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ON THE DISCREPANCY OF THE SEQUENCE {na}

V.T. SOs

Let {x} denote the fractional part of x, I a subinterval of [O, 1),
|1 the length of the interval [ and SN(I,' «) the number of {na}’s,
for which

{na} €I and O0<n<N, (n integer).

The object of the present paper is to sketch a new proof of an “ex-
plicit” formula for

Ay =:8, (I;0) — NI,

when /= (0, (). The formula was found independently by S. Monte-
ferrante and by the author and stated at first in a lecture in Oberwol-
fach, at the number theory meeting during 25-31 March, 1968.

The expression ’explicit” is of course a relative one, it refers for cer-
tain expansion on N resp. . One must say in advance that the formula
seems to be more useful than aesthetic. Its usefulness is shown by the fact
that one can deduce from it quite a lot of known and some new results.
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NOTATIONS

Let a= [0, a,...] be the continued fraction expansion of an irra-
tional o€ (0, 1)

P

() QI;- = [O,al. --4;] and Dk = Qka~Pk.

Then we have

@ P=qlb  + P, Q=09 1+ Q% _, (k>0
with P_, =0, P_, =1, Q ,=1, 0 ,=0 a, = 0. Further we have
3) Dy=aD, +D,_,.

It is known, ([1], [2]) that any real number BE (-, 1 —a) canbe
represented in the form

\F

c.D.

11

“4) B=

o

i=

where the c¢,’s are integers,

(5) O<co<a1, O<c,.<a,.+l for i>0
and
(6) ¢=4a,, onlyif ¢,_,=0.

This representation of B is unique if we do not allow the case

(7 cv°+2i=auO+2i for some Vo and i=1,2,....

(Conversely, to any sequence (c,) under the above conditions we
get a number f€ (—«a, 1 — @).)

It is known also and often used ([1], [2], [5]) that there is a unique
expansion of any natural number X in the form
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where the x,’s are integers 0 < xy<ag,

(8) O<xi<ai+1 for i>0
and
)] x;=a,,; onyif x, =0

m
Let N= _Z(; b,Q; (b, > 0) be the expansion of N in the above
1=

form,
k k
(10) N, =:i=20’ b0 and  Qf=: 2 c0;
For the sake of simplicity let

an  p= > ¢Dy ¢, >0, iy even
i=ig 0

(i.e. ci=0 for i<ip and 0<B<1 —a)

Our formula in question qualitatively says, that Ay ((0,B); ) is “al-
most additive” in the terms b,Q; resp. c¢;D,. More exactly the following
theorem holds:

‘Theorem.

Ay((©0,p; @)= 2 (— ¥ min (b, ¢,) — 6,5, 0, D) -

(12) . _
kZ; I.<Z (cb,+ ¢,b,)0,D, + 122(’) 8,
where
1, if 1 evenand Qf <N, <N, <Qf
=11, if | oddand N_1<QL,<Q! <N,
0 otherwise. '

Proof. Using the above notations, we state without proof the follow-
ing simple lemmas:
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1. X=‘_,xQ<N ZbQ iff for some 0< k<m

i=0

v

(13) x.=b. if i>k and xk<bk.

] ]

2. Let X = 2 x;0;s xi0>0 (ie. x;=0 for i<j,). Then
i= ]0

(Xa} = {i=2j(; x,.Q,.a} = i=2/'0 x;D;,

m

if j, 1is even; 0<.2}' x'.D,.<l—oz and
1= 0
m

if Jo iso0dd; —a< Z xD <0.
l]o

3. Fora f§ satisfying (11) and for a positive integer X
{Xa}€ [0,
iff for some />0
(14)  x;,=c¢; if i<l and sign(¢ —x)= (-1},
in addition ‘
(15) if xp=...=x,_ ; =0, x, #0 then v is even.
According to these lemmas
(16) Sy ((0,p);® = I’Zk S, 4
where SL k denotes the number of sequences (xl.) satisfying (8), (9), (13),
(14) and (15) with the fixed / and k.
Consequently for the proof of the theorem we have to determine the

vaiues of the S, k’s.

\

- 362 -



(a) In case k>1> iy [ even, ¢ = 0 resp. ¢ #* 0 we have
Sz,k =0
resp.
Sk = b (@ Dy~ D Q) ~ b (O D)y — Dy Q).
The case = 0 is evident.

If ¢,#0, let A, be the number of sequences (x,...,x,, )
which satisfy

0< x,<¢
0<x;<a,,, x;=a,, onlyif x,_,=0
for I<i<I+v.
Obviously, with A_; =:1 we have
A0 = ¢
Ay=a .+ 1=a,,A,+A4_,
and
Ay =G4t 4
From this, and from the recursive formulas (2), (3) we get
A,=¢ Q14,0 =Dy 42D —
- (QI+ l+vDI+ 1 Dl+ 1+ vQI+ 1)
Using this with v=k -1/ 1
Sk = bgAg_ -y = by ((Qy D, — QD) —
~(QDry g — Dy Q1)
(b) In the case k> 1= i, ( iy even!) we have
Sio,k = bk(cio - 1)(QkDi0 - Dino) =

= b (QD; 1y — Dy Qi) + 8 + 8
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where
1, if k odd, b, >0
5+={

0 otherwise

-1, if bk>0’ b,=0 for k<v<j,
l bi>0’ j odd

0 otherwise.

For the proof we need a similar reasoning, as in case (a) and beside
this we have to take into consideration that for the sequences (x;) in
question (15) must hold.

We note that evidently
2@+ 8 =1 if
(a7 for some v by, ;>0 and b, =0 if {j<j<2v+1,

%(6; +87)=0 if (17) does not hold.

(c) In the case k>l>i0, ! odd, ¢_1 * 0 resp. €1 = 0 we
have

S ="y —¢—1Db (@D, — D Q)
resp.
S =" (a1 —¢)b(Q.D,— D, Q).

For the proof we need a similar reasoning again, as in case (a), and
beside this we have to take into consideration, that we may have x;=
=a,, onlyincase x;,_;,=¢_; = 0.

(d) Incase k=1> i k even resp. k odd, we have evidently

Sk,k = min (¢;, b;)  resp. Sk,k =max (0,5, — ¢, — 1),
S,.O,‘.0 = min (Cio’ b"o) + 6;‘0
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where

6 =

— 1, if (17) holds
A1

0 otherwise.
(e) Incase 1>k (I>i;) we have to consider the special sequence
- if it exists at all —
x;=¢; if i<l-1
x;=b;, if izk+ 1
We get easily, that
1, if / evenand Q) ; <N,_; <N, <@} or
. if I oddand Q ; <N,_;, Q<N

0 otherwise.

The remaining cases are contained in the last case

(f) In case 1< iy we have obviously

S;x=0.

Now substituting these values of the S, k’s, using the recursive for-
mulas (2), (3) and treating appropriately the * 1 terms one can complete
the »roof of the Theorem.

As corollaries of the above theorem we may get e.g. the following re-
sults:

Theorem of Hecke [3]. A, ((0, B); &) is bounded in N if B= {kot}
for some positive integer k. '

Theorem of Kesten [4]. AN ((0, B); o) is bounded in N only if
B = {ka} for some positive integer k.

Theorem. If a=[0,a,,..] has bounded partial quotients; a;< K
for i>1, then
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Ay (0, B); ) < Cy log N
where Ck depends only on K.
With an explicit value of C, see [5], (without proof [6]).

Theorem. If for a= [0, ay...] wehave a,>K for i> iy, then

Ay OB
pv TogN = Ck

where Cg depends only on K and lim Cg = .
K~ o

Theorem. For suitable o there exists B+ {ka} (k integer) such
that

A, 0,B); ®
is onesidedly bounded in N.
(It is stated without proof e.g. in [6].)

We prove these consequences in a forthcoming paper.
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