A. HAJNAL and VERA T. SÓS

Problem. Let C_j be a regular $n \times n$ bipartite graph of degree t and $t \le n$. Is it true that the number of all different one factors of C_j (which might contain multiple edges) is not less than t!?

REMARKS.

- 1. We allow that G contains multiple edges. For graphs G not containing multiple edges the answer is trivially affirmative.
- 2. Van der Warden's famous conjecture concerning the minimum of permanents of double stochastic matrices is equivalent to the following problem in graph theory:
 - (1) Let C_k be a regular $n \times n$ bypartite graph of degree $k \cdot n$ ($k, n \ge 1$). Then the number of one factors is not less than $k^n \cdot n!$

The Problem and the above statement seem to be incomparable but the special case t=n of the Problem is equivalent to the special case k=1 of the graph formulation of Van der Waerden's conjecture.

- 3. The answer to the Problem is affirmative in case t=3 (The cases t=1,2 are trivial.)
- 4. P. Erdős conjectured and proved [1], [2] that if A is an $n \times n$ double stochastic matrix then the permanent has a member of value $\geq \frac{1}{n^n}$.

It is easily seen that this statement is equivalent to the following weakening of (1).

(2) Under the conditions of (1) ${\sf C}_{\!\!\!\! l}$ has a one-factor which occurs with multiplicity $\ge {\sf k}^n$.

To indicate that the graph theoretic approach might be useful we outline a short proof of (2). By the assumption and by König's theorem G is the sum of kn disjoint first grade factors F_1, \ldots, F_{kn} .

Let g denote the set of edges of G_i , and let m(x) denote the multiplicity of the edge $x \in g$ in G_i . We prove that there is a $1 \le i \le kn$ with

$$\prod_{x \in F_i} m(x) \ge k^n$$

Put $A = \prod_{i=1}^{kn} \prod_{x \in F_i} m(x)$. Considering that each $x \in g$ occurs in exactly m(x) of the F_i , we have

$$A = \prod_{x \in g} m(x)^{m(x)}$$

We also have

$$\sum_{x \in g} m(x) = kn^2; \qquad m(x) \ge 1 \qquad \text{for } x \in g$$

and $|g| \le n^2$. Thus, by a well-known inequality we get

$$A \ge \left(\frac{kn^2}{|g|}\right)^{\frac{kn^2}{|g|}} \cdot |g| \ge k^{kn^2}$$

It follows that there is $1 \le i \le kn$ with

$$\prod_{x \in F_i} m(x) \ge A^{\frac{1}{kn}} \ge k^n$$

REFERENCE

 M. MARCUS-H. MINE: Some results on doubly stochastic matrices. Proc. Amer. Math. Soc. (13) 1962.