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ON UNAVOIDABLE SUBGRAPHS OF TOURNAMENTS

M. SAKS — V. sOs

ABSTRACT

A directed graph is said to be n-unavoidable if it is contained as a
subgraph of every tournament on n vertices. A number of theorems
have been proven showing that certain graphs are n-unavoidable, the first
being Rédei’s result that every tournament has a Hamiltonian path. In this
paper, recent results in this area are summarized and some new problems
are considered. Some classes of rooted directed trees that are or are not
unavoidable are identified. In particular we consider the class of claws,
rooted digraphs in which each branch is a path. We also produce, for each
n, a spanning rooted digraph of small depth that is n-unavoidable. Some
additional constructions are presented.

1. INTRODUCTION

Perhaps the first theorem about tournaments is the fact proved by
Rédei [9] that every tournament has a Hamiltonian path. Erdés and
Moon [2] showed that every tournament on » vertices contains a tran-.
sitive tournament of [log,n] + 1 vertices. These two results give the first
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known examples of unavoidable subgraphs of tournaments. A directed
graph G is said to be n-unavoidable if every n-tournament contains it as
a subgraph. It is natural to ask what other digraphs are n-unavoidable. In
this note we will review some known results about n-unavoidable graphs
and present some new examples and techniques for showing that graphs
are n-unavoidable.

We denote by U(n) the set of all n~unavoidable digraphs.

While a complete characterization of U(n) appears impossible, it is
possible to identify classes of graphs which are in U(n). We have largely
restricted ourselves to the problem of identifying spanning rooted directed
trees which are n-unavoidable.

In Section 2 we consider the class of rooted trees in which each
branch is a path (called claws).

In Section 3 we consider the problem of how small can the depth of
a rooted tree in U(n) be and give a construction to show that U(n) con-
tains rooted trees of depth 3.

In Section 4 we give some simple miscellaneous constructions for
producing unavoidable trees.

We use the following notation. Let G = (V, E) be a digraph. If there
is an edge from v to w we say that v points to w, w is a successor
of v, v is apredecessor of w, or v > w. The edge is denoted by (v, w).
G*(v) and G~ (v) denote, respectively, the sets of vertices which v
points to and which point to v.

Let ¢ and H be digraphs and v € V(G), we V(H). The concate-
nation of G and H at v and w is the graph obtained by taking disjoint
copiesof G and H and identifying the vertices v and w.

A directed tree is a rooted tree if there is one vertex of in degree 0
(the root) and every other vertex has in degree 1. The depth of a rooted
tree is the maximum length of a path from the root.

A rooted star of size k, is a tree consisting of one vertex pointing
to k -1 other vertices.
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If W and X are disjoint subsets of V we write B[W < X] to de-
note the bipartite subgraph of G with vertex set WU X and edge set
consisting of all edges of G pointing from X to W.

We will often use the Konig matching theorem, which we restate in
a form that'is more convenient for our purposes.

Lemma 1.1 [S]). Let T be a tournament and let W and Z be dis-
joint sets of vertices. Let m=max{|X|+|Y|: XEW, YCSZ and
B[X ~ Y] is a complete bipartite graph}. Then B[W « Z] has a matching
of size \W|+ |Z| - m.

Linial, Saks and Soés [6] estimated the maximum number of
edges in a graph in U(n). Let fin) (resp. g(n)) be the largest m such
that U(n) contains a digraph (resp. spanning weakly connected digraph)
with m edges. They proved:

Theorem 1.2 [6]. There exist positive constants ¢, and c, such
that for all positive integers n,

n log2 n—cnz f(mM)=zgn)=n log, n — cyn loglog n.

2. UNAVOIDABLE CLAWS

Let A= (A;,A,,..., ;) be a sequence of nonnegative integers.
A claw C()\) is arooted directed tree obtained by concatenating the roots
k

of dipaths of sizes A\, + LA, + 1,...,A, +1. CQ) has 1+ 2> \

i=1
vertices. We consider the question of which claws on n vertices arein U, .

For our purposes the order of the numbers A, is irrelevant so we will
assume that A, >N\, forall i. The sequence A is a partition of the
k
integer m = Zlv A, Values of A; which are 0 are irrelevant. It will
=
sometimes be convenient to think of A as an infinite sequence by
appending a string of zeros to it.

Let A and u be partitions with the same sum. We say that A domi-

] j
nates , written A - u if 2 A2 2 u; foreach j> 1.

i=1 i=1
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Lemma 2.1. Suppose \ and u have the same sum and \ > p. If
T is a tournament and C(u) is a subgraph of T then so is C()).

Proof. By induction on d= 2!7\,. — uil. If d=0, the result is
trivial. So suppose d> 1. Let j be the first index such that ?\]. #+ U
since A>pu it must be that )\].> K- There must be some last index
k>j such that K > N, Let v be the partition given by V=t 1,
Ve = My — 1 and v, = I for i#j. If we show that C(v) is asubgraph
of T thensince A>» and 2|\ —»,|< |\, —u| we are done by
induction.

Let C be the copy of C(u) in T and let x be the last vertex in
the k-th path and let y be its predecessor. Label the vertices in the j-th
path (from the leaf) by VisVyseen ’v"i“' Let ¢ = Ky + 1 —p,. Since
M; >p, =1, q isbetween 1 and K.

If x- v, in 1 then deleting (vq+ 107 ) and adding (x, v, )in C
yields a copy of C(v). Otherwise let r be the smallest index for which
v, > x and delete the edges (y, x) and (v, Y, 1 > (if r# 1) and add the
edges (v,,x) and (x,v,_, ) (f r# 1). This gives a copy of C(»). 1

Thus to determine which claws are .n-unavoidable it suffices to
characterize the partitions A which are minimal with respect to the domi-
nation ordering such that C(\) isin U(n).

If A is a partition of the integer m, the conjugate partition of A,
written A*, is the partition of m such that A equals the number of
vertices in C(A) which are at distance i from the root. It is well known
that A > u ifand only if u* >~ A\* and that A** = A

The following is an obvious necessary condition for C(A) to be n-
unavoidable.

Proposition 2.2. Let N be a partition of n— 1 such that C(\)
is in U(n). Then the partition ([ng 1], [ng 1]] dominates \*.

Proof. In a regular »n-tournament the maximum out degree of any

vertex is [2—= 1 . Thus if C()) is n-unavoidable [Z2= 1 > A\*, which
2 2
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n-—1

suffices to show that ([~ 3 1] 73

J) dominates A*.

We are led to the following:

Conjecture 2.3. For any n, the claw C(n) is n-unavoidable where
_q(rn—1 n—1;y*
w= ([ |1 3 ) -
If this conjecture is true then by Lemma 2.1 and Proposition 2.2 we

would have that C(0) isin U(n) if and only if (["5 L, =5 L) -,

completely characterizing unavoidable claws. We have proved the con-
jecture up to n=9 but the general problem remains open. The best

general result we have is:

Theorem 2.4. For a given n> 2, let u(n) be a partition of n— 1
defined as follows:

bl

-1

IV

n_

n—1 d _ i=1 Hi
5 o g, - |

Then C(u*) isin U(n).

By = ] for k> 1.

Before proving the theorem, it is useful to give a better picture of the
claw obtained in this way, by considering the case when n = 29. Then
;(n)=29"" for 1<i<q and pr(n)=q—[log, il.

Proof of Theorem 2.4. Let T be an n-tournament. We will con-
struct a sequence of claws in T, C, & C, c C,&...SC, where the
final claw spans the vertices of 7. The maximum depth of a vertex in C;
is i and D;= C;— C;_, consists only of vertices at depth i.

We proceed as follows. The claw C|, is a single vertex v of maximum
out degree in T and C; is a rooted star consisting of the vertex v and all
of T*(v). Given C;,_;, let L, | denote its leaf set, and let W, , be
the vertices in 7— C;_ ;. Find the largest matchingin B[W, , < L, ;]
C; then consists of C; ;| together with the vertices of W, ;| and edges
contained in this matching.
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Observe that, by the construction the only verticesin L -1 which are
matched to verticesin W, , are vertices in L; , which werenotin L, ,
(otherwise the matching used to construct C;_, wasnot maximum). The
verticesin L, , — L, , are precisely the vertices of D, . Therefore, by
induction, if all vertices in D; | are at depth i— 1 then all vertices in
D, are at depth i.

l
Lemma 2.5. |D,|> [kz——l—] and for i> 1,

n+1—|C,_ .|
1D;1> | .

This lemma implies (i) the construction eventually produces a span-
ning tree of 7, and (ii) the partition A= (|D,[,|D,|,...) dominates
the partition u(n). Since C(A*) is constructed as a subgraph of T, Lem-
ma 3.1 implies that C(u*) is also a subgraph of T, proving the theorem.

Proof of Lemma 2.5. Since v is chosen to be of maximum out

degree in T, |D,|=IT*()|> [ng

of the largest matching in B[W, <L, ;1. We apply Lemma 1.1 to
obtain the desired bound on D, Let XS W, ;, and YSL, |, be
chosen so that |X|+ |Y| is maximum and B[X > Y] is a complete
bipartite graph. We want to bound the average out degree of vertices in X.
Each vertex in X point to v and to every vertex in Y, and the average

1] . Now, |D;]| isequal to the size

out degree in the tournament spanned by |X| is —Il(lz—_l Thus the

average out degree in T of a vertex in X isatleast |Y|+ 1+ .Q(_lz_—_l

| | X|—1
1h 7]
By Lemma 1.1, B[WI._1 <L, ] has a matching of size |Li—1|+
+|W,-_ll—|X|—|Y| which is at least

1 | X| IWI._ [+ 1 n+1—ICi_.1|
[lwi—1|+§_‘§_]>[ 5 ]:[ 2 ]"

This completes the proof of Theorem 2.4. 1

Now this is at most | T+ (v)| = IL;_ so |Y|+ 1+ <I|L,_,I
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3. SPANNING UNAVOIDABLE TREES OF SMALL DEPTH

In the last section we produced an n-unavoidable claw on n vertices
of depth log, n. It is natural to ask how small the depth of a spanning
n-unavoidable tree can be. If Conjecture 2.3 is true, this would give a tree
of depth 2 for all n, which is clearly best possible. In this section we
produce, for each n, an n-unavoidable tree of depth 3.

Let n and s,,s,,...,s, be positive integers such that n > 1+qg+

q

q
+ le 5;- Define the rooted tree H(n;s .,sq) as follows. The
1=

1,S2,..

q
root has n—1— Z; s; successors. For 1<i<gq, the i-th successor
of the root has exla;:tly one successor; this successor is the root of a star
of size s;. The remaining successors of the root are leaves. Observe that
H; 55 - « - ,sq) has n vertices and depth at most 3, and that H does

not depend on the order of the s, The main result of this section is:

Theorem 3.1. Let k and m be the unique integers such that

lngllzk(k;1)+m and 0<m<k-1.

Then H(n;1,2,3,...,k,m) isin Un.
The proof of the theorem makes use of the following lemmas.

Lemma 3.2. Let T be a tournament on n vertices and let

{s1 oSy 1} be a multiset of positive integers such that n=>1+ g+
q

+ Z’ s; + 2s
i=1

H(n;sl,...,sq,qu).

e Then if H(n;sl,...,sq) is a subgraph of T, so is

Proof. Let v be the root of the copy of H = H(n; SYTERT sq) in T

and let L be the set of successors of v that are leaves. Then |L|=
q

=n—1-q— Zl' s;, which is at least 2sq +1 Dby hypothesis. We now
i=

claim that the subtournament of T induced on L contains a copy of a
staron 5, , | + 1 vertices in which exactly one leaf y points to the center
of the star. This is obtained by choosing a vertex of maximum out degree
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having in degree at least one. Since 7 has 2s -~ vertices this vertex has
out degree at least Sgv1 — 1. Transform H by deleting the edges from
v to the vertices of this star, except (v, y), and adding the edges of the
star. This produces a copy of H(n; Spsee a8y 1) in T.1

Lemma 3.3. Let T be a tournament on n vertices and let

$15-.-,8 be a sequence of positive integers such that _Zkl' §; < n—2— 1
and let Spse S, be a subsequence. If H(n; Sysnees sq) i;'n T then so
is Hn;s,...,s,).

Proof. (s;,..., (I ;) satisfies the conditions of the previous lem-

ma. Applying the lemma and induction on ¢ yields the desired result. 8

Proof of Theorem 3.1. Let T be an n-tournament and let v bea
vertex of maximum out degree. We will first partition the set 7~ (v) into

rooted stars {Sl,Sz,...,Sq} whose sizes {sl,...,sq} comprise a sub-
multiset of (1,2,3,...,%k m). To do this we construct the numbers
(sl,...,sq) as follows:
If 17-0)l= |25 then
(sl,...,sq)=(1,2,3,...,k,m).
If |IT-()|= lnEIJ — i, where i<k then
(sl,...,sq)=(1,2,...,1'—1,i+ 1,...,k, m.
If |T—(v)|=f'(izil—)—i, where 0<i<h<k then
(sl,...,sq)=(l,2,...,i—1,i+1,..~,h),

By a simple inductive érgument it is easy to see, that T~ (v) can be
partitioned as required.

Let W= {wl, 66 ,wq} be the roots of Sis--- ,Sq. We claim that
each w; can be assigned a unique vertex u; in Tt (v) so that U~ w,
i.e. the bipartite graph B = B[W « Tt (v)] has a matching of size | W|.
Let XS W and Y < TH(v) maximize |X|+ |Y]| subject to the condi-

- 670 -



tion that B[X -~ Y] is a complete bipartite graph. By Lemma 1.1, it
suffices to show that |[T*(¥)|> |X|+ |Y|. If X is empty the result is
trivial. So suppose X # ¢ and sum the out degrees of the vertices in X.
Each such vertex points to v and to all verticesin Y, and X spans a

total of (Ié(l) arcs. Also each vertex in X is the root of a star. Since the

j-th smallest star among S1 , S2, s 150 . has at least j — 2 leaves, this adds
(X1
22 j—2= (IX'Z_ 1) to the out degree sum of X. The total sum of

the out degrees of X is at least |X|(1+IY|)+(|’2Y|)+(|X|2_1],

so the average out degree is at least |Y|+ |[X|—1+ Since v

1
m.
has maximum out degree in 7, this quantity is at most |7t (v)| so
|T*()|> Y|+ |X| asrequired for the existence of a matching of W in
B. This shows that the graph H(n; Sys-+»8 q) is a subgraph of T. Lem-

ma 3.3 therefore implies that H(n; 1,2,...,k, m) is a subgraphof T. 1

4. MISCELLANEOUS CONSTRUCTIONS

In trying to identify classes of graphs which belong or do not belong
to U(n), it is useful to find some general constructions and transforma-
tions for producing new unavoidable graphs from old ones. In this section
we describe a few such constructions. While quite simple, they have some
interesting applications.

Proposition 4.1. Let G€ U(n) and HE U(k) andlet x be any
vertex of G. For each vertex v of H, let G* bea copy of G, with x"
denoting the copy of x in G". Let C denote the graph obtained by
simultaneously concatenating, for each ve V(H), G* and H at x* and
v. Then C € U(nk).

Proof. Let T be any tournament on nk vertices. Partition the
vertex set arbitrarily into k sets of size n. Each of the tournaments
induced on a single set of n vertices contains a copy of G. Let X be the
set of the k copies of x appearing in the k copies of G. The tourna-
ment induced on X contains a copy of H. Combining this with the copies
of G yieldsacopy of C.#
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Example 4.2. Inductively define the sequence of rooted trees A,
i>0 as follows. A, is asingle vertex. A; has a root of out degree i.
The successors of the root are the roots of copies of AO,A1 I ,Al._ 1
A; has 2% vertices and is in U(2'). This is easily proved by induction:

A, is a single edge and is trivially in U(2). The induction step follows
by noting if we take G= A, ;, and H= A, inProposition4.1. then C
is A4..

1

Proposition 4.3. Let G be a digraph on n vertices and suppose x
is the only vertex of G with in degree zero. Then G € U(n) implies
G—xeUmn-1).

Proof. Let 7 be any tournament on n — 1 vertices and let T’ be
the tournament obtained by adding a single vertex y pointing to every
vertex in 7. If G isin U(n) then it is a subgraph of 7' and in the
copy of G in T' the vertex x corresponds to » since every vertex in
G other than x has in degree at least one. Thus G — x is a subgraph of
T=T'—y andsince T was arbitrary G — x isin U(n — 1).1

Example 4.4. Let G(m, k) denote the graphon m + k — 1 vertices
obtained by concatenating the leaf of a rooted path on k vertices to the
root of a rooted star on m vertices. Then G(m, k) isnotin Um+ k — 1)
for k> 1 and m=> 3. To prove this by induction note that G(m, 1) is
just an m vertex star which is not in U(m) for n> 3. Applying Proposi-
tion 4.2 with G=G(m, k) and G — x being G(m,k — 1) proves the
induction step.

Remark 4.5. The previous example, together with the results of
Section 2 provide an example of a class of trees for which the orientation
“matters”. If we reverse the orientation of the edges in the path of
G(m,k) we obtain the claw Ck—1,1,1,1,...,1), with m—1
ones. Theorem 2.4 and Lemma 2.1 imply that if m < k this is n-un-
avoidable.
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5. OTHER DIRECTIONS

The general problem of characterizing U(n) is wide open. We have
dealt with a few limited classes of graphs, but have barely scratched the
surface.

1. We would also like to know how many edges can a spanning
digraph in U(n) contain given that it has a Hamiltonian path. P. Ungar
considered this problem and proved that digraph obtained from the
Hamiltonian path by adding the edge from the first to the least node is
n-unavoidable.

2. J. Urrutia and V. Neumann-Lara [8] have considered
the problem of which strongly connected graphs are contained as subgraphs
of all strongly connected n-tournaments.

3. One can also pose analogous problems for complete oriented
k-regular hypergraphs. An oriented hypergraph is one where the vertices
in each hyperedge are sequenced. A k-hypertournament on n vertices
consists of all k-sets of the n vertices, each with an orientation. Are there
any non-trivial oriented k-regular hypergraphs which are subhypergraphs
of every k-hypertournament?
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