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Abstract. A very special case of one of the theorems of the authors states as 
follows: Let 1 ~< a I ~< a 2 ~< ... be an infinite sequence of integers for which all the 
sums a i + a/, 1 ~< i ~< j, are distinct. Then there are infinitely many integers k for which 
2 k can be represented in the form a i + aj but 2 k + 1 cannot be represented in this 
form. Several unsolved problems are stated. 

1. Let  A = {al, a2 , . . .}  (al < a2 < . . . )  be an infinite sequence o f  
positive integers. We denote  the complement  o f  A by i]: 

Pu t  

A = {0, 1 ,2 , . . . }  - A .  

A ( n ) =  Z 1 ,  A ( n ) =  Z 1, 
a<~n a<~n 
aeA aCA 

and for n = 0, 1, 2 , . . .  let R~ (n), R 2 (n), R 3 (n) denote  the n u mb e r  o f  
solutions o f  

ax + ay = n, ax~A,  ay~A (1) 

ax + ay = n, x < y, a~eA,  a y e A  (2) 
and  

ax + ay= n, x <~ y, axeA ,  ayeA,  (3) 

respectively. 
In the first four  parts  o f  this series (see [3], [4], [5] and  [6]) we studied 

the regular i ty propert ies o f  the funct ions  R 1 (n), R 2 (n) and  R 3 (n). In 
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particular, in Part  IV, we studied the monotonic i ty  properties of these 
functions. We proved that  the function R 1 (n) is mono tone  increasing 
f rom a certain point  on, i.e., there exists an integer no with 

R l ( n +  1)>~Rl(n)  for n>~n  o 

if and only if the sequence A contains all the integers f rom a certain 
point  on, i.e., there exists an integer nl with 

A c~ {nl ,n I + 1,nl + 2 , . . . }  = {nl,nl + 1,ni + 2 , . . . )  . 

Fur thermore ,  we proved that  the function R2 (n) can be mono tone  
increasing also in a nontrivial way: namely, there exists a sequence A 
such that  

A (n) < n - c n 1/3 

(so that  ,4 (n) > c n 1/3) and R 2 (n) is mono tone  increasing f rom a certain 

point  on. Finally, we showed that  if A ( n ) - - o  , then the 

functions R2 (n) and R3 (n) cannot  be mono tone  increasing. (See [1], [2] 
and [7] for other related problems and results.) 

The purpose of  this paper  is to prove a result of  independent  
interest on the connect ion between R3(2k  ) and R3(2k + 1) (see 
Theorem 1 below) which will enable us to improve on our earlier 
estimates concerning the monotonic i ty  of  R 3 (n) (see Corollary 1 
below). 

Theorem 1. I f  A = {al , a2, . . .} (al < a 2 < . . . )  is an infinite sequence 
o f  positive integers such that 

71 (n) n - A (n) 
lira = lira - + oo ,  (4) 

,-,+o~ logn ~_,+~ logn 

then we have u 

lira sup ~ (R3(2k) - -  R3(2k + 1)) = + oo . (5) 
N - ~ + m  k ~ l  

(So that,  roughly speaking, ax + ay assumes more  even values 
than odd ones.) Clearly, this theorem implies that  

Corollary 1.1 I f  A = { a l , a 2 , . . . }  (al < a2 < . . . )  is an infinite 
sequence o f  positive integers such that (4) holds, then the funct ion R3 (n) 

Corollary 1 has been obtained independently by R. BALASUBRAMANIAN. His 
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cannot be monotone increasing f rom a certain point on, i.e., there does 

not exist an integer n 2 with 

R 3 ( n +  1)~>R 3(n) for  n>~n2.  

We recall that  in [6] we proved this with the m u c h  stronger 

o( n ) assumpt ion A (n) = ~ in place of  (4). This result seems to 

suggest that,  contrary to our earlier conjecture, also R 3 (n) can be 
m o n o t o n e  increasing only in the trivial way but  unfor tunate ly  we have 
not  been able to prove this. 

A sequence A = {al, a2, . . .}  (al < a2 < . . . )  of positive integers is 
said to be a Sidon sequence if R3 (n) ~< 1 for all n, i.e., if 

a x + a y = a ~ + a ~ ,  x<<,y,u<<,v 

implies that  x = u, y = v. (We remark  that  very little is known on the 
properties of  Sidon sequences; see eg. [7].) Theorem 1 implies trivially 
that  

Corollary 2. I f  A is an infinite Sidon sequence, then there exist 

infinitely many integers k such that R 3 (2 k) = 1 and R 3 (2k  + 1) = 0, 
i.e., 2 k can be represented in the form 

but 

a i + a j =  2 k  

ax + ay=  2 k + 1 

is not solvable. 

(In fact, it can be shown by analyzing the p roo f  of  Theorem 1 that  
there exist infinitely many  positive integers N such that  the assertion of  
Corollary 2 holds for ~> A (N) integers k with k ~< N.) 

Theorem 1 is near  the best possible as the following results shows: 

Theorem 2. There exists a sequence A = {al, a2, . . .} (al < a2 < . . . )  
o f  positive integers such that for  some positive real numbers c, n3 we have 

~] (n) > c log n (for n > n3) (6) 

paper contains several other related results of independent interest. His paper will 
appear in Acta Arithmetica. 
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and 
N 

lim sup ~ ( R  3 (2 k) - R 3 (2 k + 1)) < + Go . 
N--* + co k = l  

(7) 

2. The proof of Theorem 1 will be based on the following idea: IfA 
is a finite sequence of positive integers, and we denote the number of 
even elements and odd elements of it by A0 and A1, respectively, then 
the sum in (5) can be estimated in the following way" 

+co +oo +co 

(R 3 ( 2 k ) - R  3 ( 2 k +  1) )=  Z R 3 ( Z k ) -  Z R3(Zk+ 1 ) =  
k = l  k = l  k = l  

1 -- E 1 -  E 1=7 E l + � 8 9  
asA, a' ~A a~A,a'  ~A aeA, a' eA a~A 

a ~< a' a < a' a+a'=-0 (mod 2) 
a+a'-=0(mod2) a + a ' ~  1 (rood2) 

1 
2 E 1 =  

a6A,a'~A 
a+a '==- 1 (mod 2) 

1 2 = 7(A0 + A 2) + �89 + A 1 ) -  �89 + A, Ao) = 

_- ~1 (A ~ - -  A1) 2 + �89 (A0 + A1) >~ �89 (A0 + A1) 

which tends to infinity if the cardinality ( -- A0 + AI) of the sequence A 
tends to infinity. However, of course, the situation is much more 
complicated for infinite sequences. 

F o r - 1  < r <  + 1, put 

f (r)  = y, r a 
a~A 

so that 
+co 

f2  (r) = ( Z  ra) ( E r~') = E ra+a '  (~--- E R1 (El) r n) 
aeA a'eA aeA,a 'eA n = l  

and hence 
+co 

E R 3  (El) r n  = E r~+d = 
n= 1 aeA, a 'eA 

a<~ a' 

- + �89 E = �89 0 e (r) + f ( r2) ) .  - -  "2 E ra+a'  f2a 
a~A,a 'eA a~A 

(Note that here and in what follows all the infinite power series are 
absolutely convergent trivially for - 1 < r < + 1.) 

For - 1 < r <  + 1, put 
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and  

-+-oo 

g (r) = ~ R3 (n) r ~ = 1 (f2 (r) + f(r2))  (8) 
n = l  

-boo 

h(r)= ~" ( R 3 ( 2 k ) - R 3 ( 2 k +  1))r 2k+1 
k = l  

Then for 0 < r < 1 we have 

+oo +co 

h(r )=r  ~, (R3(2k)r 2k -  ~, R 3 ( 2 k +  1 ) r 2 k + l =  
k = l  k = l  

-boo +co 

= r Z  �89  ~ + ( - r )  ~ ) -  2 � 8 9  ~ ) =  
n = l  n = l  

+oo +r 

-- - 7~ (1 -- r) ~ R 3 (n) r n + �89 (1 + r) ~ R 3 (n) ( -  r) n = 
n = l  n = l  

= - �89 (1 - r)g(r) + �89 (i + r ) g ( -  r). 

(9) 

To prove (5), it is enough  to show tha t  

lira sup h (r) = + oe . 
r--*1-0 

(10) 

In fact, if  we start  f rom the indirect a ssumpt ion  tha t  (5) does no t  hold,  
then there exists a positive real number  B such tha t  

N 

2 (R3(2k) - R3(2k + 1)) ~< B for N =  1 , 2 , . . .  , 
k = l  

and  hence for  all 0 < r < 1, 

1 +co +co 

- - h ( r )  = ~ r i ~ (R3(2k) - R3(2k  + 1))r 2k+1 = 
1 - - r  i=0 k=~ 

+ co [(n - 1)/2] 
= 2 2 (R3(2k) - R3( 2 k  + 1)) r~ ~< 

n = 0  k = I  

-boo -boo B 

<~ Z B r " = B  2 r  ~ -  
n=O n=O 1 - -  r 

so tha t  

which contradic ts  (10). 

h (r) ~< B 
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In  v iew o f  (8) a n d  (9), c lea r ly  we have  

4 h ( r )  = - 2(1  - r)g(r) + 2(1  + r ) g ( -  r) = 

= - (1 - r ) ( f 2 ( r )  +f(ra)) + (1 + r ) ( f 2 (  - r) + f ( r 2 ) )  = (11) 

= -- (1 -- r ) f 2 ( r )  + 2r f ( r  2) + (1 + r ) f 2 (  - r) t> 

/> -- (1 -- r ) f  2(r) + 2rf(r2) . 

F o r  k = 1, 2 , . . . ,  p u t  rk = exp  ( -  1/2k), so t h a t  r I < r 2 < . . .  < 1 ,  

l im rk = 1, 
k ~ + o o  

r k _  I = r2k ( fo r  k -- 2, 3 , . . . )  (12) 

a n d  

1 

2~+1 

since 

1 
- - <  1 - r  k =  1 - e x p ( - 1 / 2  k ) <  f o r  

~ < x  1 -  = x  ~ < 1 - e - X < x  

F o r  k = 1 , 2 , . . .  we wr i te  

g ( k )  = h (r~) a n d  f ( k )  = f(rk) . 

F u r t h e r m o r e ,  we p u t  

k = 1 , 2 , . . . ,  (13) 

f o r  0 < x <  1 . 

7 = l im sup ( 1 - r k ) F ( k  ) a n d  O = lira i n f ( 1 - r k ) F ( k  ) . 
k-+ + oo k-~ + co 

3. In  o r d e r  to  de r ive  (10) f r o m  (11), we h a v e  to  d i s t ingu i sh  f o u r  

cases.  

Case 1. A s s u m e  first  t h a t  

a n d  

d + y  
P u t  e - so t h a t  

2 

b < 1 (14) 

r > 0 .  (15) 

0 < ~ < 1 (16) 
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I f  (17) holds, then  

~ = 0 = 7  if 0 = 7 ,  (17) 

d < 9 < y  if 6 < y .  (18) 

lira (1 - r k ) F ( k )  = 9 , 
k--+ + co 

hence in view of  (14), for  all e > 0 and  k > k 0 (e) we have 

(1 q- e ) l / 2 ( 1  - -  r k _ l ) f ( k  - 1) > 0 ( 1 9 )  

and  
(1 - rk) F(k) < (1 + e)1/2 ~ . ( 2 0 )  

(19) and  (20) imply tha t  

( 1 - r k ) F ( k ) < ( 1  + e ) 1 / 2 9 < ( l + e ) ( 1 - r k _ l ) F ( k - 1 ) .  (21) 

I f  (18) holds, then  by the defini t ion o f  ~ and  v, there exists an 
infinite sequence kl < k2 < . . .  o f  positive integers such that  for 
i -  1 , 2 , . . .  , 

(1 " r k 2 i _ l ) F ( k z i _ l )  > 0 > (1 - rk2 , )F (k2 i  ) . 

Then  for all i, there exists an integer k with k2/_ 1 > k >~ k 2 / a n d  

(1 -- r k _ l ) F ( k  -- 1) >~ 9 > (1 -- r k ) F ( k  ) (22) 

so tha t  (22) holds for infinitely m a n y  positive integers k. 
Ei ther  (21) holds for  k > k 0 (e) or  (22) holds  for infinitely m a n y  k, 

there exist infinitely m a n y  positive integers k with 

(1 - r k ) F ( k  ) < (1 + e)(1 - r x _ l ) F ( k -  1) .  

Hence,  in view of  (12), (1 -,- r k ) F ( k  ) < (1 + e)(1 - r Z ) F ( k  - 1) and  

F ( k )  < (1 + e)(1 + r k ) F ( k  - 1) .  (23) 

In view of  (11), (12), (20), (22) and  (23), for  sufficiently large k we 
have 

4 h (rk) = 4 H ( k )  >~ -- (1 -- r k ) f  2 (rk) + 2 rk f ( r~)  = 

= -- (1 -- rk)f2(rk) + 2rk f ( rk_ l )  = -- (1 -- rk)F2(k)  + 2 r k F ( k  - 1) > 

2 rk 
> -- (1 - rk )F  2 (k)  + F ( k )  > (24) 

(1 + e ) ( 1  + r k )  
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> - - ( 1 - - r k )  F 2(k)+ 1 F(k)=F(k)( -1  1 ( 1 - r k ) F ( k ) )  
1 + 2 e  + 2 e  

1 (1 + e)l/2q) . 
> F(k) -1 + 2e 

> 

If  e is sufficiently small in terms of o, then in view of  (16) we have 

1 1 - 9  
(1 AV 8) 1/2 0 > - -  (25) 

l + 2 e  2 

It follows f rom (24) and (25) that  for infinitely many  positive integers k 
we have 

1 - 9  
4 h (rk) > F(k) 

2 

which tends to + ~ as k ~ + ~ since clearly, for infinite sequences 
A we have 

l i m f ( r ) =  + ~ ,  
r~l  --0 

and this completes the p roo f  of  (10) in Case 1. 

Case 2. Assume now that  

6 = 7 =  lim ( 1 - r k ) F ( k ) = 0 .  (26) 
k ~ + ~  

We are going to show that  there exist infinitely many  positive integers 
k with 

F(k) < 4F(k  -- 1).  (27) 

In fact, let us start f rom the indirect assumpt ion that  there exists a 
positive integer Ksuch  that  for k ~> K w e  have F(k) >~ 4F(k  - 1) (for 
k~>K).  

This implies by straight induct ion that  for j = 0, 1, 2 , . . .  we have 

F(K + j) >I. 4 i F ( K ) .  (28) 

On the other hand,  for all 0 < r < 1, 

+o~ 1 
f (r)  = Z ra < Z rn-- 

a~A n=0 1 -- r 

so that  in view of  (12), 
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F ( K  + j)  = f(rK+j) = f ( r ~  Is) < - -  
1 - -  r l / 2 J  

- K  
(29) 

1 1 - rk 1 2,-~ ~/2J 1 2J-1 2 j 
= - ~ r x < - - ~ l -  

1/2J 1 - rK i=0 1 - rK i=0 1 -- r x 1 - r  K 1 - r  x 

It  follows f rom (28) and  (29) tha t  

2 j / 
> 4 J r ( K )  = 4Jf(rK) 

1 - -  r K 

but  i f j  is sufficiently large in terms of  rK, then this inequal i ty  canno t  

hold  ( n o t e t h a t  0 < rK < 1 a n d t h a t f ( r )  > 0 for a l l0  < r < 1), and  this 
cont rad ic t ion  proves the existence o f  infinitely m a n y  positive integers 

k satisfying (27). 
Then  in view of  (12) and  (26), we obta in  f rom (11) tha t  i f k  satisfies 

(27) and  is sufficiently large, 

4 h (rk) = 4 H ( k )  >~ -- (1 -- rk ) f  2 ( r k ) +  2 rk f (r  2) = 

-- - (1 - rk)f2(rk) + 2 rkf(rk_~) = 

= - (1 - rk) F 2 (k )  + 2 r k F ( k  - 1) = 

= - (1 - r k ) F ( k  ) ' 4 F ( k  - 1) + 2 r k F ( k -  1) = 

= F ( k  - 1) ( -  4 (1 - rk) F ( k )  + 2 rk) > 

> F ( k - 1 ) ( - � 8 9  + 

which tends to + o o  as k 
completes  the p r o o f  o f  (10) in 

l) > � 8 9  1) 

+ o0 (since A is infinite) and  this 
Case 2. 

4. In order  to s tudy the 
fol lowing no ta t ion :  we pu t  

and  

so tha t  

1 
p (r )  - 

1 - r  

cases with ~ = 1, we in t roduce the 

-I-00 

f ( r ) =  Z r ' - -  ~ r a =  ~ r" (30) 
n = O  a~A n~A  

P ( k )  = p(rk) (k = 1 , 2 , . . . )  

lira sup (1 - rk) p (rk) = lira sup (1 -- (1 -- rk)f(rk)) = 
k--+ + oo k ~ + o o  

= 1 -  lim i n f ( 1 - r k ) F ( k ) =  1 - ~ = 0  for O =  1 ,  
k ~ + o e  

(31)  
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and in view of  (4), for  a rb i t rary  large posi t ive n u m b e r  L and for  
r ~ 1 - 0 we have 

1 Z 
p( r )  = ( 1 - r ) ( - i ~ _ r , ~ A r ' )  = 

= ( l - r )  ri Z r" = ( l - r )  ~.A(n) r '>  
z 0 n e A  n = 0  

+oo 

> (1 - r ) ( O ( 1 )  + Z L ( l o g n ) r " )  = 
n = l  

+or  

= o(1)  + Z L ( l o g n ) ( r ' -  r "+1) = 
n = l  

+co 

= o(1)  + L ~ ( l o g n -  log(n  - 1))r" = 
n = 2  

= o ( 1 ) + L ~  log 1 +  r ' >  
n = 2  H - -  

+ ~  yn 1 
> o(1)  + c L  ~ - -  = o(1)  + c L l o g -  1 

n = l  H - - r  

(where c is a posit ive abso lu te  constant) .  This holds  for  all L > 0 
whence 

l i m p  (r) log = + oe . (32) 
r ~ 1 - 0  

It fol lows f rom (13) and (32) that  

( k - ~ + o ~ k -  ~> ,.-.llim0P(rk)l~ log _ = + ~ .  (33) 

Finally,  in view o f  (12), it fol lows f rom (11) and (30) that  

4 g ( k )  = 4 h ( r k )  >>. - -  (1 -- r x ) f 2 ( r k )  + 2 r k f ( r 2 k )  = 

(1 (1 ) 
- p(rk) + 2 r k  1 r 2 p(r~)  = - ( 1 - r k )  1 rk 

1 2rk 
- -  + 2 P ( k )  - (1 - r k ) p 2 ( k )  + - -  2 r k P ( k  - l)  = 
1 -- rk 1 -- r 2 

(34) 
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1 

1 + r  k 
- -  + 2 P ( k )  - (1 - r~)P2(k)  - 2 r k P ( k  - 1) > 

> - 1 + 2 P ( k )  - (1 - rk)P2(k)  -- 2 P ( k -  1). 

Case 3. Assume tha t  
= 1 (35) 

and  

lim s u p P ( k ) ( 1  - rk) 1/2 > 0 . (36) 
k-~q oo 

It follows f rom (13) and  (36) tha t  

0 < lira s u p P ( k ) ( 1  - rk) m < 
k ~ + o o  

< 

lim sup P (k) 2 -k/2 < 
k ~ + o e  

lim sup P (k) e-k~4 . 

(37) 

i . e , ,  

P (k) ~< e-K/8 ek/8 p (K) for k ~> K 

hence 

lim s u p P ( k ) e - k / 4  <~ l im supe-K/S ek /SP(K)e  -k /4= 
k ~ + o o  k ~ + o o  

= lira s u p e - X / s P ( K ) e  -k/8 = 0 
k ~ + o o  

which canno t  hold  by (37) and  this cont rad ic t ion  proves the existence 
o f  infinitely m a n y  integers k satisfying (38). 

Then  in view of(31)  and  (33), we ob ta in  f rom (34) tha t  i f k  satisfies 
(38) and  is sufficiently large, 

4 H ( k )  > - 1 + 2 P ( k )  - (1 - rk)PZ(k)  -- 2 P ( k -  1) > 

> - 1 + 2 P ( k )  - (1 - rk)PZ(k)  -- 2 e - 1 / s P ( k )  = 

We are going to show tha t  there exist infinitely m a n y  integers k with 

P ( k )  > e ' / S P ( k -  1) . (38) 

In fact, let us start  f rom the indirect  a ssumpt ion  tha t  there exists a 
positive integer K such tha t  for k >~ K we have 

P ( k )  <~ el/S P ( k  - 1 )  ( f o r k > ~ K ) .  

This implies by straight  induct ion  tha t  for j = 0, 1, 2 , . . .  we have 

P ( K  + j) <<. eJ/8 p ( K )  , 
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= P ( k )  - P(k  + 2 - (1 - r k ) P ( k )  - -  2 e  -1/8 

> P ( k )  - ~ + 2 - o ( 1 ) - 2 e  -1/8 = 

= P (k)(2 (1 - e-1/8) _ o (1)) > (1 - e - I / 8 ) p  (k) 

which, by (33) and  1 - e -1/8 > 0, tends to + oe as k ~ + 0o and  this 
completes  the p r o o f  o f  (10) in Case 3. 

Case 4. Assume finally that  d = 1 and 

lim P ( k )  (1 - rk) 1/2 = 0 . (39) 
k-~ + ov 

Then  in view of  (33), (34) and  (39), for  sufficiently large N we have 

1 U 1 U 
4~2H(k)~vk: >~ N k=2Z ( -  1 + 2 P ( k )  - (1 - r~)P2(k)  - 2 P ( k -  1)) > 

2 g 1 g 
>--l+N~=2-- ~ ( P ( k ) - P ( k - 1 ) ) - ~ 2 ( l :  - r k ) P 2 ( k ) >  

N 

> - 1 + 2 P ( N ) N  -1 - 2 P ( 1 ) N  -I  - N -1 ~ (P (k ) (1  - rk)l/2) 2 > 
k = 2  

N 

> - 1  + 2 P ( N ) N  - 1 - 1 -  N - 1 ( 0 ( 1 )  + ~ 1 ) >  
k = 2  

> - 1 + 2 P ( N ) N  -~ - 1 - 2 > P ( N ) N  -1 

which, by (33), tends to + ~ as N ~  + ~ and  this proves (10) also in 
Case 4 which completes  the p r o o f  o f  T h e o r e m  1. 

5. P r o o f  o f  T h e o r e m  2. Let  B = {17 ,64 , . . . ,42k  + 1,42k+1, . . . )  

and  define the sequence A by 

A = / ~ - -  {0} = { 1 , 2 , 3 , . . . , n , . . . }  -- B .  

This sequence A satisfies (6) trivially. We are going to show that  it 
satisfies also (7). 

Let  us write 
1 i f  x E B  

~(x )  = O if  xq~B 
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and 

so that 

Bo(n)=  ~ 1 and Bl(n)= ~ 1 
b<~n, bEB b<~n, b e B  

b ~-0 (rood 2) b--- 1 (rood 2) 

B o (n) + B l(n) = ~ 1 = B(n ) ,  
b e B  
b<~n 

and by the construction of the sequence B, 

[B0 (n) -- B1 (n) l ~< 1 for all 

Clearly we have 

H . (40) 

R 3  ( n )  - -  2 
i<~n/2 

(1 - ~7 (i)) (1 - ~ (n - i)) = 

n - 1  

= ~ 1 -  ~ ~7(i)-~7(n/2)+ ~ ~7(i)~7(n-/)= 
i<~n/2 i= 1 i<<.n/2 

= ~ 1 - B ( n - 1 ) +  ~ ~(i)~(n-i). 
i <. n/2 i < n/2 

Hence 

R 3 ( 2 k ) - R  3(2k-t- 1) = 

= ( ~  1 -  ~" 1)+(B(2k)-B(2k-1))+ 
i ~ k  i<~k+ 1/2 

+ ~ ~ ( 0 ~ ( 2 k - / ) -  ~ ~ ] ( / ) ~ ( 2 k + l - / ) =  
i< .k -1  i<.k 

= ~ 7 ( 2 k ) +  ~ ~ ( i ) ~ 7 ( 2 k - i ) -  ~ 7 ( i ) ~ 7 ( 2 k +  1 - / )  
i<~k- I  i<<.k 

so that 

N 

(R 3 (2 k) - R 3 (2 k + 1)) = 
k = l  

N N N 

= 2 ~ 7 ( 2 k ) +  Z Z r / ( i ) r t ( 2 k - 0 - -  Z 
k = l  k = l  i ~ k - I  

= Bo(2N) + Xl - X2 

(41) 

~ ~7(/)rj(2k + 1 - i) = 
k=  1 i<.k 

14 Monatshefte fiir Mathematik, Bd. 102/3 
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where 

N N 

Xl= Z }-" ~ ( / ) ~ ( 2 k - i )  and Z2= }-', Z ~ ( / ) ~ ( Z k +  l - i ) .  
k = l  i<~k-1 k = l  i<~k 

Here ~1 is the number of solutions of 

b + b ' < 2 N +  1, b + b ' - O ( m o d 2 ) , b < b ' , b e B ,  b'~B, (42) 

while 222 is the number of solutions of 

b + b ' < 2 N + l , b + b ' - l ( m o d 2 ) , b < b ' , b ~ B , b ' 6 B .  (43) 

Let us define j by 
b j <  2 N +  1 ~< bj+l , 

and let us classify the pairs satisfying (42) according to that whether 
b' < bj or b' = bj. If  b' < b s, then the pair b, b' in (42) can be chosen in 

~ ~ (B0 (oJ2-1))" ways from the B 0 ( b j -  1 ) integers b with b = 0 (rood2), 

o it bo chos  in 1') 
Bl(b j - 1) integers b with b - 1 (mod 2), b ~< b j -  1, beB. Further- 
more, if b'= bj, then b in (42) can be any of the integers b with 
b - b s (mod 2), b ~< 2 N + 1 - bj, b e B, apart from the case 2 bj ~< 
~< 2 N + 1 when b = bj must not occur. Thus writing 

f~ if 2 b j ~ < 2 N + l  
ON=vu if 2 b j > 2 N + l ,  

we have 

221= B~ 1) + 2 + }- ' ,  1--ON. (44) 
b=-bj(mod2) 

b ~ 2 N +  l -b j ,  b~B 

Similarly, if b' < bj in (43), then b, b' in (43) can be any of the 
Bo(bj- 1 ) B l ( b j -  1) pairs b,b' with b ~ b ' ( m o d 2 ) ,  b<~bj-  1, 
b' ~< bj - 1, b ~ B, b' E B. If  b' = bj in (43), then b can be any integer 
with b ~ bj (mod 2), b ~< 2 N + 1 - bj, b ~ B so that 

X2 = B0 (bj - 1) B1 (bj - 1) - ~" 1 . (45) 
b ~ bj (mod 2) 

b<~2N+ l -b j ,  b~B 

It follows from (41), (44) and (45) that 



Problems and Results on Additive Properties of General Sequences, V 197 

N 

(R 3 (2 k) - R 3 (2 k + 1)) = 
k = l  

',)+ ( B1 (bj-1)) - B ~  1)B1 (b j - -1 ) )+  

+( ~" 1-- ~ 1)--ON<. 
b =-/53 (mod 2) b ~ bj (mod 2) 

b<~2N+ l -b j ,  b~B b<~2N+ l -b j ,  b~B 

~< �89 1) - B~(bj- 1)) 2 + [Bo(2N) - Bo(bj-1)] + 

+ �89 j -  1 ) - B l ( b j -  1)1 

hence, in view of (40), 

N 

(R 3(2k)-Ra(2k+l))~<�89 1 + � 8 9  
k = l  

which completes the proof of Theorem 2. 
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