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Abstract. In this survey we discuss a common feature of some
classical and recent results in number theory, graph theory,
etc. We try to point out the fascinating relationship between
the theory of uniformly distributed sequences and Ramsey the-
ory by formulating the main results in both fields as state-
ments about certain irregularities of partitions. Our approach
leads to some new problems as well.

INTRODUCTION
In 1916 Hermann Weyl published his classical paper entitled

"Ober die Gleichverteilung von Zahlen mod Eins". This was intended to fur-
nish a deeper understanding of the results in diophantine approximation
and to generalize some basic results in this field. The theory of uni-
formly distributed sequences has originated with this paper. In the last
decades this subject has developed into an elaborate theory related to
number theory, geometry, probability theory, ergodic theory, etc.

Curiously enough, Issai Schur's paper entitled "Ober die Kon-
gruenz xn+yn=zn (mod p) " appeared in the very same year. He proved that
if the positive integers are finitely colored, then there exist x , y ,
z having the same color so that x+y=z . Though Ramsey theory has various
germs, Schur's theorem can be regarded as the first Ramsey-type theorem.
Now literally the same applies to Ramsey theory as to the theory of uni-
form distribution:

In the last decades Ramsey theory became an elaborate theory
related to number theory, geometry, probability theory, ergodic theory,
etc.

It took about half a century for both fields to become co-
herent theories. It took more than a decade to realize the close relation-
ship between the two seemingly unrelated areas. The interaction between
the theory of uniform distribution and combinatorics in general is in-
dicated in several works. We list without claiming completeness some of
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V.T. S6s: Irregularities of partitions 202

them: Erdtis & Spencer (1972), Graham, Rothschild & Spencer (1980), Olson

& Spencer (1978), Niederreiter (1972), Tijdeman (1980). A breakthrough in

this direction has been achieved in a recent series of papers by J. Beck

(1981 a, b, c, d), (1983 a, b, c, d).

1 FORMULATION OF THE GENERAL PROBLEM

As introductory examples we consider some classical theorems.

The first is one of the basic results in the theory of uniform distribu-

tion.

Let x-»...,x., be N points in the unit square. Let I be

an aligned rectangle, i.e. one with sides parallel to those of the unit

square. Denote by Z(I) the number of points x. , 1 si£N in I . |I|

denotes the Lebesgue-measure of I .

Theorem 1.1. (Schmidt (1972)). There exists an aligned rec-

tangle I such that

iZ(I0)-N|I0|| > clogN

holds, where c>0 is a -positive absolute constant.

Theorem 1.2. (Roth (1964)). Let [N]={1,...,N} . For any par-

tition [N] =S* u Sp , S -
ns?-0 there exists an arithmetic progression

P={a,a+d,...,a+kd}c[N] such that

j iP ns l | - |P nS 2| | > cN 1 / 4

holds, where c is a positive absolute constant.

Theorem 1.3. (Ramsey (1930)). For n>n (t) if the edges of
0

K (the complete graph on n vertices) are 2-colored, then there must

be a monochromatic K. .

The theorems stated above have a common feature. In all three

of them we are given an underlying set S and a family of subsets of this

set, and (in all three cases) the claim is that the underlying set has

no partition which splits proportionally or equally each set contained in

the given family.

We now give a formulation of the general problem.

Let S be a set and A £ 2 a family of subsets of S . Let

G denote the set of functions (partitions, colorings) g: S + {1,...,r} .
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V.T. Sos: Irregularities of partitions 203

Or more generally let us fix real numbers a1s...,a and let G denote

the set of functions g : S -* {a.,...,a } . We shall use various functions

A : G x A -> R

to measure the discrepancy (weighted nonuniformity) A (A) of geG on

A . Given such a discrepancy function, our goal is to estimate the fol-

lowing quantities:

I The discrepancy of g over A :

A (A) = sup jA_ (A)|
9 A6A 9

or e.g.

A?(A) = ( I |Aa(A)|P)P
9 A6A 9

and the discrepancy of G over A :

A„(A) = inf An(A) .
a e G

II The one-sided discrepancies of g over A :

A!(A) = sup A (A)
y AeA g

A"(A) = | inf A (A)|
9 A6A 9

and , +
Al(A) = inf A(A) , Ar(A) = inf A(A) .

In some cases we consider only partitions of S which satisfy

certain requirements. This means that we have a G*CG and we investigate

AG*(A)= inf A (A) .
h geG * y
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V.T. Sos: Irregularities of partitions 204

Consider the case r-2 . Here the simplest problem is the fol-
lowing:

lie wish to find a two-coloring of S so that every set
AeA is partitioned by this into parts of size as equal as possible. Mow
a two-coloring of S can be given by a function g:S -> {+1,-1} . The
function A defined by

AQ(A) - I g(x)y xe A

measures the discrepancy of this partition on A .

A(A) = inf sup | I g(x)|
g AeA x e A

measures (in supremum norm) how well under the requirement above the set
S can be partitioned.

Now consider a more general problem. We want to find a system
of representatives of A so that in every set AeA the number of re-
presentatives is proportional to |A|,i.e. for a given ae(0,1) it is as
close to a|A| as possible. This means that we consider partitions of
ratio a , 1-a . To handle this problem now we take the functions
g:S -> {a-1, a } and

AQ(A) = I g(x) .
xe A

As above, define

A(A) = inf sup | I g(x)| .
g AeA x e A

Note that i f g-1(a-1) = S1 , g"1(a) =• S2 , then

I g ( x ) = j A | a - |S n A | .

xeA '

Consequently, this measures the discrepancy in an appropriate way.

Let us reformulate the above theorems in this general setting.
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V.T. S6s: Irregularities of partitions 205

From the proof of Schmidt's theorem it is easy to see that

it can be given in the following finite form.

Theorem 1.1*. (the finite version of Schmidt's theorem). Let

S = { ( i , j ) ; 1 S 1 S N , 1 < j S N > ,

\l = t^J) : 1 -1 =k ' 1 = J

and
A = {Ak z : 1 S k < N , 1 < £ < M } .

Set

and A (A) = J g(x) .
y xeA

Then

AG(A) 2 clogN

where c is a -positive absolute constant.

Further, Roth's theorem can be formulated in an obvious way

as follows.

Theorem 1.2*. (Roth). Let S=[N], A = {A : A c s , A is an

arithmetic progression}, G = {g : N -> {+1,-1}} . Put A (A) =

= ! I g(x)| . Then
xeA

AG(A) > cN
1 / 4

where C is a positive absolute constant.
Finally, a quantitative form of Ramsey's theorem says:

Theorem 1.3*. Let |Vj=n , S^V]^, AR = {A : A = [X]
2, X S ,

jX| =k> , G = {g : S + {+1,-1}} . Define A (A) = J g(x) . Then
9 xeA
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V.T. S6s: Irregularities of partitions 206

2 PARTITIONS OF THE SET OF INTEGERS AND LATTICE POINTS IN Rn

We start by discussing results for arithmetic progressions.

(a) For arithmetic progressions we have both Ramsey type and

discrepancy theorems, both expressing in a certain sense that we can not

have too good partitions of the integers. In the case of Ramsey-type the-

orems this means that for any partition we must have a monochromatic

arithmetic progression. The discrepancy-theorems mean that for any parti-

tion there exists an arithmetic progression, where one class has a large

preponderance. So it should be clear that the seemingly qualitative dif-

ference between these statements is actually a quantitative one. If we

focus on the short arithmetic progressions, the situation is so bad, that

we must have an arithmetic progression where all but one colors are mis-

sing. If we focus on longer arithmetic progressions, this changes to a

weaker preponderance phenomenon. This viewpoint helps to realize that we

still have gaps in our knowledge. We will formulate the problems ex-

plicitly later.

(b) The methods used in the proofs of these results are good

illustrative examples of the fascinating and fruitful relationship between

the different fields. We will not give proofs, we just mention that e.g.

in the discrepancy theorem 2.3 (below) for the lower bound Roth (1964)

used a deep analytic method. Recently, an ingenious argument using only

a combinatorial hypergraph theorem has been given by Beck (1981 a) which

shows that Roth's lower bound is nearly sharp.

(c) In Ramsey theory van der Waerden's theorem for arithmetic

progressions is widely generalized in different ways. However this is not

the case with the discrepancy theorems. Having this common setting of the

results on arithmetic progressions, we may again realize the gap, for

quite a few general structures we know Ramsey-type generalizations but no

discrepancy theorems.

Mow we list a few theorems which may justify what we said

above. Of course, here we can give just a sample of the results. First

we mention the celebrated theorem of van der Waerden (1927):

Theorem 2.1. (van der Waerden). If N>W(k,r) , then for

every r -coloring of [N] at least one class must contain an arithmetic

progression of length k .

Though van der Waerden's theorem appears to be a Ramsey-type

theorem, actually there is another reason for its validity. Erdfls and
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Turan conjectured already in 1936, that a density theorem is in the back-
ground. More exactly, they conjectured the following.

Let r. (n) denote the greatest integer r such that there
exists a sequence

<n

which does not contain an arithmetic progression of length k . Then
rk(n)=o(n) .

This was proved by Roth (1952) for k=3 and it was a great
achievement when Szemeredi (1973) proved it for arbitrary k .

Theorem 2.2. (Szemeredi). For every k £ 3

rk(n) = o(n) .

Remark. No good estimates for W(k,r) resp. for r. (n) are
known. A lower bound is

2k
W(k,2) > ^ - .

However, the best known upper bound grows faster than

for any t . For reference see Erdtis & Graham (1930).
Roth (1964) started to study the discrepancy problems for

arithmetic progressions.
Let P denote the set of arithmetic progressions in [N]

and g : [N] •> {+1,-1} a two-coloring of [N] .Let P € P . Set

UP) = I 9 (x) ,y x e P

A (P) = max JA(CP)j9 p e P 9

and
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V.T. S6s: I r regu la r i t ies of par t i t ions 208

A(P;N) = min |A (P;N)| .
9 9

In the next theorems c is always a positive absolute constant.

Theorem 2.3. (Roth (1964)). For any two-coloring

Q : [N]+{+1,-1}

A (?) > cN 1 / 4 .

Roth conjectured that for every g : [N] -»• {+1,-1} A (P) >

> Cy/W . This was disproved by Sarkozy (1972). Recently Beck (1981 c)

proved by an ingenious combinatorial argument that Roth's lower bound is

nearly sharp. (See the combinatorial lemma in § 4.)

Theorem 2.4. (Beck).

A(P;M) < cN 1 / 4 (log N ) 5 / 2 .

There are different variations of the discrepancy theorems

for arithmetic progressions. Actually Roth proved a more general theorem,

which shows that the discrepancy of arithmetic progressions is large on

average. A quantitative form of this is given in the following

Theorem 2.5. (Roth (1964)). Let

Ph n (m) = {1 < a fim ; a : h (mod q ) } .

Let A c [N] be fixed and let

Set

V ( m ) = I A 2 ( m )

Then for any integer Q

N
l q"1 I v a(m) +Q i V Q ( M ) » ]

A L ( 1 )Q2 N
=1 m=1 q q=1 q IN1 'N1
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V.T. S6s: Irregularities of partitions 209

Quoting Roth, this theorem says that a sequence A cannot be

well distributed simultaneously among and within all congruence classes.
1 /2

(The choice Q=N ' yields Theorem 2.3.)

In Roth's theorem the lower bound for the discrepancy depends

on the ratio of the partition. But we do not have any information about

the difference d of the arithmetic progressions of large discrepancy.

Flow we list a few theorems concerning this problem.

Theorem 2.6. (Roth (1964)). Given any g : W -+ {+1,-1} for

every integer k there is an arithmetic progression P of difference

d > k such that

A(P) > c S .

Beck & Spencer (1983), using purely combinatorial arguments,

proved that Roth's lower bound is nearly sharp. One of their results which

gives upper bound for A(P) depending on the difference d is the fol-

lowing.

Theorem 2.7. (Beck & Spencer (1983)). Let e > 0 be arbit-

rary. Given any n > n (e) there is a two-coloring g : W -> {+1,-1}

such that for any arithmetic progression P of difference n < d < n

and of arbitrary length

A (P) < c>/J (log n ) 7 / 2 .

Problem. Let P. denote the set of arithmetic progressions

of length t . By Roth's theorem we know that given any two-coloring

g : [N] •* {+1,-1} , there must be an arithmetic progression with dis-

crepancy A (P) > cN ' and hence of length t>cN .

Problem. What happens if c log N < t < N £ ? Find upper and lower bounds

for A(Pt) .

The first generalization of van der Waerden theorem was given

by Gallai (1931). Let A={v1,... ,vk} be a subset of Rm . B={x1,..., xk}

is homothetic to A if, under a suitable ordering of B , there exist

XeR , X*0 and an a e R m so that

x• = Av• + a , 1 S i £ k
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Theorem. (Gallai). Let A be an arbitrary finite subset of

R . Given any r -coloring of R there exists a monoohromatio B CR

homothetic to A .

A further generalization is the Hales & Jewett (1963) theorem,

which is considered as one of the most basic theorems in Ramsey-theory.

(See Graham & al. (1980).)

Definition. Let

C{ - {(xr...,xn) ; xie{0,...,t-1}} .

,nA line in Ct is a set of suitably ordered points x ,...,x._. , x-

- (x^ x. ) so that for each coordinate j , 1 < j < n either

xoj x

or

x -. = I f or 0 < I < t

and the latter holds for at least one j .

Theorem. (Hales & Jewett (1963)). For every r , t there

exists a least integer HJ(r,t) so that, for N>HJ(r,t) if the vertices
N

of Ci are r -colored, then there exists a monochromatic line.

This is a corollary of a much more general Ramsey theorem

(Graham-Leeb-Rothschild (1972) which also implies the following theorem.

Let A be an arbitrary finite field and let An be the n -

dimensional space over A . For every r , t , k positive integers there

exists an N.(k;r) so that if the t -dimensional linear subspaces of

A are r -colored then there exists a k -dimensional vector space all

of whose t -dimensional linear subspaces have the same color.

Remark. It is easy to see that van der Waerden's theorem is

also a corollary of the Hales-Jewett theorem. For this consider the in-

tegers a , O s a < t N and the base- t -representation.

a = I a. t , 0<a.<t .
i =0 • •
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N N

An r -coloring of [t ] induces an r -coloring of C. . This has a

monochromatic line, if N is large enough. But it is easy to see that a

monochromatic line corresponds to a monochromatic arithmetic progression

of length t .

Problem. We have the discrepancy-results for arithmetic

progressions. Is it possible to get discrepancy-results for C? ?

A common generalization of van der Waerden's and Schur's the-

orem was given by R. Rado (1933 a,b).

Let C be an mxn matrix of integer entries, Cx̂  = 0 a

system of homogeneous linear equations in the variables x..,...,x . We

say that C is regular if given any finite coloring N , there exists

x = (x.,...,x ) such that Cx_ = 0 and x. x are the same color.

We say that the matrix C satisfies the column-condition if

after a suitable rearranging of the column-vectors c.,...,c one can

find 1 £ k, < ... < kt = n such that for

ki

k+1

we have A.=0 and for 1 < i s t , A . is a linear combination of c,,,,,

Theorem. (Rado). C is regular on N iff C satisfies the

OO lumn-Gondition.

Remark. It is easy to see that Schur's theorem is a conse-

quence of Rado's theorem. Namely, if we have a single equation

a1x1 + ••• + V n = ° •

the column-condition means that some nonempty subset of the c. sums to

zero. Evidently x+y-z=0 satisfies this condition.

To obtain van der Waerden's theorem as a special case we con-

sider the system

= x. + d

d .
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Similarly as in the case of the Hales & Jewett theorem Rado's
theorem is not accompanied by general discrepancy theorems.

3 -PARTITIONS ON GRAPHS
The results here bel ong partly to Ramsey theory, partly to extremal

graph theory. As there are excellent monographs on both subjects (Graham,
Rothschild & Spencer (1980), Bollobas (1980)), we will mention only those
basic results which are relevant for our present aim. However we will
give a more detailed discussion of results which are more recent ones and
are not contained in the books mentioned above.

0

First we consider partitions of [n] , with respect to the
family of complete graphs.

Most of the results refer to the case 1=2 . Still, we form-
ulate Ramsey's theorem for arbitrary I .

Theorem 3.1. (Ramsey (1930)). For all integers I , r ,
k- 9...,k there exists a minimal integer R. (k>,,...,k ) with the fol-
lowing -property:

if n>R^(k, k^) , given any r -coloring g : [n] •+
-*-{1,...,r} , there exist an i , 1 i i ^r and a set SC [n] suoh that

p

]Sj=k. and [S] is colored i .
Little is known about the Ramsey-numbers RJk.,... ,kj .
Here we mention just two results for the simplest cases, which

are relevant in our discussion:

(*) 2 k / 2 < R2(k,k) < 4
k

(**) ck2(log k ) ' 2 < R2(3,k) < ck
2(log k)' 1 ,

(see Graham, Rothschild & Spencer (1980)).
There are several interpretations of Ramsey's theorem. Graham,

Rothschild & Spencer (1980) give a deep analysis of this question. We
repeat only their quotation of Burkill & Mirsky (1973). "There are numer-
ous theorems in mathematics which assert, roughly speaking, that every
system of certain class possesses a large subsystem with a higher degree
of organization than the original system." We emphasize here another
aspect of Ramsey's theorem.
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V.T. Sos: Irregularities of partitions 213

Suppose we want to two-color the edges of K by red and

blue so that in every K, we have about the same number of red and blue

edges. Now the situation is similar to the case of arithmetic progressions.

By (*) we know that if k < „ * 2 log n , the situation is so bad that

for any two-coloring we must have a monochromatic K. . As k gets

larger, we can two-color more uniformly, with respect to the K, 's,

though we still have the preponderance phenomenon.

A quantitative form of this is given by the following theorem.

Theorem 3.2. (Erdds-Spencer (1972)). Let g : [n] 2 + {+1 ,-1}

and

A ( n ; t ) - max | \ g ( x ) |
S C [ n ] x e r s i 2

S C[n]xersi 2

define

Then

and

A ( n ; t ) = min A ( n ; t ) .
9 9

A(n;t) *(*) , if t S ^

Corollary. Let

A(n) = min max | \ g(x) | .

3 S c [ n ] x e [ S ] 2

Then

A(n) < c2n
3/2

where c. , c„ are positive absolute constants.

This theorem has a generalization for hypergraphs.
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i/
Theorem 3 . 4 . (Erdds & Spencer). Let g : [n] -+ { + 1 , - 1 } . S e t

Then

A(n;t) = min
9

max
5<= [n]

ik

A(n;t)

g(x)

if t Z ( l o g n)

1
FT

ancZ

log ̂  < A(n;t)

where

case"

'1 c« are positive absolute constants.
The case k, = ...=k„ of Ramsey theorem is called "symmetric

otherwise it is called "asymmetric".
We know that - concerning the theorems above - the best color-

ings are the random ones. Here "best" means that the largest monochroma-
tic complete graph is as small as possible, resp. the discrepancy in the
K. 's is as small as possible. In the symmetric case if r=2 this means
that in the best colorings each color class contains about the half of
the edges.

Hence if we consider partitions of given ratio, a , 1-a
and «4 the same discrepancy phenomenon will appear, but the quanti-
tative results will be different.

As to the asymmetric case, here we suppose k = o(l) and
n | R(k,£)-1 . Let us consider the two-colorings of K which contain
neither a red K, nor a blue Kn . It is easy to see that if I is much
larger than k , then the number of red edges in such a coloring will be
much smaller than the number of blue edges. The ratio tends to 0 as
2 + 0 .The conjecture is that for fixed k , R(k,£) *£ k" 1 + ° ( 1) .

All these facts make plausible that if we have a restriction
on the number of edges in the graph (on the ratio of the partition) this
will increase the size of the complete graphs we can ensure.

Another aspect of the results is the following:
If we make a comparison between van der Waerden's theorem

and Roth's theorem for arithmetic progressions on the one hand and Ramsey's
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theorem, Erdtis & Spencer theorem for complete graphs on the other hand,

the similarity is clear.

In both cases we have a set S and a family A c 2 . For any

two-coloring of S among the small sets in A there must be a mono-

chromatic one, and among the larger sets still there must be one in which

there is a certain discrepancy.

However, the background of the results for the two structures,

at least for the monochromatic case is different.

For arithmetic progressions actually a density theorem yields

the result. Namely Szemeredi's theorem means that for every c > 0 , if

n > n (k) , AC[n] , and |A| > en , then A must contain an arithmetic

progression of length k . Since for every two-coloring at least one

color-class contains more than ^ elements, we must have an arithmetic

progression of length k in it.

Although we have a density theorem for complete graphs,

(Turan's theorem) we need more than half of the edges to ensure the exis-

tence of a complete K. . Therefore, if we consider the two-colorings of

the edges of K , just a density argument will not be enough to ensure

the existence of a monochromatic K. . This is the reason why we have a

new class of problems and results for graphs.
k k

Let H be an I -uniform hypergraph. Let f(n;H ) be the

minimal integer e such that every k -uniform hypergraph on n ver-

tices and more than e edges contains a subgraph isomorphic to H .

A G (V;E) is called an extremal graph belonging to H , if !VI=n ,
k k k

|Ej-f(n;H ) and G does not contain sugraphs isomorphic to H .
k

The determination (or estimation) of f(n;H ) is the funda-

mental problem of extremal graph theory started by Turan (1941).

As to the density theorems for graphs, we mention only re-

sults which are relevant here.
2

First we consider the case 1=2 and H =K. .

Theorem 3.5. (Turan (1941)). Let nEr mod (k-1) , 0sr<k-1 .

Then
f(n;Kk) =

There is a unique extremal graph, the complete (k-1) -partite graph

having h-—[] resp. H — j]+1 vertices in each class.
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Observe that

(1) as we said above, even in the case k=3 we need more

than half of the edges to ensure the existence of a K. .

(2) From our point of view it is important that the extremal

graph contains a very large independent set of size [u\l •

These indicate, too, that if we have a restriction on the num-

ber of edges in one color-class (on the ratio of the partition), then for

the asymmetric case this will change the size of the complete graphs we

can ensure in one color-class.

To formulate a slightly more general problem consider parti-

tions of [n] of ratio a , 1-a . For which pairs (k,£) is it true,

that either the first class contains a K. or the second class contains

a K„ . (Evidently, by Ramsey theorem, with n->°° max (k,£)->°° .)

Or more generally, let RT(n;k,£) be the set of integers e ,
2

for which there is a coloring of [n] such that the number of red edges

is e and neither a red K, nor a blue K« exists. What can be said

about RT(n;k,£) ? In particular, we are interested in the value of

max RT(n;k,£) and min RT(n;k,£) .

Results which give information on this question are called Ramsey-Turan

type theorems,

Since we do not have too much knowledge about the Ramsey

numbers R(k,£) one can expect that the most we can have are asymptotic

results.

We start with a result of Erdtts and Szemeredi on the symmet-

ric case.

Theorem 3.6. (ErdSs & Szemeredi (1972)). Let r S 2 . Let

G(V;E) be a graph with j V j =n , jEj -y(o) • There exists a positive ab-

solute constant c so that either G or its complement contains a K,
r

with k > c -.„- log n .

Remark. In the present setting the above theorem can be

formulated as follows. Let

G* = {g | g : [n]2 + {+1 ,-1} , I g(x) = (1-£)(")} .
?

xe [nr
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Set

and

A ( n ; t ) = max j £ g(x )
S [ n ] v c r Q 1 2

P 1

; t ) = min A (n; t ) .
aeG* 9

Then

( r ) ( n ;A( n;t) = (*) i f t < c T ^ y log n .

Problem. Find a common generalization of Theorem 4.2 and Theo-

rem 4.3: qive estimates for Ar(n;t) if t>c y-t— l°g n .

Remark 2. The Erdfls-Szemeredi theorem gives a partial answer

to the following question:

Let f(n;r) be the largest integer k such that for any r -
2 2

coloring of [n] there exists an Sc [n] , S|^k for which [S] meets

at most r-1 color-classes. Since at least one color-class contains not

more than — Cl) edges, by the ErdOs-Spencer theorem f(n;r) >
> c i S ~ l o g n .

Problem. Let 1 S s < r . Let f ( n ; r , s ) denote the largest
2

integer k such that for any r -coloring of [n] there exists an
2

SC [n] , JSj=k, for which [S] meets at most s color-classes. Find
upper and lower bounds for f ( n ; r , s ) .

Let

RT(n;k,£) = max RT(n;k,£) .

As to the function RT(n;k,£) in the asymmetric case, most of the re-

sults are asymptotic estimates for the case when I is replaced by a

function of n which is o(n) . For this we will use the symbol

RT(n;k,o(n)) .

For t k 3 put

Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9781107325548.010
Downloaded from https://www.cambridge.org/core. The Librarian-Seeley Historical Library, on 29 Nov 2019 at 00:56:22, subject to the

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781107325548.010
https://www.cambridge.org/core


V.T. Sos: Irregularities of partitions

4 ^ 8 5 if t 1Sodd
at = 1 3t-4 lf t 1S even'13t-

1 1 2(The sequence 0 = ao9a4,... = 0, -g , •* » T >••• is strictly increasing.)

Theorem 3.7. (Erdds-Hajnal-T.Sds-Szemeredi (1983)). For t^3

RT(n;t,o(n)) = at n
2(1+o(1)) .

The investigation of RT(n;t,o(n)) started in T. Sos (1969)

and Erdtis-T. Sos (1969). The above result for t odd was proved in

Erdfls & T. Sos (1969). The case when t is even turned out to be much

harder. It was proved only much later in Szemeredi (1973) and in Bollobas

& Erdtis (1976) that RT(n;4,o(n)) =^- (1+o(1)) . (Szemeredi (1973) gives

the upper bound and Bollobas & Erdtis (1976) the construction yielding the

lower bound.

Results for an other range of the parameters k, I , or in

other words, for min RT(n;k,o(n)) are given in Ajtai-Komlos-Szemeredi

(1981), Komlos-Pintz-Szemeredi (1982), Ajtai -Erdtis-Komlos-Szemeredi

(1981), Ajtai-Korr.los-Pintz-Spencer-Szemeredi (1983).

Theorem 3.8. (Ajtai-Komlos-Szemeredi (1981))- Let G( V' E)
be a graph of n vertices3 e edges. Let t denote the average degree:

2e

t = — and a(G) denote the maximum size of an independent set of vertices

(independence or stability number).

If G does not contain a triangle,, then

a(t) > c£ log t

(where c is a positive absolute constant).

The result is best possible as to the order of magnitude.

Remark. Without the assumption that G is triangle-free, by a

simply greedy-algorithm argument only a(t) > Cy would follow.
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Theorem 3.9. (Komlos-Pintz-Szemeredi (1982)). Let H(V;E)

be a 3 -uniform hypergraph of n vertices and e edges. Let t denote

the average degrt

independent set.

If )
precise meaning_, which we do not give here)

3e
the average degree; t = — and let a (6) denote the maximum size of an

If H (V;E) does not contain cycles of length =4 , (in a

a(G) > c—- log t.
/t

(Here c is a positive absolute constant.)

See also Erd6s-Komlos-Pintz-Spencer-Szemeredi (1983).

Remark. It is worth mentioning that the Ramsey-Turan type

theorems were considered because of different applications. There is a

sequence of papers by Erdfls-Meir-T. Sos-Turan (1971), (1972 a ) , (1972 b ) ,

where Turan's theorem is employed to obtain results for the distribution

of distances in metric spaces. Ajtai et al. (1981) applied their theorem

in the investigation of Sidon-sequences. The result in Komloset al. (1982)

was the key lemma to disprove a more than 20 year -old conjecture of Heil-

bronn for the minimum area of triangles determined by n points in the

unit square.

Remark. Observe that RT(n;k,o(n)) * c, f(n;k) with a

c, < 1 . Surprisingly enough the situation for I -uniform hypergraphs

is different if 1^3 . In Erdtts & T. Sos (1982) it is proved that

RT(£)(n;k,o(n)) - f(£)(n;k)

where Rr'(n;k,o(n)) and f^(n;k) has a similar meaning for l>3

as RT(n;k,o(n)) and f(n;k) for 1=2 .

Now let us consider the discrepancy in colorings of the

edges of K with respect to general graphs.

Let the graphs G ,...,G be fixed. Evidently it follows

from Ramsey theorem that for n large enough, for every r -coloring

of [n] there exists i , 1 < i < r so that a copy of G. occurs in

the i th color. The problem is to find the least integer n for which
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this holds. Let R(G,,...,G ) denote this least integer. The investiga-

tion of R(G* 9...9G ) was started in Gerencser & Gyarfas (1967) where

they considered the case r-2 , Gi=Pk > G2=P» (the Patns of len9tn k

resp. I ).

Though the problem is more general, for some special class of

graphs it is easier to get good estimates or even to get the exact values

of R(Gr...,Gr) than for R(k1,...,kr) .

The Turan type results for arbitrary graphs are also relevant
2 2

here. For all graphs H with chromatic number x(H )>2 the asymptotic
o

value of f(n;H ) is known.

Theorem 3. 10. (Erdds-Simonovits (1966)). Let x(H2) = k

f(n;H2) - f(n;k) = \ ^ n2 + o(n2) .
Even more is true.

Theorem 3.11. (Erdds (1967)3 Simonovits (1968)). If k>2„ the ex-
o

tremal graphs (having f(n;H ) edges without containing subgraphs iso-
2

morphia to H Jaan be made isomorphio by adding to and deleting from
o

o(n ) edges the Turan-graph (the complete (k-1) -partite graph having
[•r—r] or [T-—r]+1 vertices each class).

Remark. If k=2 , the above theorem gives only that

f(n; H2) * o(n2) .

2
For most bipartite graphs the exact value of f(n;H ) or

even asymptotic formula for it is not known, and to determine it is among

the most difficult problems in extremal graph theory.

Roughly speaking, the maximum number of edges a graph may
2

have without containing H as a subgraph, asymptotically depends only
2

on the chromatic number of H .

Why are the above results relevant in the problems for

RT(G rG 2) ? If x t ^ ) = X(<52) = 2 , f(n;Gi) = o(n
2) (i=1,2) . Hence

a density theorem ensures the existence of a monochromatic G. or G2 .

This means that the situation in this case is similar to the case of

arithmetic progressions.

Remark. Here we discussed the following type of problems:
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(1) Ramsey-type problems;

(2) Turan-type problems;

(3) Ramsey-Turan-type problems;

(4) discrepancy-problems.

In all the four cases we considered the complete graphs as subgraphs.

In cases (1) - (2) there are many results for other graphs too. In (2)

we know that the chromatic number of a graph is the most relevant param-

eter which determines the behavior of f(n;G) .

In (1) most of the results are for graphs G, , G? when

m""n x(6-)=2 (see Graham-Rothschild-Spencer (1980), and in the general
i •

case we do not know which parameters of the graphs G* , G? determine the
Ramsey-function R(G1 , G^) .

For (3) in Erdtts-Hajnal-T. Sos-Szemeredi (1983) the function

RT(n;H,o(n)) is defined as the maximal e for which there exists a

graph G with n vertices and e edges, such that H £ G and the sta-

bility number of G is o(n) . Not even asymptotic results for

RT(n;H,o(n)) are known in the general case. The lower and upper bounds

proved in Erdtis-Hajnal-T. Sos-Szemeredi show that here the arboricity

number of the graph H is relevant.

In (4) only the complete graphs were considered. It would be

interesting to have discrepancy theorems also for other graphs.

4 PARTITIONS IN Rn . CLASSICAL THEORY OF UNIFORMLY DISTRIBUTED

SEQUENCES

To begin with the history we have to go back to the seven-

teenth century when Huygens wanted to give a mechanical model for the

solar system using a system of gears. Each gear represented a planet.

The number of teeth on the gears had to be chosen so that the

ratio of these numbers were close to that of the periods of revolution of the

represented planets. At the same time the number of teeth on each gear was

limited. So the mathematical problem was the following:
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Given a real number a and N , find integers Ofip , q < N
so that W~-Q\ is as small as possible.

This was one of the germs of the theory of diophantine approx-
imation. The theory developed much later, mainly due to the works of
Ostrovski, Hecke, Hardy, Littiewood etc. It became clear that the approxi-
mability property of a depends on the partial quotients (a. digits)

1of its continued fraction expansion a = 1 > (denoted by a-

= [a. ,a2» ...]). It became also clear that the approximability property of
a is closely related to the distribution of the sequence ({na}) in
(0,1) . ({na} denotes the fractional part of a ). Evidently, for eyery
irrational a , the sequence {na} is everywhere dense in (0,1) . The

fact that it is uniformly distributed, expresses a stronger property.
k k

Let E denote the k -dimensional unit cube [0,1]
k k

1= X [a.,b.j be a box in Ek , 100 = X [0,x.] , |I| be the Lebesgue
measure of I .

Let u)-(u ) be a sequence in E . We write Z (N;I) (or
simply Z (N; I) ) for the number of u.eI , 1 S i S M .

Definition 1. The sequence (u ) is uniformly distributed in
Ek if for every box ! C E k

(N;I)
(4.1) l i m - % = II

holds.
An equivalent definition is the following.
Definition 2. Let R(E ) denote the set of Riemann-integrable

functions on E . The sequence (u ) is uniformly distributed in E if
for every f eR(Ek)

1 N

(4.2) lim 1 I f ( u j = / f(x)dx .
N*»N n=1 nEk

The second definition seems to be less natural, however it
is a more fruitful one. It indicates why uniformly distributed sequences
are important in the theory of numerical integration (see Remark 4.1).
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Further observe that we obtain an equivalent definition if we
assume that (4.2) holds for a dense subset of R(E ) . This indicates how
the concept of uniformly distributed sequences can be generalized to
topological groups.

For the general theory of uniformly distributed sequences see
the excellent book of Kuipers-Niederreiter (1974).
Put AJJ(I) = jZ(N;I) - N|I|

and

Ek
dx) p .

A., resp i|Ajjp measures (in different norms) the discrepancy of the se-
quence U,,...,UM , their behavior for N-*» measures the irregularity of
the distribution of the infinite sequence (u ) .

In the quantitative theory of uniform distribution a central
problem is the investigation of the order of magnitude of the discrepancy-
functions ilAjJIp , AN .

It is easy to see that a sequence OJ is uniformly distributed
in Ek iff A^=o(N) . But how small can o(N) be?

The quantitative theory of uniformly distributed sequences
started with the following conjecture of van der Corput (1935 a).

For an arbitrary sequence in [0,1)> sup AM=«> . This means
N N

that no sequence can be "too evenly" distributed. This was proved by van
Aardenne Ehrenfest (1945) who showed that for an arbitrary sequence (u )
for infinitely many N

A*. > c(loglog N)(logloglog N)~>' .

Roth (1954) strengthened this result. He proved the following more general
theorem.

Theorem 4.1. (Roth (1954)). A. For an arbitrary infinite se-
quence (u ) in E and for every N>N
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k

max jjA JL > c.(log N)
1SnsN n l k

B. For N arbitrary points u< ,..., u.. in E

k-1

i f N > N Q .

(Here c. 9 c/ are positive absolute constants.)

For k=2 Davenport (1956) and for k£3 Roth (1979), (1980)

proved that (apart from a multiplicative constant) these results on

||AN||2 are sharp.

The theorem implies (in a precise quantitative form), that

the irregularity of the distribution increases with the dimension.

The problem of finding bounds for the discrepancy in supremum

norm is more difficult. Since Arj^JjAJo » the preceding results give some

lower bounds on A.. . For infinite sequences sharp results are known only

for k=1 , for finite sequences for k=2 .

Theorem 4.2. (Schmidt (1972)). A. For arbitrary infinite se-

quence (u ) in (0,1) and for every N>N

max A > c log M .
n

2
B. For arbitrary N points U.,...,u., in E

AN > C log M

where c , c1 are positive absolute constants.

This result is best possible apart from the multiplicative

constant. E.g. if u - {na} where a is an irrational number of bounded

partial quotients (a. £ K , k=1,2,... ), then for every M ,A,,<cK log N .
n 9

Similarly, for the N points u ={{na},Tj-} , 1SnSN in E2 A%, < c K log N .

We have mentioned that uniformly distributed sequences play

an important role in the theory of numerical integration. The first result

on this is the following.

Theorem. (Koksma inequality (1942/43)). Let f be a function
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on [0,1) of bounded variation V(f) and u*,...,U., be M given points

in [0,1) with discrepancy A*. . Then

Koksma's inequality has various generalizations, to higher

dimensions too. These theorems show that in computing integrals (especially

in higher dimensions) well distributed sequences are of great importance.

The smaller the discrepancy is, the better the approximation will be. This

led to the criticism of Monte Carlo methods, where randomly generated se-

quences are used. Since a random sequence has discrepancy /N loglog N ,

it is more advantageous to work with well-distributed deterministic se-

quences of discrepancy of a power of log N (Niederreiter (1978)).

Remark. By an observation of Roth part A and part B of Theo-

rem 4.1 and similarly of Theorem 4.2 are equivalent. Roth's argument

(for k=1 ) is the following.

(a) Let uis...,u., be a sequence of points in [0,1) . Con-
i-1 2sider a corresponding set (u., —n—) , 1si£N of N points in E .

1 IN n

(b) Let (x.j,y.j) , 1<i<N be a sequence of points in E ,

arranged so that y^SyoS...=yM . Take the corresponding sequence x,,...

. ..,xN in [0,1) .

In both cases the discrepancies of the two sequences are the

same up to a universal constant factor.

Theorem 4.2. can be formulated as an assertion on partitions

of a special finite hypergraph. (See Theorem 1.1*.) We obtain this finite

version, if instead of E (as underlying set) we take the NxN lattice.

The continuous or discrete formulation makes no difference as long as the

members of the family A are the set of points in aligned rectangles.

However, if we consider other families too, the situation changes. First-

ly, it may depend on the underlying set, which families are worth con-

sidering. Secondly, it depends on the family which form fits better to the

distribution problem or to the proof.

5 GEOMETRICAL STRUCTURES

In this section we discuss a variety of questions where the

underlying set S is either the k -dimensional unit cube E , or (in
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the discrete version) the NxN (NxNx...xN) lattice defined as the set of
points with integer coordinates iSkSN , 1££<N . A is a family of
simple geometrical objects, as aligned or tilted rectangles, triangles,
balls, etc. (see Erdfls (1964)).

The distribution (or partition) problems will be formulated
in the following two forms.

(a) Given N points in S , how evenly can they be distri-
buted with respect to the sets in A ?

(b) Given N points in S , how "good" can a two-coloring of
these points be with respect to the sets in A ?

All the theorems here give quantitative results on the weaker
preponderance phenomenon: none of them is Ramsey-type (ensuring mono-
chromatic subsets). Of course, one could consider the Ramsey-type results
for lattice points mentioned in § 2 as belonging to this group of prob-
lems, too (e.g. Roth, Hales & Jewett, Szemeredi's theorem, etc.).

Let Un={u1,... ,ujc S=E , A be a family of subsets in R .
Let Z(A;UN) denote the number of points ui , 1SiSN in AeA . Set

A(A;UN) = |Z(A;UN) -

A(A;UN) = sup A(A ;UN)N A6AI N

AN(A) = inf A(A;U N) .
UN

2
Theorem 5.1. Let S=E , A be the family of right-angled

triangles in E with sides containing the right angle parallel to co-
ordinate axes. Then for arbitrary e>0 if N is large* enough

c1 N
1 / 4 * e < AN(A) < N

1/4vTogTf -

(For the lower bound see Schmidt (1969), for the upper bound Beck (1983 a))
Remark. If A is the family of aligned rectangles, then

c, log N < A..(A) < c2 log N .

(See Theorem 4.2.) Compare the two results. There exists a set of N
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points in the unit square such that the discrepancy in every aligned

rectangle is not larger than c log N . However, there must exist an

aligned rectangle such that splitting it into two right-analed triangles,

both will have a discrepancy as large as f! (but of course of dif-

ferent signs).

These results, and actually all the other ones below raise

the problem on which properties of the family A does it depend whether
rv R

the discrepancy is "large" or "small" (N or (log N) ) . The situation

is rather annoying, we do not have a complete understanding of the prob-

lem.

A result related to the above one is given in the following

theorem.
2

Theorem 5.2. Let S=E , A be the family of tilted rectangles
2

in the plane (not necessarily contained in the unit square E ). Then
1 _£ -

c1 N
* < AN(A) < c2N

4 • /Tog~N .

The lower bound was proved by Schmidt (1969), the upper bound

by Beck (1981 a).

A generalization for higher dimensions is the following the-

orem.

Theorem 5.3. (Beck (1983)). Let u"N={u,,... ,Ui,} be a set of

N points on the k -dimensional unit torus. Let A be the set of tilted

squares with diameter at most 1 . Then

AN(A) > c(d)N
? 2k .

Remark. Schmidt proved for k=2,3 the slightly weaker re-
1 J_

suit that AN(A)>r ^

Theorem 5.4. (Schmidt (1969 b)). S=E , A be the family of
k k

balls in R (not necessarily contained in E ). Then

1 1 1 1

IT dK < A N ( A ) < CjIT ^ JToqH .
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Answering an old problem of Roth, very recently Beck proved

the following theorem.

Theorem 5.5. (Beck (1983)). Let S be the unit disc, 8 the

set of halfplanes, A={SnB ; Be B} . Then

c : N7 (log N) l < AN(A) < NT* log N .

Theorem 5.6. (Beak (1963c)). Let (u ) be an infinite sequence
1 n

of -points in the plane. Then for* every real number r there exists a

tilted square A of side r, such that
1 1

r7 log r > |Z(Ar) - r
2| > c-r* .

(Here Z(A ) denotes the number of points u - e A .;

This theorem is especially remarkable since this is the first

one where a set of arbitrary size and of large discrepancy can be guaran-

teed.

For a set UN= {u.,... ,uN>c S let

G = (g | g : UN-* {+l,-l}}.

Set

D(A;UN) = min sup | J g(x)|
N g AeA

and

DN(A) = sup D(A;UN)
UUN

G. Tusnady asked the order of magnitude of (or bounds for) DN(A) in the
2

special case when S=E and A is the family of aligned rectangles. Re-

cently Beck investigated this problem, for other families A too.

Theorem 5.7. (Beck (1981 b)). Let S=E2 , U Nc E
2 , A be the

family of aligned rectangles. Then
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Cj log N < DN(A) < c2(log N )
4 .

Again, for tilted rectangle the discrepancy is much larger,

Theorem 5.8. (Beck (1981 b)). Let S=E2 , U c E 2 . , A be the

family of tilted rectangles. Then

-r- E j+ £

Cj N4 < DN(A) < C2 N^

Theorem 5.9. (Beck (1983 a)). Let S be the NxN lattice,

A be the family of tilted rectangles in the NxN lattice. Then

1 1

Cj N3 < D(A;S) < N? /Tog~ N" .

If tilted rectangles not necessarily contained in the NxN square belong

to A too, the discrepancy is even much larger.

Theorem 5.10. (Beck (1983 c)), Let S be the NxN lattice,

A be the family of tilted rectangles (not necessarily contained in the

NxN lattice). Then

1 \ I 1

cx N ? (log N ) ? < D(A,S) < c2
N2(logN) ?

6 ({not}) -SEQUENCES AND ERGODIC THEORY

Most of the recent results for the distribution of point sets

refer to the d -dimensional space for d§2 and they have a definite

geometric character. However, there is widely developed theory of uni-

formly distributed sequences in [0,1) and only few of these results

have been generalized for higher dimension.

We formulate all the results below for distributions of in-

finite sequences in [0,1] . According to the observation of Roth actually

we could formulate the assertions for finite point-sets in E as well.

The most important class of uniformly distributed sequences

in [0,1) is the class of sequences ({na}) for a irrational. These

are the basic sequences in the theory of diophantine approximation. Fur-

ther, these are the best "test-sequences": very often theorems which
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were found first for sequences ({na}) turned out to be true for more

general ones. Finally we mention the relation of sequences ({na}) to

topological transformations.

The discrepancy of ({na}) depends on the partial quotients

ak , k=l,... of a . For eyery N and xe[0,l) there is an "ex-

plicit" formula for AN([0,x)) (see T. S5s (1974)). This leads e.g., to

the following

Theorem 6.1. Let — be the k -th convergent of a ;

J i = [al s..., ak-1] . If qk*N<qk+1 then

k k+1
c, I a. < max A < c2 £ a. .
1 i = l 1 l=<n*N n L i=l 1

Consequently> if a-^K , i = l,..., then

AN < cK log N .

Much is known about the finer properties of the distribution.

Though

max sup A (I) > c log N ,
l*n*N I n

there are intervals I in which the distribution is \/ery good.

Theorem 6.2. For the sequence ({na}) and for a fixed inter-

val I

SUp AN(I) < » ,
N ,N

iff |I|={ka} for some integer k .

The "if" part was proved by Hecke (1922) and much deeper "only

if" part by Kesten (1966). Very elegant proofs and generalizations of this

theorem in the framework of ergodic theory are due to Furstenberg, Keynes

& Shapiro (1973), Halasz (1976), Petersen (1973).

On the other hand it is remarkable that this theorem (and

further properties of AN ) has consequences for ergodic theory (see e.g.

Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9781107325548.010
Downloaded from https://www.cambridge.org/core. The Librarian-Seeley Historical Library, on 29 Nov 2019 at 00:56:22, subject to the

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781107325548.010
https://www.cambridge.org/core


V.T. S6s: Irregularities of partitions 231

Herman (1976 a,b), Deligne (1975).

Schmidt investigated the analogous question for arbitrary se-

quences in [0,1) .

Theorem 6.3. (Schmidt (1974)). For an arbitrary sequence

(u ) in [0,1) the lengths of all intervals I with sup AM(I)<c°
N N

form at most a countable set.

The ergodic theoretical generalization shows the essence of

Kesten's theorem. Let (ft,A,y) be a probability space, l-.a + ft an er-

godic transformation. For an A€ A let ZN(A;x) denote the number of

points T nxeA , l*n*N . Set

AN(A;x) = ZN(A;x)-Ny(A) .

By Birkhoff's ergodic theorem, for fixed Ae A for almost all xe a

i AN(A;X) + 0 , if N + °° .

Furstenberg, Keynes & Shapiro (1973), Petersen (1973), HalSsz (1976)

proved the following generalization of Kesten's theorem:

Theorem 6.4. I* for* Ae A sup|AN(A;x) | is bounded on a set

XCfl of positive measure, then e " v^ ' is an eigenvalue of T ; i.e.,

there exists a function g | 0 such that

g(Tx) = e2?riy(A)g(x) for x£fl .

On the other hand, for every eigenvalue e ™ v there exiats

an AeA such that y(A)=y and AN(A;x) is bounded in N for almost

all x£ft .

Remark. Kesten's theorem follows from the above one. To see

this let fl=R/Z . Let y denote the Lebesgue-measure, R : x ->• x+a

(Ra is the rotation by a2ir ). The eigenvalues of Rr are the numbers

e2iri{ka} which imp]ies Kesten's theorem.

We give another example of the relationship between uniform

distribution and ergodic theory. This illustrates how the results for

distribution of the sequences ({na}) imply general results for homeo-

morphisms of the circle.
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Denjoy (1932) proved that for every homeomorphism T: R /Z +
•> R/Z having no periodic point there exists an irrational a(T)e (0,1)
such that T is conjugate to the rotation R : x + x+a . By this, if we
consider (the orbit of a point xe R/Z) the distribution of Tnx; n=l,... ,this
is determined by the distribution of the sequence ({na}) . E.g.,

(a) Let ZN(I;x) denote the number of points Tnx€ I ,
Un£N and y the invariant measure belonging to T . By Birkhoff's er-
godic theorem the remainder term AN(I;x)=ZN(I;x)-Ny(I)«o(N) .

By Denjoy's theorem AN(I;x) is the same as that of the se-
quence ({n<x(T)}) .

(b) The order of points {na} , l£n£N is very much restricted:
if n is the permutation determined by {ir(l)a}<...<{ir(N)o} , then for
example for every a and N f4xed 7r(i)~ir(i-l) takes at most three
different values. Now, by Denjoy's theorem the same holds for an arbit-
rary homeomorphism T and x and permutations TR defined by T*'' (x)<
<TTr(2)(x)<.\.<T7r(N) . (See T. S6s (1957), Swierczkowski (1958).)

One of the most fascinating and deepest relationships between
combinatorics and ergodic theory is given by Furstenberg & al.: Proof and
generalization of Szemerfedi's theorem. Since there is a recent expository
paper by Furstenberg, Katznelson & Ornstein (1982), and the book of
Furstenberg (1981), we do not go into the discussion of this.

Strong irregularity
In [0,1) the following "strong irregularity" phenomenon

holds.
Theorem 6.5.
A, For every e>0 there exists a 6>0 (defending only on e)

such that given an arbitrary sequence (u ) in (0,1)

Art > 6 log n

for all but at most Ne values of n£N .

B. For every K there exists a 6 (depending only on K )

such that

A n > K

for all but at most (log N) values of
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C. For an arbitrary sequence (u ) in (0,1) the set of

values of X for which

A N ( [ 0 , X ) ) = o(log N)

holds has Hausdorff dimension 0 .

This theorem was proved first only for ({na}) sequences

(T. Sos (1979), (1983)), then for arbitrary sequences and in a more

general form by HalSsz (1981) and Tijdeman & Wagner (1980).

One-sided irregularities

Measuring the irregularities with ||AJ!1OO or JJAJJ , we do

not have any information on the sign of the discrepancy. In § 1 we in-

troduced the one-sided discrepancies A* and kZ . The behaviour of

A N and A" show some new phenomena.

Again, as almost always, the first results on one-sided ir-

regularities were found for ({na>) sequences:

There is no one-sided strong irregularity phenomenon. We men-

tion just the simplest illustrations of this. It is easy to see that

sup A * = oo , inf A" = » .
N n N

However, for an arbitrary sequence MM->°° there exists an a such that

AJ < MN if N> NQ

(resp. there exists an a such that AN < NL ).

Similarly, it is easy to see that

can hold only for a sequence (Nk) of 0 -density. However, for an ar-

bitrary sequence M N=o(N) , there exist an a and a K such that

holds for at most MN values of n$N , if N> NQ (T. S6s (1983)).
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Concerning intervals of small discrepancy, first we remark
that

sup A*([0,3)) < *
N N

may hold also in the case when B^{ka} , i.e. when

sup AN([0,3)) = • .
N n

In Dupain & T. S6s (1978) the characterization of the intervals [0,3)
with

sup A+([O,0)) < •
N n

is investigated. Here we mention just one of the new phenomena: there
exists an a for which the set (3|sup AN([0,3)) < °°} is of power of

N
continuum.

However, the assertion in Theorem remains true, if instead
of boundedness of AN(A) we suppose only one-sided boundedness. Halasz
(1976) proved that if

sup A|J(A;X) < *
N N

holds on a set X C Q of positive measure, then e irlM' ' must be an
eigenvalue of T .

7 PARTITION-PROBLEMS FOR GENERAL HYPERGRAPHS
While in the previous sections we had to make a strong selec-

tion because of the large variety and wide scope of the theorems, here we
have only limited number of results. Though the problems for general
hypergraphs arise from investigations of irregularities on different
structures, they are interesting on their own too. To start with, we have
to remark that there are almost no lower bounds on the discrepancy of par-
titions of hypergraphs.

The theorems below give upper bounds for the discrepancy of
partitions on hypergraphs. One of the first results of this type is due to
Olson & Spencer.
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We mention in advance that the results here are related to

integer valued programming. The relation between discrepancy of se-

quences and convex programming was discussed already in Niederreiter

(1972).

Theorem 7.1. (Olson & Spencer (1978))* Let A = {Aj,... ,Ak)

be a family of subsets of S , jS|=n . Consider the two-colorings of

S : G ={g | g : S- M+1,-1}} . Set

A(A) = min max | £ g(x)|
geG AeA xe A

and

f(n;k) = max A(A) ,
A

where the maximum is extended over all families A for which , A

and u A = S . Then

f(n;k) < ((n+l)log 2 k ) 1 / 2

Theorem 7.2. (Olson & Spencer (1978))* With the above pota-

tion set

h(k) = max A(A)
A

where the maximum is extended over all families A for which |A| = k

Then

(J-o(l))k 1 / 2 < h(k) < c k 1 / 2 log k

if a Hadamard matrix of order k+1 exists.

The upper bound of Theorem 7.2 was improved by Beck & Fiala.

Theorem 7.3. (Beck & Fiala (1981)).

h(k) <

where c is a positive absolute constant.
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In most of the partition problems we can easily find a system

of linear equations describing the problem and having a fractional solu-

tion. How close we can get with integer values to the solution measures

how large the discrepancy is.

The theorem of Beck & Fiala below (generalizing a famous re-

sult of Baranyai (1975)) is used to get upper bounds for discrepancies.

Theorem 7.4. (Beck & Fiala (1981)). Integer-making lemma. Let

a-,...,a be given real numbers. Let A be a family of subsets of the

index set {1,...,s} such that every i£{1,...,s} belongs to at most

t members of A . Then there exist integers a,,...,a so that

ja.j-a.j | < 1 , 1<i<s and

\ I a. - 1 ai l = t"1 fov every AG A .
i eA n i e A

Theorem 7.5. (Beck & Fiala (1981)). Let d denote the maximal

degree of the hypergraph (S,A) :

d(A) = max |{A c A ; xcA }| .

With the notations of Theorem 5.1:

A(A) < 2d(A) - 2 .

Conjecture. (Beck & Fiala). For arbitrary (S,A)

A(A) < c(d(A) log d(A)) 1 / 2 .

Theorem 7.6. (Beck (1981 a)). With the above notations

A(A) < c(d(A))l/2(log!A|)1/2 log jSj .

Remark. Beck (1981 a) used the above theorems e.g. to prove

that Roth's estimate for the discrepancy of arithmetic progressions is

nearly sharp. This application itself justifies that the theorem is

valuable.

However, it is plausible that upper and lower bounds for
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A(A) depending on some structural properties e.g. on some intersection

properties of the system A should be found.

We do not know any general theorem for hypergraphs which gives

a nontrivial lower bound for the discrepancy A(A) .

Olson & Spencer (1978) proved for a system A derived from
112.the Hadamard matrix the discrepancy is greater than c|A| .(An analysis

of their proof gives a more general lower bound.)

8 SOME FURTHER PROBLEMS

We have seen that for different structures different types of

discrepancy problems were investigated. Here we give a list of problems

for general hypergraphs, implicitly classifying the discrepancy-problems.

Let (S,A) by a hypergraph.

Problem of proportional representation.

Let ae(0,1) be given. We call an S c s an a -represen-

tative set if

(1) || S n A | - a | A | | S 1 for every Ae A .

Problem 1.

Find conditions on the existence of an a -representative sys-

tem in the terms of the structure of the hypergraph.

(1) is a very strong requirement. When it cannot be satisfied,

the question is how close can we get to it.

Problem 2.

Find bounds on

min max ||S'n Aj -a|A|
S' cs AGA

(or on

min ( I ||SnAj - ot]Aj|p)p . )
S'cs AeA

(Does there exist any min-max theorem for some special classes?)

The problems below are formulated for general hypergraphs.

Let a19...,ar e(0,1) be given and £ a. = 1 . We say that
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r
S= I s , S nS = 0 , i7j is an (a1,...,aj -partition

i=1 a i a i a j ' r

||S nAj - aJAH i 1
a i 1

for every A G A and

Problem 3.
Find conditions on the existence of an (a,,...,a ) -partition.
Let P(A)eRr denote the vector (|S1 n Aj-a1 |AJ ,...,|SpnA| -ar

| Aj).

Problem 4.
Find bounds on

min max ||P(A)|j
S= [»S. Ae A

where || j] is a norm on Rr (or on

min ( I j |SnA|-ajA; j p) p ).
s= u S A e A

Problem of well distributed sequences.
Here we consider the "dynamical" version of the previous prob-

lem; we want to find a sequence (u ) in S for which every segment is
proportionally distributed.

Let (u ) be a finite resp. infinite sequence in S , and
U ={u,,...,u } . We say that (u ) is uniformly distributed with re-
spect to A if

An(A) = jjUnnAj -4£|*| * 1

for every nsN (resp. for every n ) and for every A^A .
Problem 5.
Find conditions on the existence of a uniformly distributed

sequence.
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Problem 6.
Find bounds on

min max max A (A) .
(up) nSN A e A

 n

Von Neumann in one of his firstpapers proved that any everywhere
dense sequence in (0,1) can be rearranged to a uniformly distributed se-
quence.

In the flavor of this simple theorem the following can be
asked. We formulate it only in the finite case.

Problem 7.
Let u-eS , 1<i<N be a sequence with discrepancy AN .

For any permutation TT consider the sequence AJJ , n=1,...,N as the dis-
crepancy of u /-\, ...,u / x . Give bounds on

min max A
rr n n

or more generally, for a given function <j>(n)

min max <f>(n) AJJ .
TT n

On strong irregularity,
We mentioned in § 6 the "strong irregularity" phenomenon for

sequences in (0,1) . The analogous question can be asked for many other
cases. (In this direction see also Theorem 5.6.)

On one-sided irregularity.
As explained in § 6 new phenomena emerge if we consider the

signed discrepancy (A , A~) for ({na}) sequences. Instead of stating
particular questions we just call the attention to this problem.

Decomposition -problems.
Problem 1.
The hypergraph (S,A) is called totally unimodular, if every

S'cS has a partition g : S' -• {+1 ,-1} such that I Yg(x)j<1 if A ^ A .
x^A

(This is equivalent to the following: every square submatrix of the in-
cidence matrix of (S.A) has determinant 0 or ±1 .)
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d
Assume there is a partition A= u Ai such that (S,A.) ,

1-1 1

Hi*d is totally unimodular. Is it true, that there exists a K=K(d)

depending only on d such that A has an a -representative system of

discrepancy F(d) ?

Problem 2.

Given A and d , does there exist a M ( A , d ) with the fol-
d

lowing property. If A= u A1 and the discrepancy of (S,A.) , l£i£d is

A , then the discrepancy of (StA) is at most A .

Added in proof.

Just after having finished this paper, J. Beck proved a surpris-

ing and deep theorem. This generalizes several results for families in

R and gives an answer to the important question, on which geometrical

properties does the order of magnitude of the discrepancy depend.
y

Theorem. (Beck). Let S be a square of sides N in R anc

let be given N arbitrary points in s • Let B be a convex domain am,

B(A,T,.V) the domain obtained from B by a similarity transformation of
~ p

dilation A*l , of rotation T and translation by v & R . Let u(B)

resp. 1(B) denote the area resp. the length of the ciroumferenoe of B ,

and let 7.(B(A ,T ,VJ) denote the number of points in B(X,T,VJ . 'Then

there exist A , T , V- such that
|Z(B(x0,T0,v0))-M(B(x0,T0,v0)nS)| > c

where c > 0 is an absolute constant.
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Page 219, line 9. For "Erdbs-KomlBs-..." read "Ajtai-Komlb's-..."(?)

E.K.L.
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