COLLOQUIA MATHEMATICA SOCIETATIS JÁNOS BOLYAI

13. TOPICS IN NUMBER THEORY, DEBRECEN (HUNGARY), 1974.

ON THE DISCREPANCY OF THE SEQUENCE $\{n\alpha\}$

v.T. sós

Let $\{x\}$ denote the fractional part of x, I a subinterval of [0, 1), |I| the length of the interval I and $S_N(I; \alpha)$ the number of $\{n\alpha\}$'s, for which

$$\{n\alpha\} \in I \quad \text{and} \quad 0 < n \le N, \quad (n \text{ integer}).$$

The object of the present paper is to sketch a new proof of an "explicit" formula for

$$\Delta_N(I;\alpha) = : S_N(I;\alpha) - N|I|,$$

when $I = [0, \beta)$. The formula was found independently by S. Monteferrante and by the author and stated at first in a lecture in Oberwolfach, at the number theory meeting during 25-31 March, 1968.

The expression "explicit" is of course a relative one, it refers for certain expansion on N resp. β . One must say in advance that the formula seems to be more useful than aesthetic. Its usefulness is shown by the fact that one can deduce from it quite a lot of known and some new results.

NOTATIONS

Let $\alpha = [0, a_1, ...]$ be the continued fraction expansion of an irrational $\alpha \in (0, 1)$

(1)
$$\frac{P_k}{Q_k} = [0, a_1 \dots a_k] \quad \text{and} \quad D_k = Q_k \alpha - P_k.$$

Then we have

(2)
$$P_k = a_k P_{k-1} + P_{k-2}$$
, $Q_k = a_k Q_{k-1} + Q_{k-2}$ $(k \ge 0)$ with $P_{-2} = 0$, $P_{-1} = 1$, $Q_{-2} = 1$, $Q_{-1} = 0$, $a_0 = 0$. Further we have

(3)
$$D_k = a_k D_{k-1} + D_{k-2}.$$

It is known, ([1], [2]) that any real number $\beta \in (-\alpha, 1 - \alpha)$ can be represented in the form

$$\beta = \sum_{i=0}^{\infty} c_i D_i$$

where the c_i 's are integers,

(5)
$$0 \le c_0 < a_1, \quad 0 \le c_i \le a_{i+1} \quad \text{for} \quad i > 0$$

and

(6)
$$c_i = a_{i+1}$$
 only if $c_{i-1} = 0$.

This representation of β is unique if we do not allow the case

(7)
$$c_{\nu_0+2i} = a_{\nu_0+2i}$$
 for some ν_0 and $i = 1, 2, \dots$

(Conversely, to any sequence (c_n) under the above conditions we get a number $\beta \in (-\alpha, 1-\alpha)$.)

It is known also and often used ([1], [2], [5]) that there is a unique expansion of any natural number X in the form

$$X = \sum_{i=0}^{n} x_i Q_i$$

where the x_i 's are integers $0 \le x_0 < a_1$,

$$(8) 0 \le x_i \le a_{i+1} \text{for } i > 0$$

and

(9)
$$x_i = a_{i+1}$$
 only if $x_{i-1} = 0$.

Let $N = \sum_{i=0}^{m} b_i Q_i$ $(b_m > 0)$ be the expansion of N in the above form,

(10)
$$N_k = : \sum_{i=0}^k b_i Q_i$$
 and $Q_k^* = : \sum_{i=0}^k c_i Q_i$.

For the sake of simplicity let

(11)
$$\beta = \sum_{i=i_0}^{\infty} c_i D_i, \quad c_{i_0} > 0, \quad i_0 \text{ even}$$

(i.e.
$$c_i = 0$$
 for $i < i_0$ and $0 < \beta < 1 - \alpha$.)

Our formula in question qualitatively says, that $\Delta_N((0,\beta);\alpha)$ is "almost additive" in the terms b_iQ_i resp. c_iD_i . More exactly the following theorem holds:

Theorem.

(12)
$$\Delta_{N}((0,\beta);\alpha) = \sum_{k=0}^{\infty} ((-1)^{k} \min(b_{k},c_{k}) - c_{k}b_{k}Q_{k}D_{k}) - \sum_{k=0}^{\infty} \sum_{l < k} (c_{k}b_{l} + c_{l}b_{k})Q_{l}D_{k} + \sum_{l=0}^{\infty} \delta_{l}$$

where

$$\delta_{l} = \begin{cases} 1, & \text{if} \quad l \quad \text{even and} \quad Q_{l-1}^{*} < N_{l-1} \leq N_{l} < Q_{l}^{*} \\ -1, & \text{if} \quad l \quad \text{odd and} \quad N_{l-1} \leq Q_{l-1}^{*} \leq Q_{l}^{*} < N_{l} \\ 0 & \text{otherwise.} \end{cases}$$

Proof. Using the above notations, we state without proof the following simple lemmas:

1.
$$X = \sum_{i=0}^{m} x_i Q_i < N = \sum_{i=0}^{m} b_i Q_i$$
 iff for some $0 \le k \le m$

(13)
$$x_i = b_i$$
 if $i > k$ and $x_k < b_k$.

2. Let
$$X = \sum_{i=j_0}^{m} x_i Q_i$$
, $x_{j_0} > 0$ (i.e. $x_i = 0$ for $i < j_0$). Then

$$\{X\alpha\} = \Big\{\sum_{i=j_0}^m x_i Q_i \alpha\Big\} = \sum_{i=j_0}^m x_i D_i,$$

if j_0 is even; $0 < \sum_{i=j_0}^m x_i D_i < 1 - \alpha$ and

$$\{X\alpha\} = \Big\{\sum_{i=j_0}^m \, x_i Q_i \alpha\Big\} = 1 + \sum_{i=j_0}^m \, x_i D_i$$

if
$$j_0$$
 is odd; $-\alpha < \sum_{i=j_0}^m x_i D_i < 0$.

3. For a β satisfying (11) and for a positive integer X $\{X\alpha\} \in [0, \beta)$

iff for some $l \ge 0$

(14)
$$x_i = c_i$$
 if $i < l$ and $sign(c_l - x_l) = (-1)^l$,

in addition

(15) if
$$x_0 = \ldots = x_{\nu-1} = 0$$
, $x_{\nu} \neq 0$ then ν is even.

According to these lemmas

(16)
$$S_N((0, \beta); \alpha) = \sum_{l,k} S_{l,k}$$

where $S_{l,k}$ denotes the number of sequences (x_i) satisfying (8), (9), (13), (14) and (15) with the fixed l and k.

Consequently for the proof of the theorem we have to determine the values of the $S_{l,k}$'s.

(a) In case $k > l > i_0$, l even, $c_l = 0$ resp. $c_l \neq 0$ we have $S_{l,k} = 0$

resp.

$$S_{l,k} = c_l b_k (Q_k D_l - D_k Q_l) - b_k (Q_k D_{l+1} - D_k Q_{l+1}).$$

The case $c_1 = 0$ is evident.

If $c_l \neq 0$, let A_{ν} be the number of sequences $(x_l, \dots, x_{l+\nu})$ which satisfy

$$0 \le x_i < c_i$$

$$0 \le x_i \le a_{i+1}, \quad x_i = a_{i+1} \quad \text{only if} \quad x_{i-1} = 0$$

for $l < i \le l + v$.

Obviously, with $A_{-1} =: 1$ we have

$$A_0 = c_l$$

 $A_1 = a_{l+1}c_l + 1 = a_{l+2}A_0 + A_{-1}$

and

$$A_{j+1} = a_{j+1+l+1}A_j + A_{j-1}.$$

From this, and from the recursive formulas (2), (3) we get

$$A_{\nu} = c_{l}(Q_{l+1+\nu}D_{l} - D_{l+1+\nu}Q_{l}) -$$

$$- (Q_{l+1+\nu}D_{l+1} - D_{l+1+\nu}Q_{l+1}).$$

Using this with v = k - l - 1

$$\begin{split} S_{l,k} &= b_k A_{k-l-1} = b_k (c_l (Q_k D_l - Q_l D_k) - \\ &- (Q_k D_{l+1} - D_k Q_{l+1})). \end{split}$$

(b) In the case $k > l = i_0$ (i_0 even!) we have $S_{i_0,k} = b_k(c_{i_0} - 1)(Q_k D_{i_0} - D_k Q_{i_0}) - b_k(Q_k D_{i_0+1} - D_k Q_{i_0+1}) + \delta_k^+ + \delta_k^-$

where

$$\delta_k^+ = \begin{cases} 1, & \text{if } k \text{ odd, } b_k > 0 \\ 0 & \text{otherwise} \end{cases}$$

$$\delta_k^- = \left\{ \begin{array}{ll} -1, & \text{if} \quad b_k > 0, \quad b_\nu = 0 \quad \text{for} \quad k < \nu < j, \\ & b_j > 0, \quad j \quad \text{odd} \\ 0 & \text{otherwise.} \end{array} \right.$$

For the proof we need a similar reasoning, as in case (a) and beside this we have to take into consideration that for the sequences (x_i) in question (15) must hold.

We note that evidently

$$\sum_{k} (\delta_k^+ + \delta_k^-) = 1 \quad \text{if} \quad$$

(17) for some
$$v$$
 $b_{2\nu+1} > 0$ and $b_j = 0$ if $i_0 < j < 2\nu + 1$,
$$\sum_{k} (\delta_k^+ + \delta_k^-) = 0$$
 if (17) does not hold.

(c) In the case $k > l > i_0$, l odd, $c_{l-1} \neq 0$ resp. $c_{l-1} = 0$ we have

$$S_{l,k} = -(a_{l+1} - c_l - 1)b_k(Q_k D_l - D_k Q_l)$$

resp.

$$S_{l,k} = -(a_{l+1} - c_l)b_k(Q_k D_l - D_k Q_l).$$

For the proof we need a similar reasoning again, as in case (a), and beside this we have to take into consideration, that we may have $x_l = a_{l+1}$ only in case $x_{l-1} = c_{l-1} = 0$.

(d) In case
$$k = l > i_0$$
, k even resp. k odd, we have evidently
$$S_{k,k} = \min(c_k, b_k) \quad \text{resp.} \quad S_{k,k} = \max(0, b_k - c_k - 1),$$

$$S_{i_0, i_0} = \min(c_{i_0}, b_{i_0}) + \delta_{i_0}^*$$

where

$$\delta_{i_0}^* = \begin{cases} -1, & \text{if (17) holds} \\ 0 & \text{otherwise.} \end{cases}$$

(e) In case l > k ($l > i_0$) we have to consider the special sequence if it exists at all –

$$x_i = c_i$$
 if $i \le l - 1$
 $x_i = b_i$ if $i \ge k + 1$.

We get easily, that

$$S_{l,k} = \begin{cases} 1, & \text{if } l \text{ even and } Q_{l-1}^* < N_{l-1} \leqslant N_l < Q_l^* \text{ or} \\ & \text{if } l \text{ odd and } Q_{l-1}^* < N_{l-1}, \ Q_l^* < N_l \end{cases}$$

The remaining cases are contained in the last case

(f) In case $l < i_0$ we have obviously $S_{l,k} = 0.$

Now substituting these values of the $S_{l,k}$'s, using the recursive formulas (2), (3) and treating appropriately the ± 1 terms one can complete the proof of the Theorem.

As corollaries of the above theorem we may get e.g. the following results:

Theorem of Hecke [3]. $\Delta_N((0, \beta); \alpha)$ is bounded in N if $\beta = \{k\alpha\}$ for some positive integer k.

Theorem of Kesten [4]. $\Delta_N((0,\beta);\alpha)$ is bounded in N only if $\beta = \{k\alpha\}$ for some positive integer k.

Theorem. If $\alpha = [0, a_1, ...]$ has bounded partial quotients; $a_i \le K$ for $i \ge 1$, then

$$\Delta_N((0,\beta);\alpha) \le C_K \log N$$

where C_k depends only on K.

With an explicit value of C_k see [5], (without proof [6]).

Theorem. If for $\alpha = [0, a_1, ...]$ we have $a_i \ge K$ for $i > i_0$, then

$$\inf_{\beta,N} \frac{\Delta_N((0,\beta);\alpha)}{\log N} \geqslant C_K^*$$

where C_K^* depends only on K and $\lim_{K\to\infty} C_K^* = \infty$.

Theorem. For suitable α there exists $\beta \neq \{k\alpha\}$ (k integer) such that

$$\Delta_N((0,\beta);\alpha)$$

is onesidedly bounded in N.

(It is stated without proof e.g. in [6].)

We prove these consequences in a forthcoming paper.

REFERENCES

- [1] R. Descombes, Sur la répartition de sommets d'une ligne polygonale régulière nonfermée, Annales Scientifiques de l'École Normale Supérieure, 75 (1956), 284-355.
- [2] V.T. Sós, On the theory of Diophantine approximation II, Acta Math. Acad. Sci. Hung., IX. 1-2 (1958), 229-241.
- [3] E. Hecke, Über analytische Funktionen und die Verteilung von Zahlen mod Eins, Abh. Math. Sem. Hamburg, 1 (1922), 54-76.
- [4] E. Hecke, On a conjecture of Erdős and Szüsz related to uniform distribution mod 1, *Acta Arithm.*, 12, (1966-67), 193-212.
- [5] E. Kuipers H. Niederreiter, Uniform distribution of sequences, Wiley-Interscience, 1974, 125-126.

[6] V.T. Sós, On the distribution of the sequence (nα), Tagungsbericht 28/1972. Math. Forschungsinstitut Oberwolfach, 21.

Vera T. Sós

1. Department of Analysis, Eötvös Loránd University, Múzeum krt 6-8, H-1088 Budapest, Hungary.