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Denote by M, the set of integers b for which there exists a 2-design (linear space)
with v points and b lines. M, is determined as accurately as possible. On one hand,
it is shown for v > v, that M, contains the interval [v+ v*%, (5) —4]. On the other
hand for v of the form p?>+p+1 it is shown that the interval [p+ 1, 0+p—1] is
disjoint from M,; and if v > v, and p is of the form q* + ¢, then an additional inter-
val [v+p+ 1, v+p+4g—1] is disjoint from M,. © 1985 Academic Press, Inc.

Let S be a finite set, |S|=v, and let A= {4,,.., 4,} be a family of sub-
sets of S. A is a 2-design (or pairwise balanced design) or linear space) if
every pair of elements of § occurs in exactly one 4; and [4]>1 for
1 <i<b. The elements of S are called the points, the subsets A; are called
the lines or blocks of the 2-design. Doyen asked what are the possible
values of b for a given v? Let M, be defined as the set of integers b for
which there exists a 2-design with v points and b lines. So the problem is
the determination of M.
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Also a well-known theorem of de Bruijn and Erdos [ 1] states that if 5> 1,
then 4> v. Thus min M, =v.

Answering a question of Griinbaum, Erd6s [2] proved the following:
Let there be given n points in the plane. Join any two of them by a line.
Denote by b the number of lines obtained. There is an absolute constant ¢
so that every b with cv¥?<b< (), b# (%) —1, b# (3) — 3 can occur as the
number of lines. (This result is best possible apart from the value of ¢.) This
obviously gives that with the same c every b +# (5) — 1, (3) =3, cv*?* <b < (%)
occurs in M,. For an arbitrary 2-design the situation is different. Let f(v)
denote the largest integer b < (3)—3 for which there is no 2-design on v
elements and b lines. We shall prove

Clearly

THEOREM 1. There is an absolute constant ¢ so that for v> v,
f(v)<v+vl/2+('.

where ¢ can be any value > 3.

Remark. 1If we make plausible assumptions about the distribution of
primes we can prove f(v)<v+v'*(log v)* for some fixed «. Further we
conjecture that
fl)—v

lim sup
v ‘\/l_] A
Theorem 1 shows that all values in the upper portion of the range b e [v,
(3) —~ 4] are possible. For b close to v our results are quite different. To get
interesting results it will be convenient to assume v is of the form p>+p + 1
(here p is not necessarily a prime or prime power).
We shall prove

THEOREM 2. Let v=p*+p+ 1. Then for p>+p+1<b<p’+2p+1
there is no 2-design with v poinis and b lines.

Remarks. This result fails for v not of this form: projective planes from

which points have been deleted provide many examples where b —v < \/1_)

Theorem 2 is best possible in that it is easy to construct a 2-design with
b=p?+2p+1 lines. To see this it suffices to consider the lines 4,,..., 4, of
a projective plane of order p and replace A4, = {x,..Xx,,,} by 4}=
{X2, X3 Xp 1 ) Ay ={x1, x;}, 2<i<p+ 1.
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In general we may take any projective plane and obtain a new 2-design
by “breaking up” any line, ie., by replacing it with the lines of some
2-design on the same set of points. In the above example A4, has been
broken up into a near pencil on p+ 1 points.

We further prove

THEOREM 3. If v=p>+p+1 and b=p*+2p+1, then the design is
obtained from a projective plane of order p by “breaking up” one of its lines
into a near pencil or projective plane.

Theorem 3 is in some sense sharp; nevertheless we prove a stronger
result.

THEOREM 4. Let v=p>+p+1 and A= {A,,.., A,} a 2-design which is
neither a projective plane nor a near pencil nor is obtained from a projective
plane by “breaking up” one of its lines. Then b>p* + (2+c) p where ¢ can
be taken as 0.147899.

A special case of interest is for v=p*+p+1, where p=¢°>+gq. By
Theorem 2 applied to the p+ 1=¢g°+ ¢+ 1 points on a line of a projective
plane of order p, the breaking up of that line results in a 2-design on v =
p*+p+ 1 points with either

b=(p*+p+1)+p or b=(p*+p+1)+p+g.

This latter inequality must, by Theorem 4, also be valid (when b >v) for
2-designs on v = p” + p + 1 points which cannot be obtained by breaking up
a line of a projective plane (when v>wv,). In other words the interval
[e+p+1,0+p+qg—1] is disjoint from M,.

Remarks. In the theory of designs or extremal set theory there are two
essentially different methods, the combinatorial and the linear-algebraic
one. There are just a few theorems where both methods work. This is the
case with Theorems 2 and 3. We give two proofs. Theorems 2 and 3 are
actually consequences of Totten’s classification [7,8] of all 2-designs
satisfying (b —v)* < v, but the proof in [7, 8] is substantially longer than
those we give here. One of the present authors (J.C.F.) has used the
algebraic approach to give a shorter proof of Totten’s complete result [4].
Our combinatorial proof of Theorems 2 and 3 gives with some additional
reasoning the proof of Theorem 4.

Proof of Theorem 1. First of all we restrict ourselves to the case when
v=p’+p+ 1, where p is a power of a prime. It is well known that in this
case there is a projective plane; A = {4,,.., 4,} with |4,]=p+1, 1 <i<v
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and |A,nA;| =1 for i # j. On the other hand, if there is such a projective
plane, then v must be of the form >+ ¢+ 1.
To prove Theorem 1, first we prove

THEOREM 1*. Let v=p2+p,+1, p, be kth prime power (in natural
order). Then

FPi+pet 1) <pi+2p+pi**, (1)
where ¢ can be any value > 1.

Proof. Let A,,.., A, be the lines of a finite geometry with v points.
Observe that it is necessary to construct a 2-design only for b< p?,  +
Pis1+ 1. Forifb>= p?, +p.,+1itis easy to see that we can use for our
consideration the finite geometries of size p2 + p, + 1, where p, is the least
prime for which p2+p,+12>b.

Using a well-known theorem of Heath-Brown and Iwaniec [5] we have

Pis1— Pi< ploe, (2)
Hence
PRt Prwr + 1< pi4 pdiiote
Thus it suffices to consider the b's satisfying
P/2¢+2Pk+P;ﬁl/‘m”e<b<P/2(+P;(31/20'+£-

From the result of Erdos {27, it immediately follows that the values of b
satisfying

pi+cpiP<b

can be taken care of by the block designs formed by breaking up the
elements of L/'s into pairwise balanced designs. Thus it suffices to deal with
the b satisfying

pi+2pk+ p}(31/4‘0)+8 <b< pi +sz/2' (3)
Let L, = {x,.. X, 41} Let g be the smallest prime power satisfying
Pt 1<q®+q+1<pe+plo+ 4)

Consider now a projective plane with the lines B,,.., B, .. Omit y=
g +q— p, < pPV*+¢ of the points of this projective plane (without
destroying any of the lines). Let the remaining points be identified by
{Xyys X, 41} Thus we obtain a 2-design on our set {x,.., X, .} and
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therefore on our set S of p; + p, + 1 elements. Now the number of lines of
this design is p? + px+ q> +q + 1; p} + p of the lines have size p; + 1, the
other ¢>+¢,+ 1 sets have size ¢, + 1 or less. (“Less” because we had to
omit x elements which are at our disposal.)

Let Bf,.., B% ., be the blocks which remain after the omission of the
x elements and let ¢,= | B¥|. By breaking up the lines B¥ we get b, new lines
for every b, satisfying ct¥? < b; < (4)— 3. Choosing the values of 7, (1 <i<
g%+ ¢+ 1) properly we can get every value in the interval (p;l/40, p{31/20+¢)
in the form Y./ _, b, with appropriate

y=1
b, € ct.3/2,<ti‘ -4
Iy Iy 2

This completes the proof of Theorem 1*.

The proof of Theorem 1 now can be completed by the same method.

We now proceed to the proofs of Theorems 2—4. Henceforth we assume
that we have a 2-design with v=p’+ p+1 and b < p* + (2+ ¢) p for some
c¢<4. We use the following notation: 4,, A,,..., 4, are the blocks (lines);
Xy, Xa,.5 X, are the points; |4, =1/=length of A; r;=|{i:x;e4,
1 <i<v}| =degree of x,.

LEMMA 1. No line of length > p+ 1 exists unless the design is a near
pencil.

Proof. From [6] we have b= 1+ (P(v—1)/(v—1)) if a line of length /
exists. Let / be the maximum length of a block A. Suppose /= p+ 2.

Case 1. 1< ?2v. Note that (v —1) is increasing for 0 </< 2. Thus

L(p+2)(pP+p+1-(p+2))

b> =p*+3p+1—4p,

a contradiction for p > 2.

Case 2. [>%v. If there are two points off 4 then the line through them
and A both meet at least (/— 1) 2 other lines. Thus b>(/—1)2+2> %=
4p*+4p+4, a contradiction for p > 1. Hence no more than one point lies
off of 4. So the design is either degenerate (only one line) or a near pencil.

In view of Lemma 1 we may assume that the maximum length of a block
is p+ 1. Given this and v=p”>+ p+ 1 we have the useful fact that a point
has degree p+ 1 if and only if it lies only on lines of length p + 1.

We will refer to blocks of length p+ 1 as long and <p+1 as short.
Clearly if all blocks are long the design is a projective plane. Thus we
assume that some short blocks exist.
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LEMMA 2. Ifv=p°+p+1, b< p’+2p+ 1, and there exists a block A
all of whose points have degree p+ 1, then b=v.

Proof. All blocks on a point of degree p + 1 have size p+ 1. Thus 4 and
the (p+ 1) p blocks which meet 4 provide a set of p> + p + 1 blocks of size
p+ 1. These cover (p>+ p+1)(?3')=(3) pairs, so there can be no other
blocks.

LEMMA 3. r;zp+1 for all i

Proof. Since v=p*+ p+1, a point of degree p or less would lie on
some line of length p + 2 or more.

LeMMA 4. Some point of degree p+ 1 exists.

Proof. Suppose that r,= p+ 2 for all i. Note first that a block, 4,, of
length p + 1 exists since otherwise

e (p+2)v=(p+2)(p*+p+1)
1

1 i

N
I P

i

implying b > p*>+ 3p + 2, a contradiction.

Since min r; > p + 2, the number of lines intersecting 4, of length p+ 1 is
at least (p + 1){(p + 1). But any point not contained in A4,, is contained in a
line not intersecting 4,. So we get at least p*/(p+1)=p—1+(1/(p+1))
lines which do not intersect 4,. By this, b= (p> +2p+ 1)+ p.

LEMMA 5. Every two lines of length p+ 1 meet.

Proof. Let |A,|=|4,|=p+1, A,nA,=. Then together 4, and 4,
both meet (p+ 1)?= p? +2p + 1 blocks. Now any point contained in A4, or
A, is of degree = p + 2. Therefore for xe A, there is a line B(x) containing
x and |B(x)| < p+1; any point contained in B(x) has degree =p+2.
Hence we have at least |B(x)| —1 lines intersecting B(x) but not inter-
secting A4,.

If | B(x)| > p/2 for some x € A, then b > p? + 3p. If | B(x)| < p/2 for every
x€A,, then x is of degree =p+3 if xe4,. In this case we have, by
counting the lines meeting A,, b= (p+ 1)(p+2)> p*+ 3p.

Algebraic Proof of Theorem 2. To prove Theorem 2, let N be the v x b
incidence matrix of the design and U its row space. It is well known that
NT(NNT)~! N is the matrix of the orthogonal projection from R® (with the
standard inner product) onto U, provided that N has rank v, or equivalen-
tly, (NNT) 1! exists.

In our case, NN" =4+ J, where 4=diag(r,— 1: xe S) and r, denotes
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the degree of the point x; and it is easily checked that (4+J) '=
A7 "+o47'J47", where 6=1/(1+ag) and ag=Y .. s(1/(r.—1)). The
b x b matrix

Q=I—NYNNT) "' N=I—NTA-'N+oN"4-'J4~'N

is evidently the matrix of the orthogonal projection from R’ onto U*, a
subspace of dimension b — v. In particular, @ has rank b —v.
For a subset T of the set S of points, let

1
ap= 3y

xeTr»\’—

T

The rows and columns of Q are indexed by the blocks A4, B,..., of the
design, and with the above notation,

Q=1—((x45))+o((x,25))

Let F be the set of r, blocks on a fixed point x, and consider the r,, by
r, principal submatrix Q, of 0 whose rows and columns are indexed by
the members of F. For distinct 4, BeF, a4, 5= (1/(r,,—1)). Writing § , for
I —a,+(1/(r,,—1)), we have

Qo=diag(f,: AeF)— J+o((a,08)) g per-

xo 1
So far, this holds for any design.
With our hypothesis, Lemmas 1 and 3 show that all blocks have size

< p+1 and all points have degree > p+ 1. Then

Bi=1-Y >1- Y —>0
xed 'x xed p
X F X0 X # XQ

and B, =0if and only if | 4| = p+ 1 and all points of 4 — {x,} have degree
p+1. Suppose, for contradiction, that f,>0 for all AeF. Then
diag(f ;) +a((a,az)), being the sum of a positive definite and positive
semidefinite matrix, is positive definite and hence has rank r, . Subtracting
the rank 1 matrix (1/(r,,— 1)) J can reduce the rank by at most one, so

ro—1<rank Qo<rank @Q=b—-v<p—1,

which gives a contradiction r, < p to Lemma 3.

To summarize, there exists a block 4 on x, such that all points of
A—{x,} have degree p+1. We now take x, to be any point of degree
p+ 1 and Lemma 2 completes the proof.
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Algebraic Proof of Theorem 3. let Y={xeS:r,=p+1}, Z={xeS:
r.>p+1}. By Lemma 2, there are no blocks 4 < Y. But let us call 4 good
when A4 is long and all but one of its points is in Y. Because of Lemma 2 we
may assume that each block on a point y, e Y contains at least one point of
Z,s0 |Z|zp+1.

The argument involving Q, in the previous theorem shows in this case,
that each point of Z is contained in at least one good block. Any two long
blocks intersect. Let G be a set of blocks consisting of one good block con-
taining z for each zeZ and consider the principal submatrix @, of Q
whose rows and columns are indexed by the members of G. For distinct
A, BeG, a,.z=1/p (since 4, B intersect in a point of Y). Also, for 4G
containing ze Z, o, = (1/(r.— 1))+ (p/p) < (1/p) + 1. Then

) 1 1
Ql =d1ag<1 +;—GA>—;J+U((<XA'aB))A‘BeG’

being the sum of a positive definite, a positive semidefinite, and a rank 1
matrix, is seen to have rank >|G|—1=|Z|—1. So

|Z| ~1<rank @, <rank Q=b—-v=p.

We have now proved that |Z|=p+ 1.

Recall that all blocks containing a point of Y are long. Consider two
good blocks A, A’ containing z, z’ € Z. There are p? blocks other than 4
containing points of 4 — {z}, all of which are long. There are p blocks
(including 4) on z containing a point of 4’ — {z'} and these too must be
long. Thus there are at least p> + p long blocks. These cover (p*+p)(?} 1)
pairs, leaving only (?3!) pairs uncovered. The remaining p + 1 blocks are
short and cover these (73 !) pairs. But all short blocks are contained in Z,
and |Z| = p + 1. Evidently, the short blocks form a (possibly degenerate)
projective plane on Z.

Finally, the long blocks together with Z form a projective plane of order
p on x, which proves Theorem 3.

Now we present combinatorial proofs of Theorems 2-4. Note that it suf-
fices to prove Theorem 4 only since (using the de Bruijn—Erdos Theorem)
the breaking up of a line in a projective plane immediately results in
b= p?>+2p+ 1. Equality holds only if the line is broken into a projective
plane or near pencil.

We show first that the number of lines of length p+ 1 is at least p> + 1
and then show that this implies that exactly one line was broken up.

Let g = (number of lines length p+ 1) and let the longest line not of
length p+ 1 be A4, of length ap, 0 <a < 1. Thus every line has length p + 1
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or <ap. By counting triples (x;, x;, A,) with x,€ A,, x;€ Ay, x;#x;; we
have

(b—q)aplap—1)+qp(p+1)Z0v(v—1).
Using v=p*+ p+1and b< p* +(2+¢) p we have

Sty (1—2a2—c0ﬁ>+ (1+ac)p+1
q4=2pTp 1—a? p(l—a®)+1+a

So g=p*+1 for a<,/1/(2+¢). We now take care of larger a.

Let x be a point of degree p + 1. Then x ¢ A. Since A is short there exists
a line of length p+ 1 through x missing A. Denote this line by 4 and the
lines through x meeting 4 by 4,, A,,.., 4,,.

Consider now A4, and A4. Together both meet (p+1~-1)(p+1—-1)+
degree(x)=p*+p+ 1 lines.

Through each point ye A\A, there is at least one line meeting 4 and
missing A4, (ie., at least one of the p+ 1 lines from y to 4 must miss 4,,
since 4 through y meets 4, and misses 4). Thus there are at least ap — 1
lines meeting A and missing A4,. Similarly if A* is a line meeting 4 and
missing A, there are at least [4*| — 1 lines meeting A, and missing A.

Adding these up, we have

b= (P +p+ 1)+ (ap—1)+(|A* —1).

Hence |A*|<(l+c—a) p+ 1.

Thus any line meeting 4 but missing A, has length <(1+c¢—a) p+1.
This same argument holds for any 4;, 1 <i<ap. Now suppose A’ is any
block meeting A. If A° misses some A, 1<i<oap then [4'|<
(1 +c—a)p+1Dbyabove. If 4" meets every 4,, Azsey Agp in addition to 4
then |4’| Zap + 1. So |A'| =p+ 1 by maximality of A.

We have shown that every block meeting A4 has length p+1 or
<(l+c—a) p+1. Let u be any point on 4 and '

N,=No. of lines of length p + 1 through u other than A.

Then

<No.of1inesthroughuof o p*—pN, _ p—N,
length <(1+c—a)p+1)” (M+c—a)p+1—1 (l1+c—a)

So

p—Nu

degree(u)—1=N,+ m
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Summing over u € A then gives

) ~ ~ 1 plp+1)
b—1> 3 (degree(u)—1)>(g ”(1 1+c—a>+1+c—a’

ue 4

since g—1=3Y,. 4N, Solving for ¢ gives

1—(2+c)(1+€——a))+ 1
o

q=p'+p < :
a—c —c

Thus g=p*+1 for 1+c—a<1/Q2+¢), ie, a=(c*+3c+1)/(c+2)

Previously ¢ > p*> + 1 for < \/1/(2 4 ¢). We choose ¢ so that these ranges

overlap, i.e.,

c2+3c+1
—_—< /1 .
c+2 [2+¢)

Equivalently 0> ¢* +6¢> + 11¢? 4 5¢ — 1. To within six decimal places we
can take ¢ =0.147899.

We now complete the proof by showing that g > p”>+ 1 implies one line
was broken up. Let 4,,.., 4,2, be the lines of length p+ 1, 1> 1. Here we
use the following theorem of Vanstone [9]: Let |S|=p*’+p+1, B=
{B,... B}, m>=p? be a family of subsets of S, |Bl=p+1fori=1,2,., m
If |B.nB|=1, 1<i<j<m then B is embeddable into a finite projective
plane of order p.

We apply this theorem to the system {4,,.., 4,2, ,}. Let By,.., By,
be the finite projective plane into which we embed our system, and B,,
1<i<p—1t+1 the lines not belonging to our system. Then the pair
covered by the lines B;, i< p—1+1 must be covered by our lines 4;,
j>pi+t.

Observe that to every line B, i< p—1t+1 there is an x;, x;€ B; and
x;¢B,, j<p—t+1, j#1. This is obvious because p—t<p+1 and
|B;nB;| =1 for i# . Now for every A4,, j> p’>+t which contains x, we
have A4, B, since for y ¢ B(x,, ) is covered by a line 4,, v< p*+ 1. Since
all the pairs (x;,y), ye B, must be covered by such a line 4;, and
|4,] < p+ 1, we have at least two lines which are contained in B;. The short
lines meeting some B, induce a sub 2-design on the p + 1 points of B;. So
by the de Bruijn—Erdos theorem the number of short lines which meet a B,
is at least p+ 1. Fixing B, we have at least p+ 1 short lines meeting B,.
The remaining p — ¢ lines B, each contain at least two short lines. Thus

bzp+it+(p+D)+2p~t)=p’+2p+1

and equality holds iff p=1, ie., exactly one line of a projective plane of
order p was broken up.
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If t=1, we have > p>+3p—1. Now we suppose 2<p+1—1<p—1.
In this case every B;, 1 <i< p+1—1t contains at least 7 + 1 points not con-
tained in any other B;, i# j, 1 <j< p+1—t Thus the short lines contain-
ing these points lie entirely within the given B,.

Let B;=C,uD;, 1<i<p+1—1t where

C,:{x,: x;€ B, x; ¢ U B‘}

v#EL
l€svsp+1—1¢

Di=Bi\Ci'

Case a. For an i, 1<i<p+1—1, the pairs of C, are covered by one
short line 4. Then for any x;e C; we need at least one line to cover each
of the pairs (x;,y), ye B\A,, (#J). For different x’s we have different
lines. This gives at least |[C;| = ¢+ 1 different short lines within B,.

Case b. The pairs of C; are covered by more than one line. In this case
the de Bruijn-Erdos theorem gives at least |C;| = ¢+ 1 different short lines
within B,.

The lines we considered are different for different i’s. This gives, that the
number of short lines is at least (p+1—1¢)(r+1). Hence b= p*+1+
(p+1—1)(t+1)>p*>+3p—1for 2<t< p— 1. This completes the proof.

Before closing with several open problems we remark that a forthcoming
paper by Erdds, Mullin, Sos, and Stinson [3] contains related results.

ProBLEM 1. Theorem4 is not best possible. We conjecture that
Theorem 4 holds with

b= p*+3p+0(1).

Remark. Let |S|=v, A={A4,,..,A4,} a 2-design. Assume 1< |A4,]<
v — 2. We can prove that the number of 4,’s not containing x for every xe S
is greater than v—\/;. We have equality for finite geometries. This might
be connected with the following conjecture of Dowling-Wilson.

PrOBLEM 2. Let x€ 8, and x ¢ 4,. Assume that there are ¢ lines through
x not meeting 4,. Then b=v+ ¢

This is equivalent to the assertion that the number of lines not contain-
ing x is never less than the number of points not on 4,.

PROBLEM 3. Assume again A= {A4,,.,4,} is a 2-design, 1<|4,<
v— 2 and that the 2-design is not a finite geometry, further that b is minimal
satisfying this condition. Furthermore assume there is no finite geometry of
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order v and v,>v is the least integer >v for which there is a finite
geometry. Is it true, that we obtain our 2-design by omitting elements from
the ﬁnitejgometry of size v, (perhaps we can completely omit some lines if
vy—v>./1)?

PrOBLEM 4. Let b be the minimal number of blocks of a design on v
elements satisfying |4,| <v—2. Is it true that

— b
lim ——— = o0?

v — © \/;
PROBLEM 5. Let {A4,} be a design on v= p>+ p+ 1 elements for which
|4,|=14,l=p+1, A;n A, = . We proved in Lemma 6 that b > p* + ip.
Determine the smallest possible value of b or give a better estimation.
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