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NON-ADAPTIVE HYPERGEOMETRIC GROUP TESTING
F. K. HWANG and V. T. SOS

Abstract

In a hypergeometric group testing problem we have a set of n items known to contain exactly
d defectives. The problem is to identify all the defectives through group testing with a minimal
number of tests where a test consists of a spzcifiad subset of the items and has the outcome pure
if none of the items in the subset is defective and the outcome contaminated otherwise. A testing
procedure is called non-adaptive if all tests have to be specified simultaneously. We translate this
group testing problem into an extremal problem for set-systems and give estimates for the size of
the extremal systems.

1. Introduction

In a hypergeometric group testing (HGT) problem we have a set of n items
known to contain d defectives and n—d good items. Any subset of the n items
can be pooled for a test with two possible outcomes: the subset is pure if it contains
no defectives and the subset is contaminated otherwise. 1he objective is to identify
all the defectives using a minimal number of tests. In this paper “minimal” is defined
as to minimize the maximum number of tests required (the worst-case number
of tests).

A group testing algorithm is called sequential if the tests are given sequentially,
that is, the decision of which subset to test currently may depend on the outcomes
of tests already performed. A group testing algorithm is called non-adaptive if all
tests have to be specified simultaneously, thus banning any possibility of using
feedback information from tests. Since any non-adaptive algorithm can also be
used sequentially, it is clear that the sequential algorithms should be expected to
perform better than non-adaptive algorithms in general. The line between sequential
algorithms and non-adaptive algorithms has not been clearly drawn historically;
hence the group testing literature consists almost exclusively of sequential algo-
rithms owing to their better performance as far as the number of tests is concerned.
However, with parallel processing a possibility in many potential applications of
group testing, one should no longer ignore the potential advantage of time saving
in non-adaptive group testing. The purpose of this paper is to call attention to this
fact and to provide some exploratory results in this direction.
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2. The group-testing problem and some extremal problems for set-systems

Suppose S is the set of n items which contains d defective elements. To design
a nonadaptive HGT for finding the defective items we need a system = {73, ..., T,}
of tests which satisfies the following:
for any I= {i|T; is contaminated} there is exactly one d-tuple D= {uy, ..., us}€S
so that
DNT;#0 for i€l
and
DNT;=0 for i¢l

For given n and d let ¢(n, d) be the minimum number of ¢ so that there is a
system & ={Ty, ..., T,} which satisfies this condition. Our main result yields

M ci(d) logn < @(n;d) < cy(d) logn

where ¢,, ¢,>0 depend only on d. The lower bound follows from the simple Propo-
sition 1, the upper bound follows from Theorem 3.

First we reformulate the problem in a dual form. This yields to different extremal
problems for set-systems.

Now let S={uj, ..., u,} be a set of n elements, J ={T}, ..., T,} be a family
of subsets of S. Define the dual family

€ = {Cl, canry Cn}
by
C = {jluiETj}, 1=, an, 00

Observe that for given defective elements wu;, ..., 4;
d
taminated” iff je |J C;,. So
v=1

, a test T; yields “con-

d
I={j|T; is “contaminated”} = | C;,.
v=1

This leads to a reformulation of the problem.

DErFINITION 1. Let €={C,, ..., C,} be a family of subsets of S. € is a d-Sidon
family, if all the d-term unions are distinct:

d d
(2) kU Cik # U Cjk
if {iys .o By = { 1o coosda}-

PROPOSITION 1. I ={Ty, ..., T,} is a system of tests of a parallel HGT, iff
the dual system €={C,, ..., C,} is a d-Sidon system.

PRrOOF. Suppose
d d
U Cik =7 U Cjk
k=1 k=1
but  {iy, ..., ig}# {1, --»js}- Then the test outcomes are identical whether
D={u;, ...,u;,} or D={uj,..,u;}. Thus J fails to identify the defectives.

ia
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Now suppose that € is a d-Sidon family. Then the set
{j: T; has a “contaminated” outcome}

corresponds to a unique d-element set {u;, ..., ;,} which is the set of defectives.

COROLLARY 1. For any parallel HGT-system I = (T, ..., T,} on n-elements
with d defectives :

3) (Z] =2
This gives the lower bound in (1).

So we arrive at a dual form of the original problem which is an extremal problem
for set-systems.

PrOBLEM 1. Let 7, d be given positive integers. Let f(t,d) denote the maxi-
mum cardinality of a d-Sidon system on a ¢ element set. Determine f(@, d).

Recently Busch et al. [1] studied a stronger version of parallel HGT-systems,
the d-complete designs.

. DeriniTioN. The family I ={Ty, ..., T,} is called a d-complete design if
. for any d subscripts {iy, ..., i;}

d
@ T 0 € = S\t -0 )

REMARK. By Proposition 1 a d-complete design can te used as a non-adaptive
HGT when the number of defectives is d. 1o find the defectives is very simple:

D = S—U{T}|T; is pure}.
Proposition 2 gives a characterization of d-complete designs.

PrOPOSITION 2. T={T}, ..., T,} is a d-complete design iff for any d subscripts

{is i iy}
© ¢ E UG, il i

d—1
ProoF. Suppose C; < |J C,. Then
k=2

d+1 d+1
{leﬂka_Jz G} = U{TjUQkL_Jl CFS {taias voes 6} 7248 — ity s ons Ugpr)e

Hence T is not a d-complete design.
Now suppose (5) holds. Then for any choice of distinct ig, Iy, ..., i; there
always exists a 7 such that

Ui € T J
but

w§T; for k=1,...,d.
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Thus

d
u,€ U{T;| jé kL_Jl Ci}-
Consequently,

d
{T;l jqul G =8—{us, ..., u;,}).

The original HGT problem leads to the question what is the minimum number
of sets in a d-design on n elements.
By Proposition 2 this yields to the following dual problem:

PrOBLEM 2. Let ¢, d be given integers. Denote by g(#, d) the maximum car-
dinality of a system #={C,, ..., C,} on ¢ elements which satisfies (5). Determine
g(t, d).

A system €={C,, ..., C,} satisfies (5) if

1 s
(6) IC;NCyl < vl |Cil Vi # J.
So we arrive to

PrOBLEM 3. Let ¢, d be given integers. Denote by h(z,d) the maximum car-
dinality of a system %={Cy, ...,C,} on ¢ elements which satisfies (6). Determine
h(t, d).

Now we have three extremal problems for sets systems. Since the restriction
(6) is stronger than (5) and this is stronger than (2), we have

@) h(t,d) = g(t,d) = f(1,d).
In Theorem 3 we prove
®) h(t,d) > ¢
where ¢>1 depends only on d. This proves in (1) the upper bound for ¢(n;d):

h(t, d) >%(1+—(41d7)t.

THEOREM 3.

Proor. We use a sort of greedy algorithm to prove the theorem.

]. Put k=4dr, m=l k=4r and [S}=

Let S be a t-element set, r:[ 7

={A|Ac S, |A|=k}.
Choose A,€[S]¢ arbitrarily. Delete all k-sets of S which intersect 4, in at
least m elements. lL.e., let

B, = {B|BE[ST,, |BN4,| = m}.

t
(@dy

We define the sets 4; and the families B; inductively. Suppose we have already
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Ay, .. Ay, By, ..., B,. Then choose

A\;+1E[S]k\iL_J1 B,
arbitrarily. Define

'%v+1 = {B IBE[S]’(\L;JI ‘%i’ leAv+1| = m}'
We proceed as long as we can. Suppose 4, ..., Ay, have been chosen this way.
Since
_ L (k) (t— k]
%] = g,;(z) (k—i ;
we certainly can continue unless

= (26 )

Put bi=(k) (,i:lfj . Obviously

i

) (IiJ > b,
and for 3r=i<k=4dr
b  (k—i)? " i (4d —3)2 <l
bi—x ~ i(t—2k+i) =~ 3 (4d)>*—8d+3 3°
Hence
k t—k 4 bty —r
[m) (k—m] = b’;g, b; Pl
and
E(KY(t—k e 1 Y
(¢0) ié,.(i)(k_m]d“ <2b’[l+ (4d)2J°
By (9) and (10)

1) & k)(t—k] 1[ 1 ]‘
(klg,‘:, [m k-m) = 2\ @ae)
This means the above algorithm leads to a family o/={4,, ..., 4,;}, which sat-

isfies (6) and

M= % (1 +@—{11)2]t.

By Corollary 1 and Theorem 3 we have
COROLLARY 2.
(log(1+dY))tlogn < ¢ (n,d) < 2(log 1+(4d)~%) " log .

REMARK. A more careful computation would give a better constant instead of
4. We do not see how to diminish the gap between d~1 and d-2.

8
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Some open problems

1. We considered three different problems for set-systems. We have the trivial
inequalities (7). What can be said on

g(t, d) £t d)
WD P gGd)

2. Is it possible to give an explicit construction for a “large” system which
satisfies (2) resp. (5) or (6)?

Historical remarks

Hwang [8] gave a sequential HGT algorithm with t=dlog2§ tests. Since

sequential HGT algorithms also obey the inequality (with a different argument) as
given in the Corollary of Theorem 3, Hwang’s algorithm is asymptotically optimal
for fixed d and large n.

For d=2, the best sequential HGT algorithm so far was given by Chang,
Hwang and Lin [2]: For =4,

S {[43 .2@-51_1 for t even,
T [31-2¢-YD-4—1 for ¢t odd.

Freidlina [6] considered the non-adaptive HGT problem but did not require
that all defectives be identified. He gave a construction for a non-adaptive algorithm
in which each test consists of a set of random items with the probability of each

item being included being g. He showed that for g=1—2-"4 and r=(1+¢) log, (Z),

then the probability of such an algorithm identifying all defectives is at least 1—4
where ¢ and A are arbitrary numbers in (0, 1).

Shapiro [10] and Fine [5] studied a different version of HGT called the “counter-
feit coin” problem in which each test reveals the exact number of defectives con-
tained in it and the number of defectives is unknown at the outset (of course it can
be found out in one test). Soderberg and Shapiro [11] gave a non-adaptive algo-
rithm with t=0(n/logn). ErdSs and Rényi[4], and Lindstrém [9] proved that
t=n/log, n) in an asymptotically optimal parallel algorithm for the counterfeit coin
problem and gave a construction for such an algorithm.

A criticism of the HGT model is that in real applications one usually can det-
ermine only an upper bound but not the exact number of defectives. Now we know
that a non-adaptive HGT algorithm or a d-complete design can also be applied
to the case where only an upper bound d is known for the number of defectives.
This is so because (2) implies

k 1
UG, =UC, if 1=sk=l=d

v=1 v=1
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and
{i1’ L) lk} = {j13 ---’jl}'

ADDED in proof. Theorem 3 was proved independently by P. Erd§s, P. Frankl
and Z. Fiiredi [13].
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