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THE MEAN-SQUARE DISCREPANCIES
OF SOME TWO-DIMENSIONAL LATTICES

by
VERA T. SOS and S. K. ZAREMBA

§ 1. Introduction

Let Q? denote the square defined by
O0=x<1; 0=sy<1,

and let Z be any finite set of points z,, ...,z,_, contained in 0%, z;=(x;, y)
(i=0, ..., m—1). The degree of equidistribution of Z can be described by the func-
tion

8@ =mv(2)—xy,

where z=(x, y) is in the closure Q% of Q2 and v(z) is the number of points of Z
for which x;<x and y;<y.

Clearly, if the equidistribution of Z is good, |g(z)| should be small throughout
Q% If we want a single number to measure the equidistribution in question, the
obvious choice is a norm of g(z). The two most natural norms are

6] D*(Z) = ,Sé?n lg (@)

and

(ii) DA(Z) = ( [ g(z)2d2)”.
Q’

The first norm is known as the extreme discrepancy of X, or, more simply, its dis-
crepancy. For the second, the name of L? discrepancy, or mean-square discrepancy
was introduced in 1968 ZAREMBA [10], although its concept appeared as early as
1954 RortH [7]. The definitions of D*(Z) and D*(Z) can be extended in an obvious
manner to any number of dimensions; however, the present paper deals only with
the case of two dimensions.

The two concepts of discrepancy, apart from their intrinsic number-theoretical
interest, play an important part in numerical analysis: If we regard the expressions

m=(f(zo) + ... +f(Zp-1))

as approximate values of the integral

[ /@ dz,
Qi

the absolute values of the errors have, under suitable conditions of smoothness
imposed on f, upper bounds of the form

C*D*(Z) or C®DO)(Z),
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where the coefficients C* and C® depend only on f (see, for instance HLAWKA [3],
ZAREMBA [10] or [11] or Korosov [5]). If Z is a suitable lattice, then, depending
on the smoothness of f, the error of integration can be of a much smaller order of
magnitude than the bounds indicated above (see, for instance HLAWKA [4], KORO-
BOV [5], ZAREMBA [11] or VILENKIN [9]).

K. F. RotH [7] proved that

D®(Z) = com~(log m)'/2

for every finite set Z={z,, ..., z,_1} Q% where ¢, is an absolute constant.
W. ScumiDT [8] proved that for any such set Z

D*(Z) = cm~tlogm,

where ¢ is again an absolute constant.
Sequences of sets Zc Q? for which

(1.1) D*(Z) = O(m™ log m),

in particular sequences of such lattices Z are well-known (see, for instance HLAWKA
[4], KoroBov [5], ZAREMBA [11] or VILENKIN [9]). Sequences of sets ZC Q2 for which

(1.2) D2(Z) = O(m~1(log m)'/2)

have also been known (DAVENPORT [1], HALTON—ZAREMBA [2], VILENKIN [9]). But
none of these sets formed a lattice, although the one considered by DAVENPORT [1]
was a symmetric union of two lattices. In view of the theoretical and practical impor-
tance of lattices, it was felt that it was worth investigating which lattices Z, if any,
had an L2 discrepancy of the order of m~1(log m)'/2.

At this stage it should be recalled that if 4 is an upper bound of the partial
quotients of the finite or infinite continued-fraction expansion of a number o, if m
does not exceed the denominator of « in the case when « is rational, and if Z con-
sists of the points

{0,0), (m~, {a}), @m™, 2a}), ..., (m—Dm ™1, {(m—1a}),
{x} denoting the fractional part of x, then
(1.3) D*(Z) = K*m™logm,

where K* is a constant depending only on A; this is an immediate consequence of
Proposition 4.3 in Zaremba [12].

The main purpose of the present paper is to show that if all the partial quotients
of the finite or infinite continued fraction expansion of « are equal, m =1 not exceeding
the denominator of o when o is rational, then

D®(Z) = 0(m~'(log m)'3).
We obtain this result by examining the expressions
m—1

> s,

1
m q=0

(1.4)
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DISCREPANCIES OF TWO-DIMENSIONAL LATTICES 257

where
(1.5) B, = jzqu ({ja}——;—].

Propositions about the behaviour of (1.4) and its connection with D?(Z) may also
be of some intrinsic interest.

In a forthcoming paper we are going to prove that if the partial quotients of
the continued fraction are not all equal, even if they are bounded, D®(Z) can be
of the order of m~1log m.

§ 2. A crucial lemma

LEMMA 2.1. With the previously introduced notations, assuming that the partial
quotients of the continued-fraction expansion of o are bounded, and that m does not
exceed the denominator of a in the case when o is rational,

bg(Z) = O(m~*(log m)*%2)
if, and only if

m—1
L > S2=0(log m),
m 4=o
where S, is given by (1.5).

Proor. We use a technique due to H. DAVENPORT [1]. To simplify some nota-
tions, we put

G(x,y) = mg(x, y) = v(x, y) —mxy
and

1
Y = -
It is easily verified that for any 8 and any # in [0, 1]

G-y ={] i BT

Hence
v(x,y) = Osémx (r+¥ Ga—y) =¥ (jo)).
Clearly - 5
IG(X, y)_G(x, y)] = 1’
where

Gosn =3 (W(a=y)=v ().
Since it is well-known (ROTH [7]), that

flflG(x, y2dxdy
0 0
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is at least of the order of log m, the order of magnitude of the last integral is the same
as that of

ff@(x, y2dxdy.
0 0

Now we take advantage of the Fourier expansion

%, sin 2zna
Y =—— Z'
valid for a>0. With this representation,
~ sin 27n (o .
6wn=_ 3 (-5 ZIIMED _y(jy) =
Sj<mx
.1 = — S’k‘l cos2rny > sin2mnoj+
T p=1 0=j<mx

S‘ Ysin 2nny 3> cos2mnaji— D y(jo).

0=j<mx 0=j<mx

Rilb—i

Now we want to square this expression and integrate it with respect to y from
0 to 1. The three terms of the integrand being orthogonal to each other, the integral
of G(x, )? is equal to the sums of the integrals of the three squared terms. We shall
denote these integrals by I;, I, and I;, respectively.

We begin with I,. By the Parseval formula

2.2) 2 ( > cos2mnaj)?

n=1 n? 0=j<mx

Now we have to distinguish the cases of « being irrational and of « being rational.
We begin with the former case, following DAVENPORT [1].

It is well-known (see, e.g., Lemma 6.5 in Zaremba [11]) that if na is not an
integer, then for any m

2.3) l > cos(2mnoy)| =

0=i=mx & 2 || na

where ||¢|| denotes the distance of ¢ from the nearest integer.

But also
2 cos (annoc])l = [mx].
0=j<mx
Thus !
- 1 =1
2.9 L= = 2—2 min ([mx]% 272||nal ~3).

Let p,/q, be the successive convergents of the continued-fraction expansion of «,
defined by 1= 1, Q2= s G+1=H% Gt G2 (k=2= 3, ): P1:0, D= Ly iy Pri1=
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=& Py +Pr—1, Where a;, a,, ... are the partial quotients in this expansion. If ¢, _,=
=n=gq,, by Lagrange’s theorem,

Inall = |gx—10—Ppe—1l = (o1 +aq) %

Hence
(2.5) nlnal| = gy_1/(ge-1+q) > (4+2)71 =C,
where 4=max g;.

If 2-1=n<2", then by (2.5),

|nal > C/n = CJ2".

But, for any given integer s, there can be at most two values of #, say n, and n,
in [2r-1, 2r) satisfying
2.6) sC:27"=|mo| < (s+1)C-2-" (i=1,2).

Indeed, if there were a third one, we would have an #* with |n*|<2" and

In*el < C-2-" < C/|n*,

which contradicts (2.5).
The two values of # in [27-2, 27) satisfy

[no| =2 < C—25—22",
and according to (2.4), we find

1 = < .
L= =5 2;22'2' ;;mm (Imx]?, C—25722%) =

@.7)

1 3 r

2> S’ [mx]?C_—-"-Z_?s_?.

pury
% r>[logym] s=1

4 [lloggm] = 1 ]
é ——— R
n2C? & 4 s2+

Since the first sum is O(log m) and the second is O(1), we obtain
(2.8) I, = O(log m).
If o is rational, we denote by d its denominator, and we put
n=kd+l with 0=l<d.

We have to single out the terms of (2.2) which correspond to values of n being multi-
ples of d. The sum of these terms does not exceed

1 & [mx]? I 51 1
A RE SR AR T

Concerning the other terms of (2.2), we note that |na| =| /x|, while, as in the
case of « irrational, /||/o] >C, and all the more n|nx|>C, or

c
naj = —.
Inal > =
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Argueing as in the case of an irrational «, we find that the sum of the terms of
(2.2) which correspond to values of n other than multiples of d is smaller than the
right-hand side of (2.7), and therefore is O (log m). Thus (2.8) holds both for rational
and irrational values of a.

Concerning I, instead of (2.2) we have

Z’ > (sin 27mkaj)?.

1
27'5 k= 05j<mx

The treatment is exactly the same as that of I, the only difference being that in
the case of o rational, all the terms corresponding to values of k divisible by d vanish.
Thus in both cases

2.9 I, = O(log m).

Both I; and I, have to be integrated with respect to x in [0, 1]. Since the upper
bounds obtained for them do not depend on x, the double integrals are also O (log m).

I, is quite different. Since the square of the last term in the right-hand side of
(2.1) is independent of y, it is equal to I;. Now it has to be integrated with respect
to x in [0, 1]; since it is a step function, in view of the definition of y, its integral
reduces to the sum (1.4).

Thus, apart from a term which in any event is of a lower order of magnitude,

11
DOy = [ [ G(x,y)*dxdy
(U

is the sum of two terms which were found to be O(log m) and of the sum (1.4).
This proves the lemma.

§ 3. Further lemmas about continued fractions

Let o be fixed and a,, ¢, p; (k=1, ...) have the same meaning as before.

DerNITION 3.1. A finite sequence (b,, ..., b), with s<n’ if a=p,/q, will be
described as admissible (with respect to o) when

0=b,<a, and 0=b;=aq,
but b;_; =0 whenever b;=a; (i=r+1,..,5).

The two lemmas and two corollaries which follow are well-known (they were
exactly implied in OSTROWSKI [6]) and in any event are easy to prove.

Lemma 3.2. If (b, ..., b,_,) is an admissible sequence,
bygi+...+by-1Gn-1< Gn.

LeMMA 3.3. Assuming that n=n’ if «=p,/q, , any nonnegative integer p<gq, can
be uniquely represented in the form

(3.1 g=Dbigi+...+by19

where (by, ..., b,) is an admissible sequence.
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DISCREPANCIES OF TWO-DIMENSIONAL LATTICES 261

COROLLARY 3.4. Assuming that n=n" if o®=p,./q, there is a one-to-one cor-
respondence between integers 0, 1, ..., g,— 1 and admissible sequences (by, ..., b,_,)
determined by (3.1).

CoOROLLARY 3.5. Under the same assumptions, the number of admissible
sequences (by, ..., b,_,) is equal to g,.

It is well-known from the theory of continued fractions that for any i=1
(3.2 o= ﬂ+&
9 9i9i+1
where |@;|=1. We consider now the various sums

q . 1
Sg= Z [{]“} '_EJ
Jj=0
with g<p,. if a=p,./q,. According to Lemma 3.3, ¢ admits a unique representa-

tion (3.1) where (b;) is an admissible sequence. Hence S, can be represented uniquely
in the form

(3.3) S,= 2 o;
i=1
where
bg;—1 1
0; = V;; ({(V"'ti)“}‘?]

when b;>0, and ¢;=0 when b,=0, while

i—1
ti= 2 bqu (i:2,...,n_l); t1=0.
k=1

According to OSTROWSKI [6] we have

i-1
bigi+2 2 tyq—1
k=1
2¢;41

We consider now the special case when the number « has a finite or infinite
continued-fraction expansion whose all partial quotients are equal to a positive
integer a. The convergents of the expansion of « are easily found to be

(3.4 o;=b, (_21)‘+@,.

Pilq; = v;_4/v;
where
(3.5) v; = (B (=1 BN (a+4)-12  (j=1,2,..)
and

" %(a+(a2+4)1/2).
If a=1, the sequence is that of the Fibonacci numbers, and (3.5) is nothing else but
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the Binet formula. Thus either

(3.6) & = Oy —1/Vy
for some integer n’, or
3.7 o= "lim Vpeft, =B 1= —;—((a2+4)1/2—a).
In our case, (3.2) becomes
_ Ui 0,
E8) v v; + Vilit1

with i<n if o is given by (3.6).

LemMA 3.6. If o is given by (3.6) or (3.7), the sums O©,+...+ 0O, with 1=r<s
and s<n' in the former case are bounded by a number depending only on a.

Proor. Since |@;|=1 for all i, it suffices to show that the sums

=

kz [@ok + O 11l

when « is irrational, and
n—2

2
2 O+ 0Oy

when o is rational have an upper bound depending only on a.
By (3.2) with ¢;,=v;, ¢;4+1=%;+1 and p;=v;_,

(3.9) 0; = v;4,(aw;—v;_y),
and if « is irrational, we find
1
0, = C (Lt (- st 1 (-,
Similarly
—1) " : ’ ,
i1 = g (LB (— =g (— 1)1y,
Hence
1+ —2)2
0404, = %4—)/3_2‘,
and further
S (+p9 1
igl'l@zri-@zwﬂ = ~a+d =1’

The case when « is rational, i.e., is given by (3.2), is slightly more complicated.
Substituting (3.5) and (3.6) in (3.9), we find

0, =

(ﬂi+1+( l)iﬂ—l 1)(( l)nﬁl n+1+( l)n’ﬁz n’—1+( 1)1+1ﬁn’-;—1+( l)i"'l,B" i+1)
(a2+4)32v,,
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DISCREPANCIES OF TWO-DIMENSIONAL LATTICES 263

and a similar expression for @, ,, with i+ 1 substituted for i everywhere. After some
simplifications, we obtain
_ (BB (14 p2)pr -
,@i+@i+1| - (a2+4)3/20"r 5
Since (a®+4)*2p,./B" is bounded, to prove that 0,4+ ...+ 0, is bounded, it suffices
to show the boundedness of

n—2

3 (BB (14 )

which is trivial.
§ 4. A probabilistic interpretation of the problem

The sum (1.4) with m=gq,, i.e., the sum

where n<n’ if a=p,./q,, can be regarded as the expectation E(S}), g being a random

variable taking each of the values 0, 1, ..., g,—1 with the same probability —1—-

To compute
E(S) = E(S,)*+var S,,

we need the first and second order moments of the joint probability distribution of
01, s Oy—y. Owing to (3.4), this will be deduced from the relevant moments of
15 ey D —y o

We consider the case a;=a, i=1, 2, ... . We begin with the probability P[b;=k]
with O<k=<ay; it is, of course, equal to 0 when a=1. If a>1, by, ..., b;_; can form
any admissible sequence and according to Corollary (3.5) there are »; such sequences.
Independently of them, b4, ..., b,_, can be any admissible sequence, which gives
¥,—; possibilities. Thus the total number of admissible sequences featuring b;,=k
is v;v,_;; since v; =1, this is true, in particular for i=1 and for i=n—1. Since each
of the sequences in question has probability 1 [v., we have

4.1) Pb;=k)=vv,y/v, O0<k<a; i=1,..,n—1.

If b;=a with i>1, we must have b,_;=0. Hence the factor v; in (4.1) has to be
replaced by »;_; and so

4.2) Plbi=a)=v,_y0,_ /v, (i=2,..,n—1)

while necessarily P(b,=a)=0. -
From (4.1) and (4.2) we obtain

@3) Eb) =21 (29D p ).
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This is still valid for i=1 since »,=0. Substituting here, for ;, v;_;, v,_; and
v, their expressions in terms of B, we find
4.4 E(b) = A+0(B~%)+0(p%-*),
where
' 4 a(a—1)+2ap™
T 2(ar+4)re

Similarly, we deduce from (4.1) and (4.2)

3__ 2
E(b?) :E[Za 3a%+4a

v;+ a?v;_ ]
vn 6 i i—-1)>»

and eventually, in terms of S,

4.5) E(b?) = B+O(B-%)+0(B¥-),

where

2a®*—3a*+a+6a*p !
6(a%+4)1/2

In view of (3.4), we also need E(b,b;). Assuming ~<i, and argueing as before,
we find

B =

(4.6) P(by =k, b; = D) = v}0;_40p—i[vn O<k=<a; O<l<a,
and similarly
4.7 Pbr=1a, by =1 = v}4_10;_Vp—i[Vy O<l<a
(4.8) P(by =k, b; = a) = 0y0;_p—10,—/Vs O<k<a)
4.9 P(by = b; = a) = v}_10;—p—10n—i[Vs-
Consequently,
2 —_ 2 5 2
E(bhb,) - a (a 1) Uhvx—hvn—z+
4o,

4.10)

+a2(a—1)(vhvi—h-—1+vh—lvi—h)vn—-i+ AP0y —1 Vi p—1Vp—;

2v, v,

and eventually, in terms of B,
(411) E(bhb;) = A2+(——l)i_h+1Cﬂ2h‘2i+0(ﬂ“2h)+0(ﬂ2i_2"),

where

o - @(@=1=2@-DE--9)
4a%+-4 ’

Now we can prove the following proposition:

LeMMA 4.1. With the previous notations, E(S,) has an upper bound which depends
only on a.
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PRrOOF. According to (3.3) and (3.4)
Sy = 0D +0® 46 4 6@,

where
ol (—1) =1 @.p, b2
@ — L b,; ® — i
ig; 2 igl 2044

n—1 @. i-1 n—1 @®.b.
o®= > 2 Unbyby; 0@ = 2 2 —
i=1 Uiy1 h=1 i=1 4Uj4q

Now, according to (4.4),

= l)l n—1 n—

e =45 S04 S o4

3 ' 0 (ﬁ2i- Zn)’

=1

which is obviously bounded.
Concerning ¢®, we observe that

; i+ —1 i+1p—i _ »
- Ig€+1_*(_(_)l)iﬂﬂ—i.—1=ﬁ +0(B-%).

Vit

Consequently, since b?=a? and |©;]=1, we find
1 n—1 n—1 .
E@®) == 3 O.EGD+ > 0(p-%),
2ﬂ i=1 i=1
and further, by (4.5),
B n—1 n—1 . n—1 &
E@®) =77 2 0:+ 5 0(B-")+ 3 0(p%-).
285 i=1 i=1
Here, the last two terms are immediately seen to be bounded, and so is the first by

Lemma 3.6. Thus E(¢®) is bounded.
Passing to ¢(®, we observe that, with h<i,

o _ BH(-1pips
Vi1 B ﬁi+1+(_1)iﬁ_i_l

— ﬁh—i—1+0(ﬂ—h—i).

Consequently
n—1 i—1 n—1 i—1
E@®)= 3 0, 3 p~'-'E(bsb)+ 3 0, 3 E(b,b)0(B~"-.
i=1 h=1 i=1 h=1

Here, ©; and E(b,b,) being bounded, the second term is easily seen to be bounded.
Substituting (4.11) in the first term, we find

n—1 i—1 n—1 i—1
42 3 0; 3 P14+ C 3 0, 3 (—1)i-h+ipgs-sio1y
i=1 h=1 i=1 h=1

n—-1 i-1 . n—1 i—1 X
+2 6, Z 0B+ 3 0, 3 o(fr+i-m),
i=1 h=1 i=1 n=1
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The first term of this expression is easily seen to be bounded in view of
Lemma 3.6. A similar argument shows that the second term is also bounded. Since
©; is bounded, there is no difficulty over the bound:dness of the last two terms.

The boundedness of E(¢®) is trivial, since ¢/® itself is bounded.

§ 5. The variance of S,

Throughout this section we assume that all the partial quotients in the con-
tinued fraction expansion of « are equal to an integer a. Some variances and covari-
ances have to be computed before attacking varS,. There would be no difficulty
in writing down an exact expression for var b; on the basis of (4.4) and (4.5). How-
ever, it suffices for our purpose to note that var b; is obviously bounded, say

5.1 varb, =V (i=1,..,n-1).
Similarly, it suffices to know that for some W
(5.2) varbi=W i=1,..,n=1).

We need to know more about cov (b, b)=E(b,b;)—E(b,)E(b;). We can rewrite
(4.10) in the following form:

—1 —1
(5.3) E(byb) = a® [Uh a2 +Uh—1] [Ui~h'az—+l’i-—h—1) D=l Uy

In view of (4.3), we have therefore

a—1
[”h 5 +Uh—1) Up—i
cov (b, b)) = a* = X

5.9
a—1

a
(Ui—hT+Ui—h—1) Up—Up—p (viT +Ui-1]
v, )

X

It is easily seen that, here, the first fraction is O(f"~%). In the numerator of

the second fraction, if we express it in term of f, we find a linear combination of
h-—l+n, ﬁh—z+n+1’ ﬁt-h—n’ ﬁn—t’ ﬂi—h—n—l’ ﬁh—z—n+1, ﬁn-t—h’ ﬁn—t—h+1, ﬂt+h—n’ ﬁh—z—n’

pi+i-n=1 and r-i-n+1 Taking into account the denominator v,, which is exactly
of the order of B, it can be seen that

cov(b,, b) = O(p*-%) when h <.
In fact

(5.5) |cov (by, b)| = CB*-* when h <,

where C has the same value as in (4.11), but the precise value of this coefficient is
irrelevant from our viewpoint.
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In an exactly similar way, we evaluate cov (b3, b?), obtaining, for a D depending
only on a,

(5.6) Icov (b}, b?)| = DB*-% when h <.

Now we proceed to compute E(b,b;b,b,) for 0<h<i=k<j=n. We have for
K, L, R and S in (0, a)

P(by=K, b;=1L, by, =R, bj =9) = Uhvi*hvk—ivj—kvn—j/vm
P(by=K, b;=L, b, =R, bj =a)= Uhvi—hvk—ivj——k—lvn—j/vna
and soon. Eventually we find

—1 -1
E(byb;bib;) = a* (Uh a2 +Uh—1] (Ui—-h a_2_+vi—h—l] g

a—1 a—1
i Ok-ia Vj-k =5+ 0j-k-1 Vn—j[Vns

and, in view of (5.3),
cov (byb;, by b)) =

5 a—1 a—1 a—1 =
= a5+ Vieh —5—+Oimp-1 Vj-k =5~ FVj-k-1) Un- ;05" X

a—1 a—1 i
XA \O,=i =5+ Vk—i-1) Uy —Vn-i |k 5 T Uk-1)|Vn

The first line above is easily seen to be O (B'~¥). In the second line, if we express
the +’s in terms of B, we find, after crucial simplifications, a linear combination of
Bi-k, k-i-n g-i-k gk+i-2m ang gi-k-2n Under our assumption, i—k is the biggest
exponent of B; hence the second line is also O(B'-*). Thus there exists a constant M
depending only on a such that

(5.7 cov (byb;, beb;) = MB*¢-Y when O<h<i=k<j<n.
Obviously, there exists also a number N such that

(5.9) cov(byb;,byb)) = N for h,i, k,j between O and n.
LEMMA 5.1. With our previous notations

var S, = O(n) = O(log m),
where m=v,.

Proor. Owing to Schwarz inequality, we only need to show that

vare® =0(n) (k=1,2,3,4).
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According to (5.1) and (5.5),

—1 Cnzrizl n—l C(n—2)
1) <__V 2h —
var o 7 +— ;Z; hZ' B 7 V+2(ﬁz—1)

= O(n).

Since Bv;/(2v;,,) is bounded in view of (5.6), 0@ can be treated exactly like
oW, yielding

var ¢® = O(n).
Now

n—1
o® = 2 O
. i=1
where

i—1
Q: = 0; > vyvitibybi.
K=1

Assuming i=j, we have, according to (5.7) and (5.8),

1 i-1 j—1
lcov (@, Ol = ——— 2 2 vp0lcov (by by, b))l =
Vit1Vj+1 h=1 k=
M i-1  J-1 - i-1
SR S ﬂ2l 2k+ 0
Vit1Uj+1 hzl kg vH.le_,,l ,,=Z ‘=Z;

it being understood that when i=j, 0 should be substituted for the first term of the
last expression. When i<j, this term is of order of

B—! Jj Z ﬂh 2 ﬁZl -k __ ﬁl Jj Z’ ﬂh Z‘ ﬂ-» _O(ﬁi—j).
The second term is of the order of
=1 Q-1 o
Bl 3 B 3 B =0(F).
h=1 k=1
Thus there exists a constant R, depending only on a, such that
cov(Q;,Q;) = R~ when i =j.

Eventually,
n—1 j—1
var 6® = Z’ cov(Q;, Q) = (mn—1)R+2R Z’ Z’ Bi—i=0(n).
i,j=1 j=2 i=

Finally, 6@ being obviously bounded, so is var ¢(*.

Studia Scientiarum Mathematicarum Hungarica 14 (1979)



DISCREPANCIES OF TWO-DIMENSIONAL LATTICES 269

THEOREM 5.2. Let all the partial quotients in the continued-fraction expansion of
a be equal to a positive integer a. Then there exists a constant A depending only on a,
and such that

1] m—1

— S2=Alogm

m ;=0

for any positive integer m=1 and not exceeding its denominator if a is rational.

PrOOF. As an immediate consequence of Lemmas 4.1 and 5.1, there exists a
constant 4 depending only on a and satisfying

for all n if o is irrational and for all n=n’ if a=wv,._,/v,.. If v,—1<m=<uv,, then

m—1 vp—1 vp—1
> st<— 5 1<% G Gl itogo,

1 -
m q=0 Uy—1 q=0 Uy q=0

and if we put, for instance
A = A(a+1)log(a(a+1))(loga)?,

we have (5.9), at least when m=v,=a.

If necessary, an adjustment of the value of A will take care of the case 1<m—<
<Vy.
As a corollary to Lemma 2.1 and Theorem 5.2 we have the following propo-
sition:

THEOREM 5.3. If all the partial quotients in the continued-fraction expansion of
a are equal to a positive integer a and if Z is the sequence of points

©, 0), <% {oc}>, <% {2a}>, <’"—n:i {(m—l)oc}>,

m being an arbitrary positive integer if o is irrational and not exceeding its denominator
if « is rational, then the mean-square discrepancy D®(Z) of Z satisfies

D®(Z) = O(m~(log m)*?),
where the constant implied in the right-hand side depends only on a.
It may be worth returning for a moment to the behaviour of Sy

LEMMA 5.4. Under the conditions of Theorem 5.2, to any ¢>0 there corresponds
a number c depending only on a and &, and such that

Sy <cVlogm
holds for all but at most em values of q€[2, m), m=2 being arbitrary.
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PrOOF. We return to the probabilistic interpretation of our problem. According
to the Chebyshev inequality, for any positive K, P[S2=K]=K2E(S}). In view of

(5.9), putting K=V 4 log m/e, we find
PLIS,) = Ve tAlogm] =&,
and the Lemma holds with c=} 4/e.

THEOREM 5.5. Under the conditions of Theorem 5.2, to any £=>0 there corresponds
a nuinber C depending only on a and &, and such that

S, < CVlogq

holds for all but at most ém values of q in the interval [2, m), m=2 being still an arbitrary
integer.

PrROOF. We divide [2, m) into the intervals [2,2%), [2%,29),...,[2"~, 2), and
[2r, m), where 2f<m=2"*1. According to the preceding Lemma, to any ¢’=>0 there

corresponds a number ¢’ depending only on a and &', and such that S, =c¢}log 2
holds in the interval [2'~2, 2*) for not more than 2"¢’ values of g. But for these values
of ¢, log 2'=2log g, and so we have

(5.10) S, =C"V2logq

for at most 2”¢’ values of ¢ in [2*~%, 27). Similarly, (5.10) holds for at most me’ values
of ¢ in [2", m). Thus, in all, the number of values of ¢ in [2, m) for which (5.10) holds

is at most (22+423+...+2"+m)e’<3me’, and if we put &'=¢/3 and C=c'Y2, we
obtain the conclusion of the theorem.

REMARK. The above Theorem might be surprising knowing the following:

(%) For Sy we have the same best possible Q-estimation, as for Dy:
SN =Q (log N )
and
Dy = Q(log N).
(% %) For Dy a much stronger result is true: for an arbitrary o

D =clogN

holds for all but at most N°® values of q; 1=q=N where ¢~0 with c—~0. (See
V. T. S6s [13].)
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