that ¥ < ¢gn < ¢N is possible for at most 2log,e
values of # because
On2
dn

Thus the condition M, < A is a condition on the finitely many variables
in (3.1) for k& = 2loge+-1.

For gm <N <b < min(gm;;; ¢N) we use the following lemma which
we give without proof.

LemwmA 4. If

> 2.

A

2(4+1) < gn <D < Gy and  |bé—al é"é‘r
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then there emist integers r, 8 such that
b= 1gut8Qn_r1y & ==TPn+8Pn
and |8| < A+1. In addition (a, b) = (v, 8) and
iy +8Qn_1—9 ;,
|b£""ﬂl| e qﬂ q '1 g +1 .
Gndn+1

If we put
M, = min min b|bé—a|,
b (,b)=1
where the first min is only over b satisfying
N <b < min(gu4r, ¢N),

then this lemma allows us to express the condition M, < 4 again as
2 condition on the variables in (3.1). In fact, since ¢ in lemma 4 is limited
to finitely many values, one can write M, as a minimum of finitely many
gimple expressions in these variables in the region M, <.A.
Since
S(N,A,06) ={&: M, <A or M, < A4},

one can then conclude that lim|S(N, 4, ¢)| exist from the existence of
the limiting distribution in lemama 3.
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