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Denote by M,, the set of integers b for which there exists a 2-design (linear space) 
with u points and b lines. M, is determined as accurately as possible. On one hand, 
it is shown for v  > u,, that M, contains the interval [V + @, (;) -41. On the other 
hand for u of the form p’fpf 1 it is shown that the interval [u + 1, v+p- l] is 
disjoint from M,; and if u > II,, and p is of the form q2 + q, then an additional inter- 
val [u+p+ 1, u+p+q- l] is disjoint from M,. @ 1985 Academic Press, Inc. 

Let S be a finite set, ISI = u, and let A = {A 1 ,..., Ab} be a family of sub- 
sets of S. A is a 2-design (or pairwise balanced design) or linear space) if 
every pair of elements of S occurs in exactly one Ai and IAil > 1 for 
1 < i < b. The elements of S are called the points, the subsets Ai are called 
the lines or blocks of the 2-design. Doyen asked what are the possible 
values of b for a given u? Let M, be defined as the set of integers b for 
which there exists a 2-design with v points and b lines. So the problem is 
the determination of M,. 

* The work of these authors was supported in part by National Science Foundation Grant 
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Clearly 

M,c 1, 
V [ 01 2 

and (l)-l,(l)-3$M.,. 

Also a well-known theorem of de Bruijn and Erdos [ 1 ] states that if b > 1, 
then b 3 v. Thus min M, = v. 

Answering a question of Griinbaum, Erdijs [2] proved the following: 
Let there be given n points in the plane. Join any two of them by a line. 
Denote by b the number of lines obtained. There is an absolute constant c 
so that every b with cv312 <b<(i), b#(;)-1, b#(;)-3 can occur as the 
number of lines. (This result is best possible apart from the value of c.) This 
obviously gives that with the same c every b # (;) - I, (;) - 3, cv312 < b < (;) 
occurs in M,. For an arbitrary 2-design the situation is different. Let f(v) 
denote the largest integer b < (;) - 3 for which there is no 2-design on u 
elements and b lines. We shall prove 

THEOREM 1. There is an absolute constant c so that for v > vO 

f(u)<u+v”2+c, 

where c can be any value > M. 

Remark. If we make plausible assumptions about the distribution of 
primes we can prove f(u) < v + v”2(log v)’ for some fixed u.. Further we 
conjecture that 

1im;up 7 = co. 
0’ 

Theorem 1 shows that all values in the upper portion of the range b E [u, 
(;) - 41 are possible. For b close to v our results are quite different. To get 
interesting results it will be convenient to assume v is of the form p* +p + 1 
(here p is not necessarily a prime or prime power). 

We shall prove 

THEOREM 2. Let u=p2+p+1. Then for p2+p+1<b<p2+2p+1 
there is no 2-design with v points and b lines. 

Remarks. This result fails for u not of this form: projective planes from 
which points have been deleted provide many examples where b-u < ,/%. 

Theorem 2 is best possible in that it is easy to construct a 2-design with 
b =p2 + 2p + 1 lines. To see this it suffices to consider the lines A, ,..., A, of 
a projective plane of order p and replace A, = {x1 ,..., xP + 1 ) by A: = 
{x2,x3 ,..., x~+~}, A; = {x,,xi}, 2<i<p+ 1. 
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In general we may take any projective plane and obtain a new 2-design 
by “breaking up” any line, i.e., by replacing it with the lines of some 
2-design on the same set of points. In the above example Al has been 
broken up into a near pencil on p + 1 points. 

We further prove 

THEOREM 3. If v =p2 +p + 1 and b =p2 + 2p + 1, then the design is 
obtained from a projective plane of order p by “breaking up” one of its lines 
into a near pencil or projective plane. 

Theorem 3 is in some sense sharp; nevertheless we prove a stronger 
result. 

THEOREM 4. Let v =p2 +p + 1 and A= {AI,..., Ab} a 2-design which is 
neither a projective plane nor a near pencil nor is obtained from a projective 
plane by “breaking up” one of its lines. Then b >p2 + (2 + c) p where c can 
be taken as 0.147899. 

A special case of interest is for v =p2 +p + 1, where p = q2 + q. By 
Theorem 2 applied to the p + 1 = q2 + q + I points on a line of a projective 
plane of order p, the breaking up of that line results in a 2-design on v = 
p2 + p + 1 points with either 

b=(p’+p+ l)+p or b3(p*+p+ l)+p+q. 

This latter inequality must, by Theorem 4, also be valid (when b > v) for 
2-designs on v = p2 + p + 1 points which cannot be obtained by breaking up 
a line of a projective plane (when v> vO). In other words the interval 
[zl+p+ 1, v+p+q- 11 is disjoint from M,. 

Remarks. In the theory of designs or extremal set theory there are two 
essentially different methods, the combinatorial and the linear-algebraic 
one. There are just a few theorems where both methods work. This is the 
case with Theorems 2 and 3. We give two proofs. Theorems 2 and 3 are 
actually consequences of Totten’s classification [7, S] of all 2-designs 
satisfying (b - u)’ d v, but the proof in [7, 81 is substantially longer than 
those we give here. One of the present authors (J.C.F.) has used the 
algebraic approach to give a shorter proof of Totten’s complete result [4]. 
Our combinatorial proof of Theorems 2 and 3 gives with some additional 
reasoning the proof of Theorem 4. 

Proof of Theorem 1. First of all we restrict ourselves to the case when 
v =p2 +p + 1, where p is a power of a prime. It is well known that in this 
case there is a projective plane; A= (A,,..., A,} with lAil =p+ 1, 1 <i,<v 
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and (AinAj( = 1 for i #j. On the other hand, if there is such a projective 
plane, then u must be of the form t* + t + 1. 

To prove Theorem 1, first we prove 

THEOREM l*. Let v=p: +pk+ 1, pk be kth prime power (in natural 
order). Then 

.Op:+p,+ 1)<p:+QJk+P:‘*+“, 

where c can be any value > g. 

(1) 

ProoJ: Let A r ,..., A, be the lines of a finite geometry with v points. 
Observe that it is necessary to construct a 2-design only for b < p:, 1 + 
p,+,+l.Forifbap:+, + pk + , + 1 it is easy to see that we can use for our 
consideration the finite geometries of size p: +p,. + 1, where pr is the least 
prime for which p,’ +pr + 1 b b. 

Using a well-known theorem of Heath-Brown and Iwaniec [S] we have 

pk + , - pk < ph”‘2O’ + F. 

Hence 

2 p& + , + p& + , + 1 < p; + pf’20’ + ‘. 

Thus it suffices to consider the b’s satisfying 

p; + zpk + p~W40J+& <b < p: + P;~~/*“+‘. 

From the result of Erdos [2], it immediately follows that the values of b 
satisfying 

pi + cp:12 < b 

can be taken care of by the block designs formed by breaking up the 
elements of Lis into pairwise balanced designs. Thus it suffices to deal with 
the b satisfying 

P:+2pk+p~3L/40’+E<b<P:+Cp~‘2. (3) 

Let L, = {x ,,..., xpt+ 1 >. Let q be the smallest prime power satisfying 

p& + 1 < q2 + q + 1 < p& + p~31’40’+E’2. (4) 

Consider now a projective plane with the lines B, ,..., Bq~+y+ 1. Omit y = 
q*+q-pk<p~3ww+~ of the points of this projective plane (without 
destroying any of the lines). Let the remaining points be identified by 
lx Xm+l 1 ,..‘, >. Thus we obtain a 2-design on our set (x1 ,..., xPk + , > and 
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therefore on our set S of pi + pk + 1 elements. Now the number of lines of 
this design is pi +pk + q2 + q + 1; p: + pk of the lines have size pk + 1, the 
other qf + qr + 1 sets have size qr + 1 or less. (“Less” because we had to 
omit x elements which are at our disposal.) 

Let B:,..., B:z+~+ 1 be the blocks which remain after the omission of the 
x elements and let tj = 1 B: I. By breaking up the lines BT we get bi new lines 
for every bi satisfying ct, 3/2 < b. < (2) - 3. Choosing the values of ti (1 < i < 
q* + q + 1) properly we can ge; every value in the interval (~il/~, pi3”*O’ + “) 
in the form Et=, b,> with appropriate 

b,,E[,,:‘, (1;)4]. 

This completes the proof of Theorem l*. 

The proof of Theorem 1 now can be completed by the same method. 
We now proceed to the proofs of Theorems 24. Henceforth we assume 

that we have a 2-design with v = p* + p + 1 and b < p2 + (2 + c) p for some 
cc&. We use the following notation: A,, A*,..., A, are the blocks (lines); 
*XI, x2,-, X” are the points; IAj( =li=length of A,; r,=l{i:xj~Ai, 
1 <i<vfJ =degree of xi. 

LEMMA 1. No line of length > p + 1 exists unless the design is a near 
pencil. 

Proof: From [6] we have b3 1 + (12(v-I)/(u- 1)) if a line of length 1 
exists. Let I be the maximum length of a block A. Suppose I > p + 2. 

Case 1. I < $. Note that 1*(v - I) is increasing for 0 < Id fv. Thus 

b,(P+2)2(p2+P+ 1-(P+2))=p2+3p+ l-4,p , 
p*+p+1-1 

> 

a contradiction for p 3 2. 

Case 2. I> 3~. If there are two points off A then the line through them 
and A both meet at least (Z- 1) 2 other lines. Thus b > (I - 1) 2 + 2 > $v = 
:p’ + $p + $, a contradiction for p > 1. Hence no more than one point lies 
off of A. So the design is either degenerate (only one line) or a near pencil. 

In view of Lemma 1 we may assume that the maximum length of a block 
is p + 1. Given this and v =p2 +p + 1 we have the useful fact that a point 
has degree p + 1 if and only if it lies only on lines of length p + 1. 

We will refer to blocks of length p + 1 as long and <p + 1 as short. 
Clearly if all blocks are long the design is a projective plane. Thus we 
assume that some short blocks exist. 
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LEMMA 2. If v = p2 + p + 1, b Q p2 + 2p + 1, and there exists a block A 
all of whose points have degree p + 1, then b = v. 

Proof. All blocks on a point of degree p + 1 have size p + 1. Thus A and 
the (p + 1) p blocks which meet A provide a set of p2 + p + 1 blocks of size 
p+ 1. These cover (p2+p+ l)(“:‘)=(;) pairs, so there can be no other 
blocks. 

LEMMA 3. ri > p + 1 for all i. 

Proof. Since u = p’ + p + 1, a point of degree p or less would lie on 
some line of length p + 2 or more. 

LEMMA 4. Some point of degree p + 1 exists. 

Proof Suppose that ri > p + 2 for all i. Note first that a block, A,, of 
length p + 1 exists since otherwise 

bp> i li= 2 riz(p+2)v=(p+2)(p2+p+1) 
i= 1 i=l 

implying b >, p2 + 3p + 2, a contradiction. 
Since min ri 2 p + 2, the number of lines intersecting A, of length p + 1 is 

at least (p + 1 )( p + 1). But any point not contained in A,, is contained in a 
line not intersecting A,. So we get at least p’/(p + 1) =p - 1 + (l/(p + 1)) 
lines which do not intersect Al. By this, b 3 (p2 + 2p + 1) + p. 

LEMMA 5. Every two lines of length p + 1 meet. 

ProoJ: Let IA,I=IA21=p+1, A,nA,=@. Then together A, and A, 
both meet (p + 1)2 = p2 + 2p + 1 blocks. Now any point contained in A, or 
A2 is of degree > p + 2. Therefore for x E A I there is a line B(x) containing 
s and IB(.x)l < p + 1; any point contained in B(x) has degree bp + 2. 
Hence we have at least IB( +x)1 - 1 lines intersecting B(x) but not inter- 
secting A,. 

If [B(x)1 > p/2 for some XE A, then b 3 p2 + jp. If IB(x)l <p/2 for every 
XE A,, then x is of degree 3 p + 3 if x E A,. In this case we have, by 
counting the lines meeting Al, b 9 (p + l)(p + 2) > p2 + 3p. 

Algebraic Proof of Theorem 2. To prove Theorem 2, let N be the v x b 
incidence matrix of the design and U its row space. It is well known that 
NT( NNT) ~ ’ N is the matrix of the orthogonal projection from Rb (with the 
standard inner product) onto U, provided that N has rank v, or equivalen- 
tly, (NNT) ’ exists. 

In our case, NNT = A + J, where A = diag(r, - 1: x E S) and rx denotes 
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the degree of the point x; and it is easily checked that (A + J) - l= 
d - ’ + ad - ‘JA - ‘, where c = l/( 1 + as) and cls = C, E .J l/(r, - 1)). The 
b x b matrix 

Q=Z-NT(NNT)-’ N=Z-NTA-‘N+aN=A-‘JA-‘N 

is evidently the matrix of the orthogonal projection from Rb onto U’, a 
subspace of dimension b - v. In particular, Q has rank b - u. 

For a subset T of the set S of points, let 

The rows and columns of Q are indexed by the blocks A, B,..., of the 
design, and with the above notation, 

Q = Z- ((a,,.)) + d(u,us)). 

Let [F be the set of rrO blocks on a fixed point x,, and consider the rxo by 
r.rO principal submatrix Q. of Q whose rows and columns are indexed by 
the members of [F. For distinct A, BE [F, tlA n B = (l/(r,, - 1)). Writing PA for 
1 - CI~ + (l/(r.,, - 1 )), we have 

Q,=diag(a,:AE[F)- I -1 J-I- ~(~,~B)),,B, F. 
r -Yl 

So far, this holds for any design. 
With our hypothesis, Lemmas 1 and 3 show that all blocks have size 

< p + 1 and all points have degree > p + 1. Then 

and ljA = 0 if and only if IA I= p + 1 and all points of A - {x0) have degree 
p + 1. Suppose, for contradiction, that /IA > 0 for all A E IF. Then 
diag(/?,) -+-(T((u~c(~)), being the sum of a positive definite and positive 
semidetinite matrix, is positive definite and hence has rank r,o. Subtracting 
the rank 1 matrix (l/(r, - 1)) J can reduce the rank by at most one, so 

r ,,-l<rankQ,<rankQ=b-u<p-1, 

which gives a contradiction rxo d p to Lemma 3. 
To summarize, there exists a block A on x0 such that all points of 

A - {x,,} have degree p + 1. We now take x0 to be any point of degree 
p + 1 and Lemma 2 completes the proof. 
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Algebraic Proof of Theorem 3. Let Y= {x~S:r,=p+ l}, Z= (xES: 
r.y > p + 1 }. By Lemma 2, there are no blocks A s Y. But let us call A good 
when A is long and all but one of its points is in Y. Because of Lemma 2 we 
may assume that each block on a point y, E Y contains at least one point of 
z, so IZI >,p+ 1. 

The argument involving Q0 in the previous theorem shows in this case, 
that each point of Z is contained in at least one good block. Any two long 
blocks intersect. Let G be a set of blocks consisting of one good block con- 
taining z for each z E Z and consider the principal submatrix Q, of Q 
whose rows and columns are indexed by the members of G. For distinct 
A, BEG, aAnB= l/p (since A, B intersect in a point of Y). Also, for A E G 
containingzez, ~A=(l/(r,-l))+(p/p)<(l/p)+l.Then 

being the sum of a positive definite, a positive semidefinite, and a rank 1 
matrix, is seen to have rank 31GI - 1 = IZI - 1. So 

We have now proved that IZI = p + 1. 
Recall that all blocks containing a point of Y are long. Consider two 

good blocks A, A’ containing z, z’ E Z. There are p2 blocks other than A 
containing points of A - {z}, all of which are long. There are p blocks 
(including A) on z containing a point of A’ - {z’} and these too must be 
long. Thus there are at least p2 +p long blocks. These cover (p’ +p)(“l ‘) 
pairs, leaving only (p : l ) pairs uncovered. The remaining p + 1 blocks are 
short and cover these (pi ‘) p airs. But all short blocks are contained in Z, 
and IZ( = p + 1. Evidently, the short blocks form a (possibly degenerate) 
projective plane on Z. 

Finally, the long blocks together with Z form a projective plane of order 
p on x, which proves Theorem 3. 

Now we present combinatorial proofs of Theorems 24. Note that it suf- 
fices to prove Theorem 4 only since (using the de Bruijn-Erdiis Theorem) 
the breaking up of a line in a projective plane immediately results in 
b >/ p2 + 2p + 1. Equality holds only if the line is broken into a projective 
plane or near pencil. 

We show first that the number of lines of length p + 1 is at least p2 + 1 
and then show that this implies that exactly one line was broken up. 

Let q = (number of lines length p + 1) and let the longest line not of 
length p + 1 be A^, of length ap, 0 <a < 1. Thus every line has length p + 1 
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or Gap. By counting triples (xi, xj, Ak) with xig A,, xj’ Akr xi # xi; we 
have 

(b-q)clp(ap-l)+qp(p+1)2u(u-1). 

Using u=p*+p+l and b<p’+(2+c)p we have 

qaP*+P 
( 

1-2a*-ca* 
1 -a* ) 

+ (l+crc)p+i 
p(1 -a*)+ 1 +a’ 

So q 3 p* + 1 for a < ,,/?. We now take care of larger a. 
Let x be a point of degree p + 1. Then x $ A^. Since A^ is short there exists 

a line of length p + 1 through x missing A^. Denote this line by A and the 
lines through x meeting A^ by A,, A, ,,.., A,,. 

Consider now A, and A. Together both meet (p + 1 - l)(p + 1 - 1) + 
degree(x) =p* +p + 1 lines. 

Through each point y E A\A, there is at least one line meeting A and 
missing A r (i.e., at least one of the p + 1 lines from y to A must miss A,, 
since A^ through y meets A, and misses A). Thus there are at least ap - 1 
lines meeting A and missing A 1. Similarly if A* is a line meeting A and 
missing A, there are at least IA *I - 1 lines meeting A i and missing A. 

Adding these up, we have 

b>(p*+p+l)+(ap-l)+(lA*l--1). 

Hence jA*l<(l+c-a)p+l. 
Thus any line meeting A but missing A, has length < (1 + c - a) p + 1. 

This same argument holds for any Ai, 1 ,< i < ap. Now suppose A’ is any 
block meeting A. If A’ misses some Ai, 1 6 i 6 ap then iA’1 < 
(1 + c - a) p + 1 by above. If A’ meets every A,, AZ,..., A,, in addition to A 
then IA’1 b ap + 1. So [A’( =p + 1 by maximality of A^. 

We have shown that every block meeting A has length p + 1 or 
<(l+c-a)p+l.LetubeanypointonAand 

N,, = No. of lines of length p + 1 through u other than A. 

Then 

No. of lines through u of P’ - PN, P-N, 
length 6(1 +c-a)p+ 1 3(1+c-a)p+1-1=(1+c-a)’ 

so 

P-N, 
degree(u)-l~N,+(l+c_a). 
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Summing over u E A then gives 

b-12 c (dwee(u)-1)2(q-l) 
LIE .4 

l-l+~-a P(P+ 1) +l+c-a, 
since q- 1 =GUeA N,. Solving for q gives 

4aP2+P ( 1-(2+c)(l+c-a) + 1 

) 
-. 

a-c M-C 

Thus q>p’+l for l+c-a61/(2+c), i.e., a~(c2+3c+l)/(c+2). 
Previously q > p2 + 1 for a < Jz. We choose c so that these ranges 
overlap, i.e., 

2 + 3c + 1 
c+2 

q/m. 

Equivalently 0 > c4 + 6c3 + 1 lc* + 5c - 1. To within six decimal places we 
can take c = 0.147899. 

We now complete the proof by showing that q > p2 + 1 implies one line 
was broken up. Let A, ,..., A,z+ I be the lines of length p + 1, t 3 1. Here we 
use the following theorem of Vanstone [9]: Let I SI =p2 + p + 1, B = 
{B, .,..., B,}, m >p2 be a family of subsets of S, (BJ =p + 1 for i = 1, 2 ,..., m. 
If IBj n BJ = 1, 1 6 i < i 6 m then B is embeddable into a finite projective 
plane of order p. 

We apply this theorem to the system {A, ,,.., Ap2 + ,}. Let B, ,..., B,z+, + , 
be the finite projective plane into which we embed our system, and B,, 
1 < i <p - t + 1 the lines not belonging to our system. Then the pair 
covered by the lines B,, i< p - f + 1 must be covered by our lines A,, 
j>p’+t. 

Observe that to every line Bi, i < p - t + 1 there is an xi, X,E B, and 
xi$Bj, j<p-t+l, i#l. This is obvious because p-t<p+l and 
1 Bin B,I = 1 for i #i. Now for every A,, j> p2 + t which contains xi we 
have A, c Bi since for y $ Bi(x,, .v ) is covered by a line A,, v < p2 + t. Since 
all the pairs (xi, y), y E Bi must be covered by such a line Aj, and 
[AtI < p + 1, we have at least two lines which are contained in Bi. The short 
lines meeting some B; induce a sub 2-design on the p + 1 points of Bi. So 
by the de Bruijn-Erdos theorem the number of short lines which meet a B, 
is at least p + 1. Fixing B, we have at least p + 1 short lines meeting B, . 
The remaining p - t lines Bi each contain at least two short lines. Thus 

and equality holds iff p = t, i.e., exactly one line of a projective plane of 
order p was broken up. 
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If t=l, we have b>p2+3p-1. Now we suppose 2<p+l-t<p-1. 
In this case every Bi, 1 < id p + 1 - t contains at least t + 1 points not con- 
tained in any other B,, i # j, 1 <j< p + 1 - t. Thus the short lines contain- 
ing these points lie entirely within the given B;. 

Let Bi=CiuDi, 1 <i<p+l --t where 

C; = xi: xic B,, xi+ 
i 

u B,, 
\’ f i 1 

IGV<p+l-f 

D, = B;\C,. 

Case a. For an i, 1 < id p + 1 - t, the pairs of Ci are covered by one 
short line A,,. Then for any X~E Cj we need at least one line to cover each 
of the pairs (x,~, y), y E B,\A,, (#a). For different x,‘s we have different 
lines. This gives at least IC;/ > t + 1 different short lines within Bi. 

Case b. The pairs of Ci are covered by more than one line. In this case 
the de Bruijn-Erdbs theorem gives at least 1 Ci] > t + 1 different short lines 
within Bj. 

The lines we considered are different for different l’s. This gives, that the 
number of short lines is at least (p + 1 - t)(t + 1). Hence b > p2 + t + 
(p + 1 - t)( t + 1) > p2 + 3p - 1 for 2 < t d p - 1. This completes the proof. 

Before closing with several open problems we remark that a forthcoming 
paper by Erdos, Mullin, Sos, and Stinson [3] contains related results. 

PROBLEM 1. Theorem 4 is not best possible. We conjecture that 
Theorem 4 holds with 

b>p2+3p+O(1). 

Remark. Let ISI = v, A= (A, ,,.., Ab). a 2-design. Assume 1 < [Ai/ d 
u - 2. We can prove that the number of A;s not containing x for every x E S 
is greater than v - &. We have equality for finite geometries. This might 
be connected with the following conjecture of Dowling-Wilson. 

PROBLEM 2. Let x E S, and x $ A,. Assume that there are t lines through 
x not meeting A;. Then b > v + t. 

This is equivalent to the assertion that the number of lines not contain- 
ing x is never less than the number of points not on Ai. 

PROBLEM 3. Assume again A = {A, ,..., Ab) is a 2-design, 1 d [Ai1 Q 
v - 2 and that the 2-design is not a finite geometry, further that b is minimal 
satisfying this condition. Furthermore assume there is no finite geometry of 
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order u and ui > u is the least integer > u for which there is a finite 
geometry. Is it true, that we obtain our 2-design by omitting elements from 

of size u, (perhaps we can completely omit some lines if 

PROBLEM 4. Let b be the minimal number of blocks of a design on v 
elements satisfying IA iI < v - 2. Is it true that 

:b-v ? 

‘lrn -z=“’ 0 - m 

PROBLEM 5. Let {A,} be a design on v = p* + p + 1 elements for which 
IA,I=IAII=p+l, A,nA,=fZ/. We proved in Lemma6 that b>p*+$p. 
Determine the smallest possible value of b or give a better estimation. 
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