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1.In this paper we are going to discuss some special cases of a
gene~al problem which might be considered as being on the one hand a
generalisation of the problem raised and solved by the well-known theorem of

Turéin, on the other hand as the well known problem of the Ramsey-numbers.

Before going to explain this in details, we give the notations we
shall use:

G(n) is a graph with n vertices
G(n;e) is a graph with n vertices and e edges

e(G) denotes the number of edges of G
(-‘% is the complementary graph of G
K(v) 1is the complete graph with v vertices

H(nj; k,¢) is the class of G(n) graphs, where G(n) contains no
K(k) and G(n) contains no K(¢)

H(n;k) is the class of G(n) graphs, where G(n) contains no K(k)

-39 -



max e(G) if H(n; k,2)
GeH(n;k,8) q . L % ¢

O lf H(n;k:&) = ¢

£n;k,0) f

Fn;k) def ma.x e(G)
GeH(n;k)

G(xy,..., %) denotes the subgraphof G spanned by the vertices

Xy sy iy s

The well-known, special form of Ramsey’ s theorem [5] asserts
that for any k,{ there exists a N(k,t) such that if n > N(k,¢) then
H(n; k,) = @.

The well-known theorem of Turdn [6] gives the exact value of

f(n;k) namely that

flnj k) = —12— ::3‘ (n2- r2)+(;_) where n=r mod(k-1) Osr<k-1.

The only "extreme graph” in H(n;k) with e = f(n;k) is the
complete k-1 chromatic graph in each class having [-kﬂT] resp. [Tn—T] +1
vertices. It is worthy of note that for this graph G(n) contains a rather

"large" complete graph (with [ﬁ] vertices).
Now the general problem is to determine {(n; k,{).

In the special - extremal-case when 4 =n+1 (i.e. if there is no
condition on the complementary graph), {(nh;k,¢) = $(n;k) is determined

by Turdn’s theorem.

In the other special case, when k and £ are fixed and n is large
enough, f(n;k,¢) = 0 by Ramsey’s theorem. The exact determination of
fin,k,2) is probably hopeless, since this would imply the determination of
the Ramsey-numbers, But one might expect - having in mind the remark in

connection with Turdn’s theorem, - that §(n;k,{) is essentially smaller,

than $(n;k) when { is supposed to be much smaller than [ kn—1] ;
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It is easy to show that for every c<1{

¢)) f(n-,k,ci-%)<_g(c)————n

{1 k-2 2
2" k-1

with g(c)<4 , but we cannot determine the exact value of g(c). We do not
prove (1) in this paper, but hope to return to it, and to other related questions,

at another occasion.

2.In this paper we first investigate the case when k is fixed and

4L =o(nm.

. ,
Trivally §(n;3,8)< "—2"- since if G contains no triangle and has

a vertex of valency v, the v vertices joined to this vertex must be independent.

Therefore §(n;3,L) =o(n®) if 4 = o(n).
For the general case we prove

THEOREM 1. If { =o(n) then

“) $(ny 2r+1,4) =.-‘2-(1-‘T) n? (4+ ot1) .
REMARK:
We cannot settle the case k =k. Perhaps

®3) $Cn34,4) = o(n®)

if £ =o(n). We only get crude upper bounds for {(n; 4,{)

If (3) holds, we can deduce for each fixed r and 4 = o(n)

@ $(n; 2r+2,L) = (1——1—7n1(1+o(4)).

k.
2
Now we prove Theorem 1, First we prove it if r=2,i.e. we prove

that if 4 = o(n) then

b T — $(n;3,0) = 22—'{- . See [1], [2].
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©) $(n;5,2) =<1+o(1»£:-.

First we show that for sufficiently large n

nt

i
6) f(n; 5, cn?log?n) > -

It is well known [3] that there is a G(m) which contains no triangle

and for which G(m) contains no K(Lcm”2logZml).

Let G1([% 1) and Gz([% J)  be two such graphs which do not
have a common vertex. Join every vertex of G, to all the vertices of G, .

The resulting graph clearly proves (6).

To complete the proof of (5) we have to show that if n> n,(g)
2 _
and G(n; [%— (1+¢))) does not contain a K(5) then G contains a K(L cen))

where ¢, depends only on ¢.
First we show the following

LEMMA, Let 0<¢,L<‘E and G(n;[an*(1+€)])  be any graph. Then
there is a subgraph G(m), m>c, n each vertex of which has in G(m)

valency greater than 2am (1+ %) .

Let us assume that our Lemma is false. Then we can write the
vertices in a sequence X,,...,x, So that for every k< ({1-c)n the valency

of Xy in G(x,...,%,) is less than 2a(n-k)(1+ iz) . But then

n-1 (cn]
e(G(n)) = [_o(nz(1+%)] <2u(1+%) gocn-u>+( 2 ) <

cZn?

&

< an?(1+ %) +

which is an evident contradiction if ¢ <Vo. & .
Now we use the Lemma with « = -4; . Let G(m), m>cn
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2

be a subgraph of our G(n; [14- (4+e))  each vertex of which has valency

m €

— (+=).
s 4+ = )

Let G(x4,%,,%3) be a triangle of our G(m) (clearly every edge

of G(m) is contained in a triangle). Let Yyr>Y,_3 De the other vertices of
our G(m). Each vertex of G(m) has valency at least —';—"- € +-§2-), hence more

Lhan%m edges of type (Li,gj) 4€1<3, 12j2m-3 are in our G(m).

Thus more than % y;' s are joined to the same two &;’s say x,
and x,. If these y;’s are independent we have found an K(lcnl) in G(m).
If y. and y, are joined, then G(x,,%,,y.,y ) isa K(4) inour

G(m). Henceforth we can thus assume that G(m) contains a K(4).

Let G(zi,zz,zs,z,’) be a K(4) of our G(m) and w;;..., Wpy_4
are the other vertices of it, At least 2m(1+ %) +o1) edges of the form
(z{,0p belong to G(m) (1< i<4,1<j<m-4), Thus by a simple computation
there are at least &% vertices w j which are joined to the same three z;s.

100

These wj ’s must be independent since otherwise G(m) contains a K(5) and

this completes the proof of (5).
Now we prove (2) for general r. First we show

@) R YCTE TIPS SO T R P

The proof follows the proof of (6).

Let G;; 1<i<r be graphs of [%] vertices (with disjoint set of
vertices) which contains no triangle, and where (—‘% contains no
e 4
K(Lcn’log?nd) .
Join every vertex of G to every vertex of G; for every 1si<j<r.

The resulting graph proves (7).

To complete the proof of (2), assume that it holds for 2r-1 and we

prove it for 2r+1. Thus we have to prove that every
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G(n; [fu-Lsern]D
either contains a K(2r+1) or G contains a K([cn)) where ¢ depends only on
¢ and r. The proof will be very similar to that of (5). First of all, from our
Lemma we obtain that we can assume that our G(n) contains a subgraph G(m)
with m>cg  .n  each vertex of which has the valency > m(4 - 47 + —‘2-)
Clearly for this G(m)

e (Gim)) > ‘7 frmdlan £k

Hence by our induction hypothesis we can assume that our G(m)

contains a K(2r-1) whose vertices are X ,..., Ly, 4 -
Denote by Yysos Ymo2rat the other vertices of G(m). At least

(2r-1)(1—1?+—2€—)m+ 0(1) > (2r-3)m + %

edges of type (v;,y;), 1=i=2r-4, 1<jem-2r+1 belong to G(m).

Thus as in the proof of (5) we obtain that there are at least ¢, m
(eq = ¢,(r))  vertices of G(m) which are joined to the same 2r-2 y{'s,
since all these vertices cannot be independent, two of them must be joined,

thus our G(m) contains a K(2r).

Let now z4,...,z,,. be the vertices of this K(2r) and let

Wyreer W i2p be the other vertices of G(m). At least
2r(1—~1?—%) m+0(1) = (2r-2)m+&rm + OC1)

of the edges (zi,wj), {2i=2r,1sjsm-2r belongs to our G(m). Hence by

the same argument as used in the proof of (5) at least <:£,'r m vertices w; are
joined to the same 2r-1 z;’s. If two of these z;’s are joined, G(m) contains
a K(2r+1), if no two of them are joined, G(m) contains a K([Ce,r m])

and since m>c,n the proof of Theorem 1 is complete,

3.We remark that (6) is nearly best possible, In fact we prove
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®) £Cns5,{cn’2]) < L dtrern?

for every c and ¢ if n>n (g,c).

Let G(n; ['%(h-e) n2]) be any graph for which G does not
contain a K([cn'2]). We will show that it must contain a K(5). First of all,
observe that by our Lemma it must contain a subgraph G(m), m>c.n each

vertex of which has valency > —:+—(1 + %) m and therefore
g, By 2
(9) e (G(m)) > —8-(1+—7-_-)m '
Secondly observe that
(10) fCnik,en’) = o(nd ¢

Namely if (10) would be false, there would exist a G(n;[&n?))
which contains no K(4) and G contains no K({cn”2]). G clearly contains a
vertex of valency [26n] i.e. G has a vertex x which is joined to y,,...,y_,

s>[28n].

By a result of Graver and Jackel [4] G(y,,...,y,) must either
contain a triangle or G(y,,...,y,) contains a K(Lc,n”2)). Both assumptions

clearly lead to a contradiction. Thus (10) is proved.

(9) and (10) clearly imply that G(m) contains a K(4) with vertices
(%45 %9, %3,%,). Since each of the x;'s (1si<4) have valency > 1:(1+ %) m‘ ,
there clearly are cem> c,en  vertices y,,...,y, (¢>c,em) which
are joined to the same two X-L’ S say to &, and Xy 6(91,..., gc) cannot con-
tain a K([cVn)) thus by [4] G(y,»-1Yy) contains a triangle, say
G(yY,1Y5,93) but then G(x,,%;,Y4,Y,,Y5) is @ K(5) of our G(n), which
completes the proof of (8).
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Perhaps

t(n35,[c n’27) = o(nd
is true, but we could not prove it.

4.As to the case k =2r, we prove that assuming {(n;4,£) = o(n®

for £ =o(n) we have for every fixed r

(11) FCny 2r+2,0) = (1—%)n2(4+o(1))

k3
]

For the sake of simplicity we only prove (11) for r =2.

The proof of the géneral case is the same, only slightly more com-

plicated.

f(n;6,0) > n—:- is trivial, (it follows from {(n;5,8)> nTQ) .
Thus to prove (11) for r=2 we only have to show that for every ¢>0 there is a
¢, >0 so that for every G(n; ["—: (1+&))) which contains no K(6) G contains
a K(l’.can]) (we of course assume {(n;4,8) = o(n®).

From Lemma it follows that our G(n) has a subgraph G(m) with
m>c,n so that every vertex of G(m) has in G(m) valency greater than

12— (1+ %)m. Let ¥ be any vertex of G(m), denote by S(x) the set of vertices

of G(m) joined to «.
We evidently have

12) | Sy nseyyl > —%"— .
Put

M= max|S(x)nSw]

where the maximum is taken over every two vertices x and y of G(m) which
EM

2

are joined, By (12) we have M >
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Assume that for v, and x, we have | S(x)) n S(x,)] =M
and let y,,...,y,  be the vertices of G(m) joined to both %, and x,. Our
assumption f(M;34,4) = o(M?) clearly implies

(13) e (G(zqrr2y)) = 0(M?),

To see (13), observe that G(z4,...,Zy) cannot contain a K(4)
thus if (13) would not hold, then G(z,,...,z,) would containa K(lc,m]),

which is impossible,

From (13) it immediately follows that for all but o(m) = o(M)
vertices the valency (in G(z,,...,2y)) is o(M). Hence there is a subgraph
G(z4s-rzy) Of Glzgyzy) with N = (4+o(dYM each vertex of which

(in G(zqy.+) Zy )) has valency o(N). Since N> &—‘T— we can assume that the

vertices z,,...,2Z, are not all independent, without loss of generality we can

assume that z, and z, are joined.
Now we prove
| szpn Szl > M
and this contradiction will prove our assertion.

Let YqrrYs be the vertices of our G(m) different from
Zgssein By s Clearly both z, and z, are joined to at least % “ +%)m+0(m)

of the y;’s. Thus we evidently have
| Sz n Szl > mt+ %) - s+0(m) = M+ % m + o(m) .

This contradiction completes the proof of (11).

Incidentally it is easy to see that if f(n;4,¢) # o(n*) then

2
f(n;6,L) > —%—(Ha) for infinitely many n and £ = o(m) .

To see this let G1 and Gz both have n vertices, every vertex of 61
is joined to every vertex ofGZ, G, contains no triangles, G, no K(4), G, has

more than £n® edges and both G, and (—52 do not contain a K(Z).

- 403 -



REFERENCES

[1] B. ANDRASFAI, Graphentheoretische Extremalprobleme, Acta Math,
Acad. Sci. Hungar. 15 (1964) 413-438.

[2] Pp. ERDOS On the construction of certain graphs, J. of Combmatonal
Theory 1 (1966) 149-153.

[3] p. ERDGS, Graph theory and probability, II. Canad. ]J. of Math. 13 (1961)
346-352,

[4] J.E. GRAVER and ]J. JACKEL, Some graph theoretic. results associated
with Ramsey’ s theorem, ]J. Combinatorial Theory 4 (1968) 125-175,

[5] F.F. RAMSEY, On a problem of formal logic, Collected papers, 82-111,
see also P, Erdds and G. Szekeres, A combinatorial problem in
geometry, Compositio Math, 2 (1935) 463-470,

(6] P. TURAN, Eine Extremalaufgabe aus der Graphentheorie (in Hungarian),
Mat, és Fiz, Lapok 48 (1941), 436-452,

- 404 -



