INTERSECTION THEOREMS FOR GRAPHS

Miklós SIMONOVITS and Vera T. SÓS

Eötvös Loránd University, Budapest

Résumé. — Dans cet article, nous considérons des problèmes analogues à un problème d'Erdös et de De Bruijn [1]. Soient G_1, \ldots, G_t une famille de graphes simples construits sur le même ensemble de n sommets. Nous désignons par $G_i \cap G_j$ le graphe dont les arêtes sont les arêtes communes à G_i et G_j et dont les sommets sont ceux de ces arêtes. Nous montrons que si pour tout i, j $(1 \le i < j \le t)$ $G_i \cap G_j$ est une chaîne ou est vide alors $t = O(n^5)$; si $G_i \cap G_j$ est une chaîne non vide $t = O(n^4)$; si $G_i \cap G_j$ est un cycle ou est vide $t = O(n^4)$.

Introduction. — A well known result of N. G. de Bruijn and P. Erdös asserts that if A_i (i = 1, ..., t) are subsets of an n element set V, then the conditions $|A_i \cap A_j| = 1$ for every $i \neq j$ implies that $t \leq n$. (Here |E| denotes the cardinality of E.) There is an extensive literature on problems like this and we are interested in the following generalization of the problem above.

The graph problem. — Given a family \mathcal{A} of graphs and for a given n element set V and graphs G_i on the vertex set V we know that $G_i \cap G_j \in \mathcal{A}$, whenever $1 \leq i < j \leq t$. Here the intersection $G_i \cap G_j$ is the graph whose edges are the edges belonging to both G_i and G_j and the vertices are the endvertices of these edges. (Observe that by this definition of $G_i \cap G_j$ it has no isolated vertices!) We would like to know, maximally how large t can be (under the condition $G_i \cap G_j \in \mathcal{A}$)?

Remark 1. — If A is the set of the graphs of k edges, we get back to the original set intersection problem.

For some families \mathcal{A} we shall publish our results in [2]. Here we restrict our investigations to the following three cases:

Case 1. — \mathcal{A}_0 is the family of path with vertex set in V, where the empty graph is also considered to be a path : $\emptyset \in \mathcal{A}_0$.

Case 2. — \mathcal{A}_1 is the family of paths with vertex set in V, but the empty path is excluded : $\emptyset \notin \mathcal{A}_1$.

Case 3. — \mathcal{A}_2 is the family of cycles on V, where the empty graph is also in $\mathcal{A}_2 : \emptyset \in \mathcal{A}_2$.

Remark 2. — The interesting feature of the cases mentioned above is, that, as we shall see from the following theorems, the bounds are polynomial in n. If we assume that the intersections $G_i \cap G_j$ are all trees on V, then $t = 2^{n-1}$ can still occur: let H be the graph on V = (1, ..., n) with the edges (1, 2), (1, 3), ..., (1, n) and let G_i be an arbitrary spanned

subgraph of H containing 1. Clearly, the intersection $G_i \cap G_j$ is always a tree, moreover, a star, while $t = 2^{n-1}$. Even if we assume that the intersection $G_i \cap G_j$ is a star with at least 2 vertices, a slight modification of the above construction shows that t can be exponentially large.

Our main results are formulated in the following theorems:

Theorem 1.—If G_i (i = 1, ..., t) is a system of graphs with the common vertex set V, |V| = n and $G_i \cap G_j \in A_0$ whenever $i \neq j$, then $t = O(n^5)$.

Theorem 2.—If G_i (i = 1, ..., t) is a system of graphs with the common vertex set V, |V| = n and $G_i \cap G_j \in \mathcal{A}_1$ whenever $i \neq j$, then

$$t = O(n^4)$$
.

Theorem 3. — If G_i (i = 1, 2, ..., t) is a system of graphs with the common vertex set V, |V| = n and $G_i \cap G_j$ is always a (possibly empty) cycle unless i = j $(G_i \cap G_j \in A_2)$, then

$$t = O(n^4) .$$

Remark 3. — The exponents in the above theorems are sharp, as one can see from the following constructions:

Construction 1. — Let $C_1, ..., C_5$ be a partition of n vertices into five classes, each of which contains at least [n/5] vertices. Let the system G_i be the system of graphs on n vertices, each of which contains a cycle $(x_1 x_2 x_3 x_4 x_5), x_i \in C_i$, and isolated vertices. Here we have $\geq [n/5]^5$ graphs any two of which intersect in a path. Hence theorem 1 is sharp. (This construction can easily improved by adding new graphs to the system, for example, graphs containing a cycle of type $(x_1 x_3 x_5 x_2 x_4)$ and isolated vertices.)

Construction 2. — Let a and b be two fixed vertices and n-2 further vertices be partitioned into 4 classes

 C_1 , C_2 , C_3 , C_4 each of which has at least $\left[\frac{n-2}{4}\right]$ vertices. If we consider the system of graphs each of which contains one path $(x_1 \ x_2 \ abx_3 \ x_4)$, $x_i \in C_i$, and isolated vertices, then this system contains $t \ge \left[\frac{n-2}{4}\right]^4$ members and any two (different) member intersects in a nonempty path. Hence theorem 2 is sharp.

Construction 3. — Let T_1 , T_2 , ... be a system of triangles any two of which have at most one vertex in common. As it is well known, one can find (approximately) $\frac{1}{3}\binom{n}{2}$ such triangles on n vertices and if the system G_i consists of the graphs each containing exactly two of these triangles and the further isolated vertices, then any two (different) intersect in a cycle: theorem 3 is sharp.

Proofs. — *Proof of theorem* 1. — Let us consider an extremal system for the class \mathcal{A}_0 , that is, a system G_1, \ldots, G_t for which $G_i \cap G_j \in \mathcal{A}_0$ if $i \neq j$ and t is the maximum possible. Without loss of generality we may assume that

(+)
$$\sum_{j} e(G_j)$$
 is the minimum possible

(here $e(G_i)$ denotes the number of edges of G_i).

First we remark, that if K(1, 3) is the graph on 4 vertices x_1 , x_2 , x_3 , x_4 where x_1 is joined to x_2 , x_3 , x_4 but x_2 , x_3 , x_4 are independent, then any K(1, 3) is contained in at most one G_i . Thus, if $L_i \subseteq G_i$ is isomorphic to K(1, 3) for some i, we can replace G_i by this L_i : this L_i was not contained in the old system unless $L_i = G_i$ and it intersects any G_j in a path. By (+) $G_i = L_i$. Hence our system consists of graphs whose edges span a K(1, 3) and of graphs in which the maximum valence ≤ 2 . If a graph G_i contains a cycle C, then we can replace G_i by this C and obtain a new extremal family: the number of members does not change, since this C cannot occur in any other G_i and G_i can intersect only one connected component of G_i , hence either $G_i \cap G_j = C \cap G_j$ or $C \cap G_j = \emptyset$. Thus the new system is really an extremal one. By $(+) G_i = C$. Hence our system consists of graphs whose edges span

either a K(1, 3) or a cycle or one or more paths.

Let H consists of two independent edges. Again, if a G_i contains H and the two independent edges of H belong to two different connected components of G_i , then we can replace G_i by H and the new system will again be an extremal system: H does not belong to the old system and any G_j intersects only one connected component of G_i , hence $H \cap G_j$ has at most one edge. By (+) $H = G_i$.

Now we know that any G_i is either a path or a cycle or two independent edges or a K(1, 3), apart from its isolated vertices. First we give an upper bound on the number of paths, 4-cycles and two independent edges. Let e and f be two edges (not necessarily forming a G_i) and observe that at most one G_i of the following property can belong to our system: (a) a 4-cycle in which e and f are not adjacent, (b) a path with the terminal edges e and f, (c) G_i having only two edges, namely e and f.

Hence the number of graphs listed above is at most $\binom{n}{2}$. The number of K(1, 3)'s is at most $4\binom{n}{2}$.

$$\binom{n}{2}$$
. The number of $K(1, 3)$'s is at most $4\binom{n}{4}$.

There exist at most $\binom{n}{3}$ triangles, $\binom{n}{2} + 1$ graphs of at most one edge. Therefore we need only a good bound for the number of cycles of at least 5 edges. This will be obtained in the following way.

We shall consider the pairs (e, C), where e is an edge of the cycle $C = C_i$ and order appropriately to it two adjacent edges of C, say u and v, so that no other G_j contains all these three edges, among the cycles of the extremal system. Since C is not a triangle, at least one of u and v is not adjacent with e. Thus either they form a path of 3 edges or both u and v are independent from e but adjacent to each other. Therefore the number of graphs G_i for which G_i is a cycle and for at least one edge e of it we get a path (e, u, v) of 3 edges is at most

$$12\binom{n}{4}$$
,

while the number of cycles G_i for which (e, u, v) is not a path for any edge e of G_i is at most

$$\frac{1}{5} \cdot 10 \cdot 3 \cdot \binom{n}{5} = 6 \binom{n}{5},$$

since each of them is counted at least 5 times. This will complete the proof of theorem 1 as soon as the promised ordering of (e, u, v) to (e, C) is done.

In the following part we shall also use a slight modification of the definition $G_i \cap G_j$: let P_1 and P_2 be two paths, then the *p*-intersection of P_1 and P_2 is their intersection defined earlier, if it is not empty, however, if P_1 and P_2 have just one endvertex in common, their *p*-intersection is by definition this common endvertex. The *p*-intersection will be denoted by $P_1 \stackrel{.}{\cap} P_2$ or by $\stackrel{.}{\cap} P_i$.

Given the pair (e, C) the edges u and v will be defined as follows: Let C_1, \ldots, C_s be the other graphs in our system containing e. Put I = : C - e, $I_j = C - C_j$, $(j = 1, \ldots, s)$. Now we show that the paths I_j form a Helly system: the p-intersection of any two of them is nonempty, hence there exists a vertex contained by all of them. First of all, trivially, I and

 I_i are paths. Further, let us assume indirectly, that $I_i \cap I_k = \emptyset$. Thus C is divided into 4 paths: I_j , I_k , a path P containing e and a path Q separated from e by I_j and I_k . Let $Q = (a_1, ..., a_k)$ and I_j be incident to a_1 . Since the intersections $C \cap C_j$ and $C \cap C_k$ are paths, we obtain that $C_j \supseteq C - I_j$, $C_k \supseteq C - I_k$ and therefore $Q \subseteq C_j \cap C_k$. We show that Q is a connected component of $C_j \cap C_k$. Indeed, at a_1 the intersection does not contain any edge but (a_1, a_2) : C_k does contain the edge of I_i incident to a_1 but $C_j \cap I_j = \emptyset$, hence $C_j \cap C_k$ really cannot contain any edge but (a_1, a_2) from the edges incident to a_1 . Similarly, at a_k it has degree 1, thus Q_1 is a connected component of it, not containing $e \in C_j \cap C_k$. Thus $C_i \cap C_k$ is not a path. This contradiction proves that $I_i \cap I_k \neq \emptyset$. By the well known theorem of Helly (which is trivial now, i.e. for intervals), there exists a vertex c contained by each I_i . If u and v are the edges incident to c on C, then no other cycle C' contains e, u, and v: from $e \in C'$ follows that $C' = C_j$ for some jand $c \in I_j = C - C_j \subseteq C$ yields that C_j contains at most one of u and v. Hence for different (e, u, v)the graphs Gi containing them are different. The reader can easily check that c can be chosen from the vertices of C not incident to e. Hence the edges e, u, v are different (though this is not important here). Trivially, u and v are adjacent. This completes the proof.

Proof of theorem 2. — Let $G_1, ..., G_t$ be an extremal system. Each K(1, 3) is contained in at most one G_i and therefore the number of G_i 's containing K(1, 3) is at most $4\binom{n}{4}$. For a given pair of edges at most one G_i contains these edges in different connected components and at most one G_i can be a path having these two edges as terminal edges. Moreover, for a given pair of edges the two different cases given above cannot occur at the same time. Thus the number of paths and disconnected graphs can be estimated by

$$\frac{1}{2} \binom{n}{2}^2$$
, more precisely, by $\binom{n}{2}$. The triangles can

be estimated by $\binom{n}{2}$ and the number of graphs containing just one edge is estimated by $\binom{n}{2}$. The remaining graphs must be connected, with maximum valence 2 and are not paths: they are cycles (of at least 4 vertices). Let C be a cycle. Since it has at most n edges,

we may fix n edges $e_1, ..., e_n$ so that any cycle G_i contains at least one e_j . We have seen above, in the proof of theorem 1, that the number of cycles containing an edge e is at most $3\binom{n-2}{3}+4\binom{n-2}{2}\leqslant \frac{n^3}{2}$.

Thus the total number of cycles of at least 4 edges is at most $n^4/4$. This completes the proof.

Remark 4. — Here the graphs G_i could not be replaced by the corresponding smaller graphs, e.g. by K(1, 3), since that would turn some intersections into empty graph.

Proof of theorem 3. — Again, the number of G_i 's containing a fixed K(1, 3) is at most one, hence the number of G_i 's containing some K(1, 3) is at most $4\binom{n}{4}$. If e is an arbitrary edge, it can be adjacent to a vertex of valence 1 in a graph G_i containing e for at most one value of i. Hence all but at most

$$4\binom{n}{4}+\binom{n}{2}+1$$

graphs are regular graphs of degree 2. (Here 1 stands for the empty G_i .) Observe now, that if C is a cycle in any G_i and C' is a cycle in any G_j where G_i , G_j are 2-regular, then either C = C' or $CC' = \emptyset$. Hence we define $(C_1, ..., C_m)$ as the set of cycles contained by at least one 2-regular G_i and observe that $m \le n^2/6$, since the cycles are edge-independent. If a G_i has more than 2 cycles, we may replace it by two arbitrary cycles of it, the new system remains extremal. Thus we obtained that the number of 2-regular graphs is at most $n^4/36$. This completes the proof.

Remark 5. — a) The theorems above are not complete in the sence that we do not know the best coefficients of n^5 , n^4 and n^4 respectively. Further, we do not know the structure of extremal system either. It would be nice to know for example, that in theorem 2 is it true, that an extremal system $G_1, ..., G_t$ always has an edge e belonging to each G_i ?

b) We conjecture that the extremal system of theorem 1 consists only of triangles, quadrangles, pentagons and the $4\binom{n}{4}K(1, 3)$, and path of ≤ 2 edges.

Added in proof. — The case when $G_i \cap G_j$ is a cycle but the empty graph is excluded is considered in [2].

References

 N. G. DE BRUIJN, P. ERDÖS, On a combinatorial problem, Nederl. Akad. Wetensh. Proc. 51 (1948) 1277-1279.
M. SIMONOVITS, V. T. Sós, Proc. Coll. Math. Soc. J. Bolyai on Combinatorica/theory, Keszthely (1976).