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Résumé. — Dans cet article, nous considérons des problémes analogues a un probléme d’Erdés
et de De Bruijn [1]. Soient G, .... G, une famille de graphes simples construits sur le méme ensemble
de n sommets. Nous désignons par G; N G, le graphe dont les arétes sont les arétes communes a G;
et G; et dont les sommets sont ceux de ces arétes. Nous montrons que si pour touti, j (1 < i < j £ 1)
G; N G; est une chaine ou est vide alors ¢ = o0n®) ;siG;n G; est une chaine non vide ¢ = o(n*);

si G; N G;est un cycle ou est vide t = O(n*).

Introduction. — A well known result of N. G. de
Bruijn and P. Erdés asserts that if 4, (i =1, ..., 1)
are subsets of an » element set ¥, then the conditions
| A;n A;| =1 for every i # j implies that ¢ < n.
(Here | E | denotes the cardinality of E.) There is an
extensive literature on problems like this and we
are interested in the following generalization of the
problem above.

The graph problem. — Given a family # of graphs
and for a given » element set V" and graphs G; on the
vertex set V' we know that G; n G;e A, whenever
1 <i<j<t Here the intersection G; N G; is the
graph whose edges are the edges belonging to both G;
and G; and the vertices are the endvertices of these
edges. (Observe that by this definition of G; N G;
it has no isolated vertices !) We would like to know,
maximally how large 7 can be (under the condition
G, NnGeA)?

Remark 1. — If A is the set of the graphs of k edges,
we get back to the original set intersection problem.

For some families A# we shall publish our results
in [2]. Here we restrict our investigations to the follow-
ing three cases :

Case 1. — #, is the family of path with vertex set
in V, where the empty graph is also considered to
be a path : F € A,.

Case 2. — A, is the family of paths with vertex
set in ¥, but the empty path is excluded : & ¢ #4;.

Case 3. — #, is the family of cycles on V, where the
empty graph is also in £, : J € 4,.

Remark 2. — The interesting feature of the cases
mentioned above is, that, as we shall see from the
following theorems, the bounds are polynomial
in n. If we assume that the intersections G; N G;
are all trees on V, then ¢ = 2"~ ! can still occur : let H
be the graph on V' = (1, ..., n) with the edges (1, 2),
1,3),...,(1,n) and let G; be an arbitrary spanned

subgraph of H containing 1. Clearly, the intersection
G; N G; is always a tree, moreover, a star, while
t =2""! Even if we assume that the intersection
G; N G, is a star with at least 2 vertices, a slight modi-
fication of the above construction shows that ¢ can
be exponentially large.

Our main results are formulated in the following
theorems :

Theorem 1.— If G;(i =1,....1) is a system of
graphs with the common vertex set V, |V | = n and
G: N G;€ A, whenever i # j, then t = O(n°).

Theorem 2.— If G, (i = 1,...,1) is a system of
graphs with the common vertex set V, | V| = n and
G; N G;€ A, whenever i # j, then

t = 0n?).

Theorem 3. — If G; (i = 1,2, ..., 1) is a system of
graphs with the common vertex set V, | V| = n and
G; n G| is always a (possibly empty) cycle unless i = j
(G; 0 Gje #,), then

t = 0®n*.

. Remark 3. — The exponents in the above theorems
are sharp, as one can see from the following construc-
tions :

Construction 1. — Let C,, ..., C5 be a partition of n
vertices into five classes, each of which contains at
least [n/5] vertices. Let the system G; be the system of
graphs on n vertices, each of which contains a cycle
(xy x5 x3 X4 X5), x; € C,, and isolated vertices. Here we
have > [n/5]° graphs any two of which intersect in a
path. Hence theorem 1 is sharp. (This construction
can easily improved by adding new graphs to the
system, for example, graphs containing a cycle of
type (x; x3 x5 x, x,) and isolated vertices.)

Construction 2. — Let a and b be two fixed vertices
and n — 2 further vertices be partitioned into 4 classes
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C,, C,, C;3, C, each of which has at least

n—2
4
vertices. If we consider the system of graphs each

of which contains one path (x; x, abx; x,). x; € C;,
and isolated vertices, then this system contains

_ 4
= [nT] members and any two (different) mem-

ber intersects in a nonempty path. Hence theorem 2
is sharp.

Construction 3. — Let T,, T,, ,.. be a system of
triangles any two of which have at most one vertex
in common. As it is well known, one can find (approxi-

1

mately) 3< such triangles on n vertices and if

n
2
the system G; consists of the graphs each containing
exactly two of these triangles and the further isolated
vertices, then any two (different) intersect in a cycle :
theorem 3 is sharp.

Proofs. — Proof of theorem 1. — Let us consider
an extremal system for the class #4,, that is, a system
Gy, ..., G, for which G; N G; € 4, if i # jand ¢ is the
maximum possible. Without loss of generality we
may assume that

(+) Y e(G)) is the minimum possible
j

(here e(G)) denotes the number of edges of G)).

First we remark, that if K(1, 3) is the graph on 4
vertices X, X,, X3, X, Where x; is joined to x,, x3, x4
but x,. x;. x, are independent. then any K(1, 3) is
contained in at most one G;. Thus, if L; = G; is iso-
morphic to K(1, 3) for some i, we can replace G;
by this L; : this L; was not contained in the old system
unless L; = G;and it intersects any G;ina path. By (+)
G; = L,. Hence our system consists of graphs whose
edges span a K(1, 3) and of graphs in which the maxi-
mum valence < 2. If a graph G; contains a cycle C,
then we can’replace G; by this C and obtain a new
extremal family : the number of members does not
change, since this C cannot occur in any other G;
and G; can intersect only one connected component
of G, hence either G, " G; = Cn GjorC N G; = .
Thus the new system is really an extremal one. By
(+) G; = C. Hence our system consists of graphs
whose edges span

either a K(1, 3)
or a cycle
or one or more paths .

Let H consists of two independent edges. Again,
if a G; contains H and the two independent edges of H
belong to two different connected components of G;,
then we can replace G; by H and the new system will
again be an extremal system : H does not belong to
the old system and any G, intersects only one connect-
ed component of G;, hence H N G; has at most one
edge. By (+) H = G;.
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Now we know that any G; is either a path or a cycle
or two independent edges or a K(1, 3), apart from its
isolated vertices. First we give an upper bound on the
number of paths, 4-cycles and two independent edges.
Let e and f be two edges (not necessarily forming
a G;) and observe that at most one G; of the following
property can belong to our system : (a) a 4-cycle in
which e and f are not adjacent, (b) a path with the
terminal edges e and f, (¢) G; having only two edges,
namely e and f.

Hence the number of graphs listed above is at most

n
<2> . The number of K(1, 3)’s is at most 4(2) .
2

There exist at most <’31> triangles, (Z) + 1 graphs

of at most one edge. Therefore we need only a good
bound for the number of cycles of at least 5 edges.
This will be obtained in the following way.

We shall consider the pairs (e, C), where e is an
edge of the cycle C = C; and order appropriately
to it two adjacent edges of C, say « and v, so that no
other G; contains all these three edges, among the
cycles of the extremal system. Since C is not a triangle,
at least one of v and v is not adjacent with e. Thus
either they form a path of 3 edges or both u and v
are independent from e but adjacent to each other.
Therefore the number of graphs G; for which G; is
a cycle and for at least one edge e of it we get a path
(e. u. v) of 3 edges is at most

)

while the number of cycles G; for which (e, u, v) is
not a path for any edge e of G, is at most

s ()-)

since each of them is counted at least 5 times. This
will complete the proof of theorem 1 as soon as the
promised ordering of (e, u, v) to (e, C) is done.

In the following part we shall also use a slight
modification of the definition G; n G; : let P, and P,
be two paths, then the p-intersection of P, and P,
is their intersection defined earlier, if it is not empty,
however, if P, and P, have just one endvertex in
common, their p-intersection is by definition this
common endvertex. The p-intersection will be denoted

by P, A P, orby ( P..

Given the pair (e, C) the edges u and v will be defined
as follows : Let C,..... C; be the other graphs in
our system containing e. Put I =:C — e,
I;=C~-C;, (j=1,...,5). Now we show that the
paths /; form a Helly system : the p-intersection of any
two of them is nonempty, hence there exists a vertex
contained by all of them. First of all, trivially, 7 and
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I; are paths. Further, let us assume indirectly, that
I A I, = @. Thus C is divided into 4 paths : [}, I,
a path P containing e and a path Q separated from e
by I;and [;. Let Q = (ay, .. ., @) and I; be incident to

Smce the intersections C nC; and Cn C, are
paths we obtain that C;2C -1, ¢, =2C — I,
and therefore Q < C; N Ck We show that Q is a
connected component of C; N Cy. Indeed, at a, the
intersection does not contam any edge but (a;, a,) : C;
does contain the edge of I; incident to a; but
C;nl; =&, hence C;n C, really cannot contain
any edge but (a,, a,) from the edges incident to a,.
Similarly, at a, it has degree 1, thus Q, is a connected
component of it, not containing. e C; N C;. Thus
C; n C, is not a path. This contradlctron proves that
I; AT # . By the well known theorem of Helly
(whlch is trivial now, i.e. for intervals), there exists
a vertex ¢ contained by each ;. If u and v are the edges
incident to ¢ on C, then no other cycle C’ contains e, u,
and v : from e e C’ follows that C’ = C; for some j
and ceI; = C — C; < C yields that C; contalns at
most one of u and v. Hence for dlfferent (e, u, v)
the graphs G; containing them are different. The
reader can easily check that ¢ can be chosen from the
vertices of C not incident to e. Hence the edges e, u, v
are different (though this is not important here).
Trivially, u and v are adjacent. This completes the
proof.

Proof of theorem?2.— Let G, ..., G, be an extremal
system. Each K(1, 3) is contained in at most one G;
and therefore the number of G;’s containing K(1, 3) is

n
at most 4<4>. For a given pair of edges at most

one G; contains these edges in different connected
components and at most one G; can be a path having
these two edges as terminal edges. Moreover, for a
given pair of edges the two different cases given above
" cannot occur at the same time. Thus the number of
paths and disconnected graphs can be estimated by

3 n
% <g) , more precisely. by (2) . The triangles can
2

be estimated by (;) and the number of graphs contain-

n
ing just one edge is estimated by <2) . The remaining

graphs must be connected, with maximum valence 2
and are not paths : they are cycles (of at least 4 ver-
tices). Let C be a cycle. Since it has at most n edges,

we may fix n edges ey, ..., e, so that any cycle G;
contains at least one e;, We have seen above, in the
proof of theorem 1, that the number of cycles contain-
7 == ) n—2 n3

g J*F 4( 7 |3
Thus the total number of cycles of at least 4 edges is
at most n*/4. This completes the proof.

ing an edge e is at most 3

Remark 4. — Here the graphs G; could not be
replaced by the corresponding smaller graphs. e.g.
by K(1, 3), since that would turn some intersections
into empty graph.

Proof of theorem 3. — Again, the number of G;’s
containing a fixed K(1, 3) is at most one, hence the
number of G;’s containing some K(1, 3) is at most

4<Z> . If e is an arbitrary edge, it can be adjacent

to a vertex of valence 1 in a graph G; containing e for
at most one value of i. Hence all but at most

4@ + (2) 24

graphs are regular graphs of degree 2. (Here 1 stands
for the empty G;.) Observe now, that if C is a cycle in
any G, and C' is a cycle in any G; where G;, G; are 2-
regular. then either C = C’ or CC = . Hence we
define (Cy, ..., C,) as the set of cycles contained by at
least one 2- regular G, and observe that m < n?/6,
since the cycles are edge-independent. If a G; has more

‘than 2 cycles, we may replace it by two arbitrary cycles

of it, the new system remains extremal. Thus we
obtained that the number of 2-regular graphs is at
most n*/36. This completes the proof.

Remark 5. — a) The theorems above are not
complete in the sence that we do not know the best
coefficients of n°, n* and n* respectively. Further, we
do not know the structure of extremal system either.
It would be nice to know for example, that in theorem 2
is it true, that an extremal system G, ..., G, always
has an edge e belonging to each G; ?

b) We conjecture that the extremal system of
theorem 1 consists only of triangles, quadrangles,

pentagons and the 4(2) K(1, 3), and path of <2
edges.

Added in proof. — The case when G; N G; is a cycle
but the empty graph is excluded is considered in [2].
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