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On the one-sided boundedness of diserepancy-funciion of the
sequence [na)
| by
Y. DuvrAlR {Bordeanx) and VerA T. 868 (Budapest)

Let

- Ayfla, b5 a) = D tgan({na}) ~(b—a) N

fi=1

where {ng} is the fractional part of na, 0<<a< b < 1 and Az 18 the
characteristic function of [a, b).

Ii was proved by Hecke [7] (pary of sufficieney) and by Eesten [8)
(the more difficult part of necessity), that 4, ([s, b); o] is bounded in &
i and only if

b—aeR(a)== {#: § = {ka} for some nonzero integer .

Very elegant proofs of thiz theorem in the framework of exgodic theory
are dne to Furstenberg, Keynes and Shapiro [5], Halasz [6] and Peter-
sen f14]. It is remarkable, that on the other side thiz theorem — and
further properties of A, — have consequences for ergedic theory. .
{See e.g. Herman [9], [10], Deligne [11.) _

Here we consider the question of one-sided boundedness. Some
previous results already show the phenomenon, that the irregularity of
the sequence {na} is not necessarily a two-gided irregularity: e.g. though

N
D na}— 4N = Q(log V)

=]

{Ostrowski [13]) it can be one-gidedly bounded (T. 865 [15]).

It was observed (T. 86s [16], [L7], Monteferrante — unpublished)
that analogously, though Ay ([a, b); ¢} is unbounded when b—a ¢ R(a)
yet it can be one-sidedly bounded. Move detailed and specified results

have been proved by Dupain [3], [4], e.g. the following ones:
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1. Buppose the partial quotients (a,) of the irratiomal ¢ satisfy:

]
. T
oy =23 Tfor nelN and 2

o=

1
&

it

= DO,

Then A,([0, 3); o) is bounded from below.

2. Suppeseehas unbounded partial guotients. Then there exist f & B(u)
for which Ay{[0, 8)) is one-sidedly bounded.

3, For a = {P@—l}m and § ¢ R{a} 4x([0, ) cannot be bounded
from abowve.

The following theorem gives & necessary and gufficient condition for
the one-sided boundedness of 4,([0, 8); of in the case when a has boun-
ded partial guotients. The “suificient” pavt remains true for arbitrary
irrational a but not the “necessary” part. This result includes 1 and 3.

THEOREM A. Sup*pws the drrational a has bounded pariial quolients,

Then Ay([0, B); o} is bounded from above if and only if for some
nonnegative integors &, n (with the wsual notation (7)-(9))

(1) : B = {ka} —r{g4n,10} mod 1,

where

{2'} 0 = k< Ponsas

(3) 0<r<1 and ra,, 15 nonnegative inleger for v > n. (1)

Analogously, A([0, B); o) 18 bounded from below if and only if for
some nonnegalive integers k, n

(4) f = {kai+r{—Qua} ({—gqed =:1)

where |

(5) _ 0<% < Gonsry

{B) bsr<1 and ra,, ., 8 nonnegalive integer for v = n.

THROREM B. Let a be an arbitrary trrational number and £ be o number
given by (L)~3}, resp. (4)-(6). Then Ay([0, f); a) is bounded from above,
resp. from below.

Corollaries. Let ¢ be an irrational number, {a,} be the aequend& of
‘the partial quotients of a.

) ie. for r =plg (P, g) = 1, glga, for v > n.
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1. Suppose

FESP.
Gy, even for m =1,2, ..
Then
A0, B a),  resp. AN{[0,a2)50)  and  Ay([0, L—af2); q)
is bounded from below, resp, from above. (See 1.)
II. Suppose

g0l (ony Gonpay ooy Bapangy -»0) =1, (Y
PO
aeil, (Gunpnysvos Bampapergees) =4 Jor % =180

Then Ay([0, B); e} is bounded from above, resp. from below if and only if
it is bounded; if and only if # = {ka} with some inleger k. (See 2.)

1. Suppose a has bounded partial quotients. Then ihe sel of all the
g's with one-sidedly bounded Ay([0, B); o] is a countable sel. (®)

Motations and some previons results, Lot o =[0, @y, @, ...] be
the continned fraction expansion of a. We shall nge the notations and
COTNSEGUETICER ¢

{?} %: [:0: L PR mﬂ-—-l]! Ini1 = ngﬂ—l_qn—i! Pra = B Pr, T Pn_1y

ﬂn- = dnld—Pn; En-l-l — ﬂ'::.ﬂil."l"ﬂzi.--l.!
{8) Ay = |6, = (—1)"*'6,,

Za.’c+ﬂvek+29 = —lOpay k=1,... (0, =-1),

vl

9)
.
ka"}'ﬂl'qk-]-ﬂﬂ = Qk+ﬂr;+1h2k_1: k= 1, - {qﬂ = 0].

v=1}
It iz well mown that each positive integer IV can be uniquely rep-
regsented in the form

{10} N = ‘f:dkﬁm

where ! |

{11) O<di<a,—1, O0<d<ao for k22,
{12) by =0 I dyyr =g,

(*) g.ed. (¢, ...} denotes the greatest eommon divisor of (e, ...).
~ {%) However, it could be shown that for a with wabounded partial quotients
it can be a eeb of power of continuum.
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It also iy known (Descombes [2], 808 [18], Lesca [11], [127]) thai
each f with —a < f < 1-—a can be uniquely represented in the form

(13) £ = D b
k=1
where
(14) I<bh<e,—1, 0<b<e, for k=2,
{15) 6‘* = if bb—]—l = “‘k+h

(16}  bypeq 7 @y, for infinitely many positive integer k.

Conversely, every sequence which satisfies (14)-(16) by (13) deter
wines & fe[—a,l1—a). The following simple properties of the ahow
expansions hold:

(17) N=>de>8=)d
iff for some k

b,=0, ifv>%k and b, >0,

(18) DI TR W T B RS | 8
=
™
(19) |2bv§r[{!ﬁ+u no=1,...
r=1
(20) by =0 for k> ky(f) it § = {ko} mod 1 with some nonnegativ
integer &,
boy = g f07 k> ko(f) iff f = {—ke} mod 1 with some positiv
integer k.

From the above propositions it follows easily that g satisfies (1), (5
- and (3), resp. (4), (5) and (6) iff (using the representation {13)-(16})

.ﬁ = b0, (mod 1),

¥e=]l

where .
(21) by =8 amd By, =ra, for v>n(B),
: IEBP_ E

(@2) ‘bg,'mﬁ and bz._,_l;mz,_,,l for w»>mn(f} or
by =@, for. »> n(f).
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In the proofs of cur theorems we shall consider instead of (3)~(6)
(resp. (6)~(8)) the equivalent (21), resp. (22).

The expansion above turned out to be useful for different type of
investigations in diephantine approximation. Our proof will be based
on the observation that it i8 possible fo handle the discrepancy-function
Ay by this.

Let

An{B) = 44([0, 8); <)
and also
A8y = A{[0, 14 8)5e) for —a<f<0.

We shall use with the motation of (10) and (13) the *explicit” formuls
for Ay(B) (see V. T. Bos [17]):

23)  Ady(B)
= Z —1 k"'lml.ﬂ bﬁ!&ﬂ;‘}_dﬁ:(qﬁ 2 b ﬁ T HL:Z& gﬁ +;'6k3‘
Iie=1 T |

whers

i k=1

1 i b odd, b > d, and Z‘d,q,}Zhvﬁ.,

¥e=1 Fexl

(24) &, = ©

—1 it %k even, b, < d, and Zd,g,.%zb.ﬂfn

Pma =1
0 otherwise. ' '

We shall also use the following corollaries of (23):
(25) ipra =0 if bapgr =0y Gy = 0 if dy = 0.

{28} Suppose for the expansions (10) and (18) that

oo £
B= Dby, N =D dyi iz ()
] pasf)

Then

An By = D by e, . ().

k=0

() When wa write f= ¥by0;, N= Fdpg; it means the expansions {10}. {13}
‘under the conditions (11)-(12), resp. (14)-(18).
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Put

I
D, = (=1 min (b, d)— &, (g ), 00+ 6 D b,4,),

vk wi=1

(27) g -
Bﬁ: = [ —ljfc-l-]miﬂ-(bki dk} - bk (gﬁ‘- Z};auﬂv-‘i‘ ﬁﬂ:zdrgf) '

Ha Fm=]

Then (by (18), (19) and (T}9)) |Dul < a4, 1B, < 0,

{28) [y, (B < 2.

Now we give the proof of the theorems for the case of boundedness
from above, For the other one the proof runs analogously.
Proof of Theorem A iz based on the iollowing lemmata.

Tisana 1, Let

B= 200, [ =206,
p=T1 v=1

swhere .
b, =5, for v

Then Axn(B)— A f) is bounded, more exactly
[Ax(B)— dx(BN< D) 2(a,+32).

by Al

Proof. It Is enough to prove that in case
b, =%, it »n

we have
(29) |43} — At 8')] < 2, -+ 4.
By (25)
Ay (B)— Ax(B) = D (Dy— D)+ D) (6,— &)
k=] k=1
= D(B,—B)+ D (5=~ 8) = B,—B,+ 3 (4,— ).
E=1 k=1 Jowt

By (24) it is easy to ses that
. | ﬁ,e.ﬁ: i »#a and »#I,
where I i3 defined by
: by=b =d, it n<r<l,
| by = by = d.
 Thus by this and by (25) we have (29).
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LenA 2. Let o be an irrational number with bounded partial quotients

aﬁg.i and
B= Db,

for which bayy, 5% 0 holds for infinilely mony nonwnegative integer k. Then
Ay {B) 18 unbounded from above.

Proef, From the assumption and {16) it follows that at least one
of the following two conditions

{a) bopir = Ggpyry by = 0,
{b) Prps1 < Bagan

holds for infinitely many k.
Suppose (a). Then

Bi 1 53
Aoy gy (B) = “‘ﬂk+1{1_3m+1£: b, — Qay s, 2; i}:‘ﬁr]
¥= ¥e=2i4-3

2 Gapga{l— A ol in = dopy slir 1)

= Oy (e — gy g} opga 2 m
Secondly suppose (b). Then
agal Bo
dogpinamer(B) = Bara (1= borss ) B8~ taiyr. Y 5,6,)
b | POl

= bm.;.l{l = Aapra(Dyppq+1) Foe+1— Yaxg1 }~u:+n)

1
E" bEE-]-l'aZf:-l-lgﬂu = (A _]_1]5 L

1 1
t = o T ——— 2 Ek e ! 1
Let 1 Aqip and 2% +1 < 2k,-1 < ... be all the indices for
which
Abyy, 100544 (F) > €
holds. Put

By (23) and (24) we have

T

A5 ()2 D) Aogy a1 (B) > me.

i1 _
By Lemma 1 and Lemma 2 to finish the proof of the necessity of the
conditions (1)~{3) {(21)) we may suppose that by, =0for k =0,1,...

24 — Actz Arithmellca XXXV
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Leyrs 5. Lei
g = Eb,,ﬁs,.
F=]

If with @ positive constant ¢ we have

(g, (B > ¢

for infinitely wany k, then dy(f) is wnbounded from above.
Proof. When '

Aayrgq(P) > €

holds for infinitely many &, then by the same argument a8 in Demma 2
it is obvious that sup Ay(f) = + oo
h‘r

Now suppose that

' deﬂkh(‘&] < —d
bolds and consequently

4 (B) < —e

2 e 102 R 1

holds for infinitely many %; for 0 < k<< ko << ... let K = {ky, ks, ...}.
Put

i
N == Zd’ﬂk{+1.q_2k;+1 By 5 0).

S |

Then
dp(f) < —ne.
Now let : :
N' = Z Aty 1aisr —1 -
Bl :
kiE
Smee

NN =y =1 = (a1 + Z Ayp-r1faria
_ : : k=1
by (25), (26) and (28) wo have

1‘4?“_114-': =1} = |dy{f)+ A (fli < |Aﬂzn-“+z|+l < 3.
Henee '

Ay (f) 2 me—3.

LEwa 4. Let « be an irvational number with bounded partial quotients;
a, << A and ' '

ﬁ = Zbﬂvgh-

Frml
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Iy
b
(30) = lim —% £ lim =" ban

oo oy . ﬂizn

Ax(f) is unbounded from above.

Proof. Since by the assumption the range of ry = bypfay, I8 finite,
by Lemma I we may suppose, that

r = lim — ban =1m E&
n—roa Gap Eay
(80) implies that for infinitely many & we have with some m = m(k) > k
(31) Yo > T, Ty =1 for k+l<r<<m, fr,>7.

By (23) we have, using b,, = 7,a,, and (31)

Gomry — Temil 2 Boehoy— Aamaa Z By,

Fe=1

4

L

= thy i1+ G Z{f"‘_ﬂaﬁ’;’”_‘}“:’"ﬁZ(T"_r}ag'a*’
=

¥l

and
dmﬂ;‘,+l = Uap i1 2 bzr’j'ﬂv lz,i.:-{-l 2 {an r) a‘zr'q'i
=1
= Pojeqr + Goxgr E (Fgp 1) Ogpho, — Agp iy E (Fap — 1) by, Ay, .
! b1 Peu i
Thus
Aoy 1 — Aﬁakﬂ = ‘-"(;'Lzmﬂ —Appga) + (Gamgr — Fagp1) Z{fzr"*r] gy oy +
=70
n * '
+ {(Aagp1— Aamsa) Z (T3, — ) Bpn -
Fez] :
2 (@ems1 —onrr} (Tomin — 1) Oopalops 3+
F(Apqr — Aamapr} (Po — ) Bopdp — Aop ) -
Since
Gomar— ogpr 2 Gagllomy  Asgr— hymey = VY PN
and
¥ ¥ o= . Y. ro
S0 = T 3 Faz: PP 1
we eagily get
1 1

aﬂm-{-i“fﬂﬂﬂg = = 1A — Aappr-
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1
(4 +1)?

ool =

Hence, with ¢ =

mﬂxudﬁmﬂiﬂll ’ M%Hfﬁ}l] »>¢ i k> .k”‘

Thus by Lemms 3 we get that under the condition (30)

sup dy(f) = +oo.
N

Now by the above lemmata we know that when 4,(8) is bounded
from above, then in the expansion

B = i‘bkﬂﬁ:

k=1
we have
by =0 for Ek>k,
and
by = ¥ay, for k> k.

But this means that, with some =,

ﬂn-’l
p ZE b0y +7 E a0,
k=1 ake>tg

This proves the “necessity” part of Theorem A.
Proof of Theorem A will be finished, when we prove the “gnfficient”
part by the more general Thecrem B.

Proof offTheorem B. The proof will follow by the following
.gimple :
Lavwma 5. Let with 0 <r< 1

o0 ,
ﬁ $Zbﬂfﬂzﬂ M bﬂ# =rﬂ!l f'ﬂr ¥ :1, ey

Fml

N =id,q, and Nt =N—Zda,q5,.

sl

Then _ :
(32) I dyn+(F) = Ay(B).
Proof. By (23) and (25)

Ay+{B)— Ax(B) = — Y Dy (¥).
>
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But
o &
—Dy, = min by, &)~ doy (G D) Dohe s ) bty

ra il v=l
= iN (Fayy, By ) — vdy; [ Qaptarsr + Aag(thpy1—1)]
2 min(yay, &) —rdy, = 0
which proves (32).
Now let N* be the sef of integers &, for which in their expansion
(with respect to a)

N=§d,g,, d,, =0 for all »

To finigh the proof of the theorem by Lemma 1 and Lemma B it is
enongh to prove that if

f :Ebivﬂ:rr By =¥y, »=1,2,...
then
sup Ay (f) < oco.
MNelNT

Using (9) and (26) we get
Ay () = D)ty Ayes(6)

” k
= 2 dﬂ:+1{€m+1 Z Baybps + Oy 2 lll"ﬂ"'—':"[f“‘]
k=1 =¥

=1

== 2 o1 [Qons 1" are1 = Ao (Goppr —1)]

= Zdik+l’12k+i < 1.

Remark. It could be shown, that the conelugion in Lemma 8 remains
true without the assumption ¢ has bounded partial quotients.

Also the conclusion in Lemma b remains trne with the wealker assamip-
tion (a,) is bounded. This means, that the conclugion of Theorem A remaing
true when we suppose only the boundedness of (a,,) (for the boundedness
of dy(§) from above) resp. the boundedness of ay,., (for the boundedness
of Ay(B) from below). :
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