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INTERSECTION THEOREMS FOR GRAPHS IL.

M. SIMONOVITS — V.T. SOS

ABSTRACT

If G and H are graphs on the same vertex set, let G N H be the
graph with E(G N H) = E(G) n E(H) and V(G N H) = {the end-points of
the edges of G N H}. For a given family ¥ of graphs f(n, &) is the
maximum number of graphs Gl R GN defined on the same n-element
set for which G, N G]. € ¢, (1<i<j<N). In a previous paper of ours
[9] we have given bounds on fln, ¥) when £ is the family of paths
(including the empty graph ¢ in one case, excluding it in the other case),
and when % is the family of cycles (and ¢ is included). In the present
paper we determine the exact value of f{n, &) for the cases when £ is
the family of cycles,

(a) ¢ included,
(b) ¢ excluded.

We also prove that if % is the class of graphs topologically equivalent
with one of the graphs L,,...,L, where L is connected and has no
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vertices of valency 1 (1 <i< k), then there exists an integer r such
that fln, £)= O(n").

INTRODUCTION

Intersection properties of finite set systems have an extensive liter-
ature. Some of the first results of this area are due to Fisher [4],
de Bruijn and Erdés [2], Bruck and Ryser [1], some of the
last ones to Ray-Chaudhuri and Wilson [6], Deza, Erdé6s and
Singhi [3], Deza, Erdds and Frankl [5].

In a lecture on the Rome conference, 1973, one of us [8] formulated
a general class of problems related to the above ones. In a special form it
is the following:

Let M be a finite set of integers, | X| denote the cardinality of X
and let 4,,... A, be a family of subsets of S = {1, -..,n} satisfying
the condition

IAinAI.IEM if 1<i<j<N.
How large can N be?

Instead of considering intersection properties of set systems one
can consider intersection properties of given structures, e.g. of graphs,
hypergraphs, partially ordered sets, groups, subsets of the integers, . . . and
instead of putting conditions on the size of the intersection one may put
conditions on its structure.

In the present paper we shall prove some intersection theorems on
finite graphs without loops and multiple edges.

Definition 1. If G is a graph, E(G) will denote its edge-set, V(G)
its vertex-set. For given graphs G and H with V(G)=V(H) GNn H
is the graph with E(G N H)=:E(G) N E(H) and V(G N H)= the set of
end-vertices of the edges in E(G) N E(H).

For a given family % of graphs a set G,,...,G, of graphs with
the same vertex set V' will be called an #-intersection family if
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(1) G,NGeZ if 1<i<j<N.

Problem 1. How'large can N be for a given family % and V,
| VI=n? The maximum of N will be denoted by f(n, £).

In [9] we have proved that

(@) If o, isthe family of cycles and ¢, then
fin, )= 0@n*).

(Here G N H = ¢ means that E(G)N EH) = ¢.)

(b) If <, isthe family of paths, ¢ included, then
fin, #3)=0@).

(c) If «, isthe family of nonempty paths, then
fin, o) = 0@n*).

The exponents in (a), (b) and (c) are sharp. In the first part of this paper
we determine the exact value of f(n, #,) and fln, &,), where o, is
the family of nonempty cycles.

Theorem 1. If n>4 then f(n, o,)= (’21) — 2 and the only

extremal system, that is the only <, -intersection system G,,...,Gy
for N = fin, ) is the following one: E(G,) forms a triangle, and
E(G,),...,E(G,) contain the edges of E(G,) and exactly one more

edge in all the possible (g) — 3 ways.

Remark 1. A system Gl, . 5155 GN

intersection of any two of these graphs is the same. The construction in
Theorem 1 is a strong A-system. It would be interesting to know, how
large can N beif G,,...,G, forman «,-intersection system but not
a strong A-system. The following constructions are conjectured to yield

the maximum.

is called a strong A-system if the

Construction 1. Let 7,,...,7, be a maximal system of edge-
disjoint cycles in a complete graph K , where maximality means that s is
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the maximum possible. If the graphs G,, 1<i<s are defined by

1

E(G)=ET)VET) for i=23,...,s

and
EGy)=U ET),

VG, = V(Kn), (i=1,...,5), then G,N G]. is always a cycle (T, T,
or T].). If n=6k+1 or 6k+3, T,,...,T, must be a Steiner triple

system by the maximality and in this case the number of graphs is s=
1

n
=3 (2) If n=6k or n= 6k+ 2, one can obtain the maximal systems

of cycles from the above ones by omitting the triplets incident to the
(6k + 1)-th or the (6k + 3)-th vertex. The cases n=6k+ 4, 6k+ 5
shall not be discussed here.

Construction 2. Again, we start with a maximal system of inde-
pendent cycles T,,...,T  and assume that p is the largest integer for
which p2 +p+ 1<s and a finite geometry PG(p, 2) exists on the p*+
+ p+ 1 elements. One may assume that the points of this PG(p, 2) are
1,2, .. .,p2 +p+ 1. We consider the graphs G,,...,G , de-

p“+p+1

fined as follows: let L,,...,L be the lines of this finite projective

pl+p+1

geometry, let  E(G;) = l{ E(T). Again, the family G, is an «,-in-
i€l
] F
tersection system with nearly as many graphs as in Construction 1 and

with exactly the same number of graphs if s=p?+p+ 1 for a prime

* power p.

Conjecture 1. Let G,,..., G, be graphs forming an ., -inter-
section system. If G,,...,G, is not a strong A-system, then N <

2
g8 3 o(n? ).
6
Conjecture 2. If G j3sums GN form an L«/Z-intersection system on
n vertices and for each edge e we know that the graphs G,,...,G;

'm

. containing this edge e do not form a strong A-system, then N = o(n?).
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We shall prove the weaker
Theorem 2. If G,,...,G, forman < ,-intersection systemon n

2
vertices but not a strong A-system, then N < (%) + n.

Theorem 3. Let n=> 10, ( ] 1) ‘for any real number x,
and s=:%(;]. Then
) (P37 <fin, o)< (5) +s+ 1.

The upper bound is the best possible if n=6k+ 1 or n= 6k + 3.

For the structure of extremal systems the following holds: There
exists an n; suchthatif n>n,, G,,...,Gy forman «, -intersection
system and N = f(n, &), then upto a permutation of V= V(G,) the
graphs G, are defined as follows:

Let T1 ey Ts be a maximal system of edge disjoint cycles in Kn.
Let P,,... ,P(;)H be the family of singletons and pairs on {1,...,s}

and G, bedefined by V(G) =V, E(G) = E(T].) if P,={j} and E(G) =
= E(T].) U E(Tj,) if P,={j,j'}. Let E(G(;)+s+1) = ¢. If the cycles

T,,...,T, do not cover the whole K , then let each edge of E(K n) -
— U E(T ;) form a further graph G,. These graphs G, form an extremal

system and all the extremal systems can be obtained in this way.

In the examples above for each considered case we have a polynomial
upper bound on f(n, #). Perhaps the most interesting problem in con-
nection with graph intersection theorems is the

Problem of polynomial upper bounds. Which properties of the fami-
ly % does primarily influence the order of magnitude of f(n, #)? For
instance, which conditions on £ ensure that f(n, ¢)= O(n") for some
r>0? Can one find good necessary and sufficient conditions for this?

— 1021 —



Some introductory examples.

(a) Let Z be a finite family of graphs. Then, as it is easy to see,
fin, £)=0(@n") for r= max/{| VL) + 2 L& ¥,

(b) Let £ be the family of complete graphs, then f(n, #)= 2"
and the extremal system consists of the spanned subgraphs of a K,.

() Let £ be the family of stars, that is of the trees, where each
edge is incident to the same vertex. Now f(n, &)= 2"-1,

In this paper we shall not go into deeper details but prove just one the-
orem in connection with the existence of polynomial upper bounds.

Theorem 4. Let £ be a family of graphs with minimum valency
2> 2 and maximum < K, for which the number of components and the
number of vertices of valency +# 2 are also < K. There exist an r=rg
such that f(n, )= 0(n").

Remark 2. Another way of formulating the condition of Theorem 4

is to assume that there exists a finite family {LyyreaslL «} of graphs with
minimum valence > 2 such that the family of graphs, topologically
equivalent with some of L1 »o-..5L,, contains 2.

Remark 3.

(@) Let £ be the family of graphs consisting of vertex-disjoint

n
K;’s. Fixingan L € % on n vertices we define Blsnwen By N 2[3]
as the system of graphs consisting of some triangles of L, and isolated
oy ,GN is an Z-intersection family showing that the
condition on the boundedness of the number of components is necessary.

vertices. G

(b) If K,(p,q) denotes the complete bipartite graph with p and
q vertices in its classes, let ¥ be the family of K,(2,q)’s. Since
K,(2,n —2) contains 2”2 —1 such subgraphs (n —2> 1), and the
intersection of any two of them is again such a subgraph, f(n, £)>
=272 21, This example shows that the condition on the maximum
valency is also necessary.
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(c) Let £ be the family of graphs having only vertices of valency
2 and 3. Let -G be a cubic graph on n vertices and assume that P is
a one-factor of G. Let us form, for all the subsets P' of P, the graph

n
Gpr =G — P'. Thus we get an Z-intersection family of 2[3] graphs.
Hence the condition on the number of vertices of valency # 2 is necessary.

PROOFS OF THEOREMS 1, 2, 3

Definition 2. Let G1 S EE S GM be an & | Oran < ,-intersection
system on the vertex-set V. A sequence (y1 s-++5Y;) will be called a
walk if the edges 0, yi“) are all different (i=1,...,k—1) and
there exists a G,.l_ containing the path (v, ,,y,»;, ,) [for i=
=2,...,k—1] in which y; has valency 2. Moreover, assume that
(ys---5¥,) is maximal under the above conditions, which means that
either y, =y,, when the walk is called closed, or each Gi containing
0y,¥,) (or (v;_;,»,)) hasvalency #2 at Y, (or y.), when the
path is called open. (It will turn out that in the most essential cases a closed
walk isa K,, an open walk is an edge.)

Lemma 1.
(a) If G]. contains an edge of a walk P, then PC Gj.
(b) A walk is either a path or a cycle.

(c) If P= (y1 5% ,yk) is an open walk contained in at least two
G i’s, then y, and y, have valence >3 in any G, containing P.

N
(d) Each edge of 'Ul E(G,) is contained in exactly one walk.
l=

Proof. Let P=@,,...,y,) be a walk and (ys,ys“)eE(Gj)
for some s, 1<s<k-—2. To prove (a) it is enough to show that
(ys 2 i +2)€E(G].), too. There exists a Gm containing the path
(Vgs Vg4 19Ys42) iInwhich y  , hasvalency 2. Since y . ; hasvalency
2 in G]. NG, aswell and (Vs> ¥;, 1) is one of the edges of G]. neG, ,
(yH_l,sz) must be the other one incident to Vert: (yH_l,yHZ)e
eE(G].).
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To prove (b) we have to show that no 3 vertices Vi 12¥Y;4, and
y; can be joined to the same ¥;- Indirectly, if there are 3 vertices Y qs
Vir12¥; joined to Y;» we consider the G, containing (yi_l,yi,yiH)
in which y ; has valency 2 and observe, that by (a) Gm must also contain
o., ¥;), which is a contradiction.

(c) and (d) are obvious consequences of the above ones.

Lemma 2. An arbitrary open walk is contained in at most n— 2
G].'sif | Vi=n>4.

Proof. Let Gil ,..., G, be the graphs containing the open walk

Is

P= (5000 5 ¥ ) Lot Eih be the set of edges of G"n incident to y,

and different from (,,¥,)- Here n=>4 isassumed and thus we may
assume that s> 2. By (d) of Lemma 1, IE,.h | > 2, and IE,.h N Ei,,'l =1

if h+# h'. Hence by the de Bruijn — Erdés theorem [2], s<n—2.
Lemma 3.

@ If P is a closed walk and the & ,-intersection system
G1 e e GM is not a strong A-system, then P is contained in at most

1 ,
3(2)-1 G

(b) If P, are closed walks (i=1,2; P, # P,) contained by 5

graphs from the considered < ,-intersection system, then

5 — D6, —D<3(3) -3

W

Proof.

(a) Since the system is not a strong A-system, there exists a Gh
not containing P. For any G; containing P the cycles Gl. N Gh and
P are edge independent by (a) of Lemma 1: otherwise Gh would also
contain P. If Gl. and G,- contain P, then E(Gl.)—E(P) and E(G].) —

. .. 1, /n 5 ;
— E(P) are disjoint, hence at most 3 ((2) = 3) G.’s contain P.

(b) Let Al,...,As1 and Bl,...,Bs2 be the G].’scontaining P,
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and P, respectively. At most one G]. can contain both P, and P, and
0

for the other graphs the cycles C.].=:Aiﬂ B]. are edge-disjoint and

1

disjoint also from P, and P,. This,proves (b).

Proof of Theorem 2. Let Gysmees G, be an extremal < ,-inter-
secting system. Let e(G) denote the number of edges of G. We shall dis-
tinguish the following cases:

(i) Each closed walk is contained by at most #n — 2 G].’s and there

. . /3
exists a Gh with e(Gh) < Vi n.

(ii) Each closed walk is contained in at most n — 2 Gl.’s and each

; /3
G]. has at least 1/5 n edges.

(iii) There exists a closed walk P contained in at least n — 1 Gl.’s.

() Clearly, each G; (including Gh) intersects G, is at least 3
edges and each edge is contained in at most n — 2 G].’s, hence

N<Vgnng2.

This was to be proved.

(ii) Counting, how many times the edges occur in our graphs we get

at most (g](n — 2) on the one hand but at least N - Vg n on the other
hand. Thus

2 n—1)n—-2)

This proves the assertion.

(iii) We choose a cloesed walk P for which the number s of the
graphs G]. containing P is the maximum and thena G , from the graphs
containing P for which e(Gh) is the minimum (among the graphs
containing P). If G,,...,G, are the graphs containing P, then the
sets E(G/‘) — E(P) are disjoint, therefore
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n
3 M=:e(G,) — e(P) = min e(G,) — e(P) < (Tz]

For s we have by the assumption and Lemma 3 that
1 /n
() n—l<s<§(2)—1.

Let E, denote the number of edges of Gh — E(P) belonging to closed
walks, E, be the number of edges in the open walks. Using Lemmata 2
and 3 N can be estimated as follows:

1 n

78 (5) Em E
37182 2

(5) N<s+ 36 =1) + 3 <s+

1 n 2
55— () *
where s estimates the number of graphs on P, including Gh too and
the next term estimates the number of graphs on the other closed walks
of Gh, but here Gh is not counted again. The third term stands for the

graphs on the open walks of G,. Observe that E, + E, =M and
1 fisy, o 00
95 -9 (2 3"

Hence, and by (5), (3) and (4)

]<

n
Mn (2)n n?
6) N<S+—~‘3—-<S+ 3s <—6—+n.

This completes the proof.

Proof of Theorem 1. If n> 18 then the upper bound of Theorem 1
is weaker than that of Theorem 2, hence we may assume that the extremal
system is a strong A-system. This means that each G; contains a cycle
C of k vertices and the edge sets E(Gh) — E(C) are disjoint:

N< (5)—e©+1,

which completes the proof. If n=3,4,...,17, the theorem remains
still valid and can be proved either by carrying out the above proof of The-
orem 2 in a more careful way or by changing (simplifying) it at certain
points. The details are omitted.
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Remark 2. Obviously, Theorem 2 is not only sharper than Theorem
1, but it also expresses the stability’’ of the extremal configurations of
Theorem 1. Roughly saying, Theorem 2 asserts that if Gyyes-s Gy isan
&, intersection system, where N is closer to the maximum than

[—é — -—V%-) n? then this system is very similar to the optimal one: it is

also a strong A-system.

Proof of Theorem 3. First we prove the upper bound. Let 7 R
i GN be an extremal </ | -intersecting system.

n
(@) Let Pj,...,P betheclosedwalksof U E; and G,,...,G

the graphs containing only closed walks. If N, =:{j: P] c G}, then by
G;,N G, € o, we have N;#N, and |IN,N N, |<1. By [6] we know

q

that the number of these sets is at most ( 3

) + g and the equality holds
iff Ni’s are the singletons and pairs.

(b) The number of open walks is < [g) — 3q, hence, by Lemma 2

the number of graphs G]. containing open walks too is at most

[(g] - 3q) (n — 2). Hence (counting the empty graph as well), we obtain

n

(7 N<(‘1)+q+1+((2

; )—3q](n—2)<[;]+s+l,

where s =:—;(g); g<s and n=> 10 is used, and the fact that the ex-

pression in the middle of (7) achieves its maximum for the maximum value
of ¢q. This yields the upper bound.

(c) Let T,,...,T; be (as in Construction 1) a maximal system of
edge-disjoint cycles in the complete graph K . If n= 6k+ 1 or 6k + 3,

the system will be a Steiner triple system with §= %(g] triangles and the

construction gives [;] + 5+ 1 graphs forming an &/ | -intersection sys-

tem. Hence the upper bound in (7) is sharp. If n# (6k + 1) or (6k + 3),
we obtain the lower bound of Theorem 3 by using a lower bound on .
The details are omitted.
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Proof of Theorem 4. Let G, beanextremal Z-intersection system.
We shall define the function F(G ;) mapping G, into some sets of edges
as follows:

(a) If G,. contains a vertex v of valency > K+ 1, we choose such
a v and K+ 1 edgesof Gl. incident to v. This will be F(G,.).

(b) Assume that (a) ‘does not hold but there exist K + 1 vertices
a,...,a,,, of valence >3 in Gl.. We choose K+ 1 such vertices
and for each of them 3 incident edges. This edge-set will be F(G).

(c) Assume that neither (a) nor (b) holds but G has a vertex of
valency 1. Let v be such a vertex and e be the edge incident to v,
then we choose F(Gl) = {e}.

(d) In the other cases we take a set of edges of G, containing all the
edges at least one endpoint of which has valency 3 in G This set
will be denoted by F (G) and we also choose a set F (G) which
contains exactly one edge from each component of G Put F(G 5) =
=F, (GHUF, (G).

We show that F(G) is a monomorphism: if i#j then F(G))+
#=F(G) Indeed, first of all, knowing F(G,) one knows immediately
wh1ch of the definitions (a), (b), (c) and (d) was used. If F(G) was
defined by (a) or (b) or (c), then assuming indirectly F(G )= F(G ), F(G )
was defined in the same way. In this cases F(G )& G;n G contradlcts
G,Nn G € Z. Hence we may assume that (d) was used for F(G )= F(G ).
We show that if (u,v,w) is a path in G and (u, v)EE(G) then
(v,w)e E(G ). Since F(G ) contains edges from each component of G,
the above assertlon will imply that G, < G By symmetry G < G, that
is G G To prove that (v, w) € E(G ) we distinguish two cases

(i) either v has valency 2 in G when (v, w)&E(G) implies
that v is of degree 1 in G N G (Wthh is a contradiction), or

(i) v has degree > 3 in G;, hence all the edges of G ; incident
to v belong to F(G)= F(G )& E(G ), in particular, (v,w)€ E(G].),
what was to be proved.
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Now we give an upper bound on the number of F(Gi)’s. Using (a),

(b) or (¢) we always get IF(G,-)I < 3K + 3, hence the number of these
F(G)s is only OmS¥*€). 1In case (d) |F,(G)I<K?+K, thus
F,(G,) can be chosen in at most O(n?K*+2K) ways. Since | F,(G,) N
N F2(G].)| <K if i#j, any K+ 1 element subset of the edges is
contained in at most one F2(Gi), hence FZ(Gi) can be chosen in at most
0(n*(+2) ways. Thus F(G,) can be chosen in at most O(n2K*+2K +1))
ways. We have F(G)+# F(G) if i#], therefore N=O(n2K’+4K+2)
Q.E.D.

Added in proof. Recently we have learnt that V. R6d1 also had
proved some of the results of [7].
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