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ABSTRACT

A well-studied question in graph theory* asks the following: Given a graph
L and an integer r > 0, which graphs G have the property that no matier
how the edges of G are r-colored, a monochromatic copy of L must always
occur in G? (More precisely, G has a subgraph isomorphic to L in which
all edges have the same color. We will typically use this type of informal
description when the meaning is clear**.) Indeed, the forthcoming book
[BFRS] will list several hundred papers which deal with various aspects of
this subject. In [BEGS], we recently initiated a study of a related problem
which in a certain sense goes in the opposite direction.

* for undefined terminology in graph theory, see [H].
** to us.
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1. Introduction

Our motivation actually originated from a question of Berkowitz (see
[BEGS]) concerning time-space tradeoffs for models of computation (which
still is unresolved). Basically, we investigated the following. Given a graph L
and integers n and e, what is the smallest number r so that for some graph
G = G(n,e) with n vertices and e edges, the edges of G can be r-colored so
that in every copy of L in G, all edges have different colors. We say that such
a copy of L is totally multicolored (abbreviated TMC), and we denote this
least value r by the expression xg(n,e,L). This notation comes from the fact
that the value we seek is also the strong chromatic number of the hypergraph
which has as its set of points the edges of G, with (hyper)edges consisting of
the sets of edges of G which form copies of L.

In [BEGS] a substantial body of results are given concerning xs(n,e, L),
as well as an unexpectedly large number of open problems. Some of these we
will mention at the end. Several of the nicest results, however, could not be
included there because of space limitations. Our purpose in this note is to fulfill

the promise made in [BEGS] and present the details of these results here.

2. Preliminaries

We will call two edges of a graph strongly independent if they are disjoint
and their four endpoints span no other edges. Our two main results will contrast
the different behavior of xgs(n,e,L) depending on whether or not L has two
strongly independent edges.

Lemma 1  If a bipartite graph contains at least (m —1)%2+ 1 edges, then
it either contains m independent edges or else a vertex of degree at least m.

This result is sharp.

Proof  This follows immediately from the well-known result of Kénig;
a bipartite graph with maximum degree A is the union of A matchings. If
G is a bipartite graph with ¢ > (m —1)2+1 edges and A(G) < m — 1, then

some matching contains at least [¢/A] > m edges. The sharpness is shown
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by any bipartite graph in which one part has exactly m — 1 vertices, each of

degree m — 1.

Lemma 2 Let 0 < 6 <1 be a fixed real number and let p be a fixed
positive integer. There exists a positive number a = a(6,p) such that for all
sufficiently large n, every graph with n vertices and average degree at least én

contains the complete bipartite graph K(p, [an]).

Proof  Just use the standard argument: if the average degree d of a graph

90-5()

then the graph contains K(p,q). With a = 167 and ¢ = [an], the above

satisfies

inequality holds for all sufficiently large n.

Notation If A and B are disjoint subsets of V(G), the bipartite subgraph
of G with vertex partition (A, B) and edgeset {zy|z € A,y € B,zy € E(G)}
will be denoted < A,B >¢ or, if G is understood, simply < A4, B >.

Lemma 3 Let 0 < e <1 be fixed and let p be a fixed positive integer.
There are then numbers «,f8,7 € (0,1) so that for all sufficiently large n,
every graph G with n vertices and at least e(n) = [}en?] edges contains a
bipartite subgraph < A, B > such that

(i) |4] = [an] and |B|= [gn],

(ii) every vertex in B is adjacent to at least [yn] vertices of A, and

(iii) there exists X C B with |X|=p such that < A, X > is complete.

Proof  Since G has average degree at least en, it contains a subgraph G'
with  |[V(G')| > en in which every vertex has degree at least en/2. [Just
remove vertices of degree less than en/2 until there are none left; for each
such removal, the average degree does not decrease. Since the remaining graph
has average degree at least en, it has more than en vertices.] By Lemma

2 (with & = ¢/2 and n replaced by en)G' contains a bipartite subgraph
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< X,A >= K(p,[an}), where a = (¢/2)P*!. Set R =V(G')\{AUX}. For
simplicity of notation, let |A| =a,|R| =r.
Suppose that each vertex of A is adjacent to at least Ar vertices of R.

Then there are at least

s = 525

vertices in R which are each adjacent to at least Aa/2 vertices of A. If

not, the number of A — R edges is less than sa + (r — s)Aa/2 and since

sa+ (r —s)Aa/2 < alr,

this contradicts the fact that every vertex in A is adjacent to at least Ar
vertices of R. Since a = [an] and each vertex in A adjacent to at least
(¢/2—p—a+1) vertices of R, it follows that for all sufficiently large n, the
above hypothesis is satisfied with A = ¢/2 — a. Since r > (e — a)n — 0(1)
and s/r > A/2, the stated conclusion follows by setting 8 = A(e — «)/2 and
v = Aa/2.

The Main Results

Theorem 1 Let L be a bipartite graph satisfying A(L) > 2 and having
at least two strongly independent edges. Let ¢ be a real number in (0,1) and
set e(n) = [en?]. Then there is a positive number «(L,€) such that

xs(n,e(n),L) > kn®

for all sufficiently large n.
Two proofs of this result will be given. The first is based on results from
extremal graph theory while the second one relies heavily on Szemerédi’s reg-

ularity lemma.

First Proof Let G be an arbitrary graph with n vertices and e(n) edges.
We want to show that there is a positive number & such that in every coloring

of E(G) using Kn? or fewer colors, there is a non-TMC copy of L. Choose p
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and ¢ so that L is a subgraph of K(p, ¢)\2K>. Consider the bipartite subgraph
of G which is guaranteed by Lemma 3 and let C = B\X. Choose m > ¢ so
that

m(ﬁﬂ]) S (fa'ﬂ)'

q q
(I n is large enough, m > 2(a/v)? will suffice to ensure this inequality.) Then
for every set of at least m vertices in C, there will be two vertices which have
a common neighbourhood in A of at least ¢ vertices. Implicit in the proof of
Lemma 3 is the fact that there is a number (¢ such that every vertex in A is

» adjacent to at least [(n] vertices of C. Suppose that « < a(/m? and G is
colored using  xn? or fewer colors. Then at least m? of the A — C edges
have the same color and by Lemma 1 the bipartite subgraph contains either m
independent monochromatic edges or else a monochromatic star of degree at
least m. We now distinguish three cases.
Case (i) - a matching of m independent monochromatic edges. In view of our
choice of m, there are two vertices in C which are incident with edges of the
monochromatic matching which have a common neighborhood in A of at least
q vertices. Now it is clear that there is an embedding of L into G using the
two matching edges and this copy of L is non-TMC.
Case (ii) - monochromatic star of degree m with center in A. Then there are
two vertices in C which are end vertices of this star and which have a common
neighborhood in A of at least ¢ vertices. Thus we have a K(p + 2,q + 1)
subgraph of G which has two edges of the same color and so a non-TMC copy
of L.
Case (iii) - monochromatic star of degree m with center in C. In this case,
there isa K(p+1,m) subgraph which has a monochromatic star of degree
M and again a non-TMC copy of L.

Before giving the other proof let us recall the regularity lemma.

For a graph G with vertex set V = V(G) and disjoint subsets 4,B C V,
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define e(A, B) as the number of edges of G with one endpoint in each of A
and B. The density of the pair (a,B) is simply e(A4,B)/|A|-|B| and it is
denoted by d(A, B).

For 0 < e < 1, apair (4, B) iscalled e-reqular if |d(Ag, Bo)—d(A, B)| <

e holds for all Ag C A,By C B with |Ag| > €|A]|,|Bo] > €|B|.
The regularity lemma (Szemerédi) [Sz]. For every € > 0 there exists an
integer My = Mjy(e) such that the vertices of every graph G can be partitioned
into m+1 classes Cj,- -, for some m,1/e < m < M, so that the
following hold:  |Co| < en,|Cy| = --- = |Crm| and all but €(7;) of the pairs
C;,Cj) are e-regular.

Because we shall often need it, let us state the following immediate conse-
quence of the definition of e-regularity.

Lemma 5 If (Cj,C;) is aregular pair with density § and A C C;,|4| >
€|C;|, then the number of vertices of C; which are connected to fewer than
(B — €)|A| vertices in A is less than €|C}]|.

Second Proof of Theorem 1 Let a > 0 be a fixed real number and
suppose that G is a graph with n vertices and at least a(}) edges. Set
e = (a/3)!/25, where | =|L|, and apply the regularity lemma.

Suppose without loss of generality that (C;,C;) is a e-regular pair with
density at least a/2. From now on we shall only deal with the bipartite graph
H spanned by this pair.

Set u=|i| =]|Cs|.

By Lemma 5 all but at most 2eu? edges of H have both of their endpoints
of degree at least [§ — eJu > Zu. Call these edges good and note that there
are more than $u? of them.

Set k= [6/a| and let r denote the Ramsey number r(k,k) (see [GRS]).

Now let o' > 0 be a real number satisfying
a'MZ2kr < a/6.

Suppose that the edges of G, and consequently those of H, are colored
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by at most a’(;) colors. By the choice of a', some color, say red, will
occur among the good edges in H with multiplicity at least kr. Therefore,
either there are k good red edges forming a star or r good red edges forming
a matching,

Lemma 6 Let X beasetof uelements, 0 <a<1,k= [6/a]. Suppose
that By,---,By C X satisfy |B;| > au/3. Then there exist 1 < i <j<k
with

|B; N BJ'| > azu/25.

Proof = Suppose the contrary and let us bound the size of the union of the

sets. Thus,

u>|ByU---UBy| > z |Bi| — Z |B; N B;| > kau/3 — (;)qzu/% > 2u — %—gu,
which is a contradiction.

If there is a red star of size k then Lemma 6 implies that we can select two
of its edges so that the endpoints have at least a2u/25 common neighbors.

If we have a red matching, say e;,::-,e,, then let us form an auxiliary
graph on {1,---,r} in the following way.

If the endpoints of e; and e; have fewer than a?u/25 common neighbors
in Cy,t = 1,2, then join i and j by an edge of color t. By Lemma 6 no
monochromatic complete graph of size k occurs this way. Thus, by the choice
of r there are vertices 1 < i < j < r which are not connected by an edge.
Thus, e; and e; have at least a’u/25 common neighbors in both C; and
C,.

From now on the case of the star and the matching are very similar - we
just find a “large” complete bipartite graph in the common neighborhood of

the two red edges, thereby constructing a copy of L containing two red edges,

i.e., which is not TMC.
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This is done by repeated applications of Lemma 5. We only deal with the
case of the matching, the other being nearly identical.

Let e; = (z1,¥1),¢; = (z2,y2) with z,2 € C; and y;,y2 € Cy. Let
A C C; be the set of common neighbors of y; and y;. Theset B C C; is
defined analogously. Recall that [ denotes the number of vertices of L.

By Lemma 5 we can choose z3 € A—{z,,z2} such that the neighborhood
B® of z3 in B satisfies

42
B > S|BI.

Continuing in this way we find z;,---,z1 € A such that they have at
least (%)"2|B| common neighbors in B. Let y;,y2,---,y1 beany [ of them
including y; and y2.

Then these 2] vertices span a bipartite graph which is complete except
possibly for the two edges (y;,z2) and (z1,y2). Therefore it contains a copy
of L in which (z1,y1),(z2,y2) are the two (red) strongly independent edges.
This concludes the proof.
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Figure 1

Using slightly more sophisticated arguments we will prove the following

generalization in a later paper. Note that for k¥ =2 we get Theorem 1.

Theorem 2  Let L be a graph which is not the disjoint union of complete
graphs, and which has two strongly independent edges e¢ and e'. Suppose
the vertices of L can be partitioned into k independent sets so that e and e’
both have endpoints on the same two sets. Let a be a real number satisfying
’;—:f < a < 1. Then thereisa f >0 depending only on L and a, such that
if e>a(}),

xs(me,L) > ﬂ(Z).

The next result applies to graphs not having two strongly independent

edges. We first state an auxiliary result.

Lemma 7  There is a function f such that if y < f(z) then

(a+b)
<n
a
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for all a,b which satisfy 1 <a<zlognand1<b< ylogn.

Proof  First we note that

a asbb

(a + b) < (a+ b)att

for all a,b > 1. This follows immediately from Robbins’ form of Stirling’s

formula:

<ap <

n
| — — P pQn S
n! \/27rn[3] e“" where BTl Ton

Since (“:b) increases with both a and b, we have by a simple calculation

a+b T +y)*tY
log( " )< log [%]logn

for all a,b satisfying 1 <a<zlogn and 1<b<ylogn. Thus to obtain

( b)
<n,
a

(:c + y)z+y
zryy

it suffices to have

<e. (1)

For fixed z > 0, the left-hand side of (1) approaches 1 as y | 0 and thus the

existence of the desired function f is assured. In fact, writing (1) as

zlog(l+y/z)+ylog(l+z/y)<1

and using the fact that log(1 + t) < min(¢,+/?) for all ¢ > 0, it follows that
(1) is satisfied if y + /Ty <1 and we may take f(z)=1/(z + 2).

Theorem 3  Let 0 <e < be fixed and set e(n) = L(5) — en?]. Assume
that n is appropriately large. There exists a graph G with n vertices and
e(n) edges which can be colored using C(e)n?/logn or fewer colors so that

for every graph L with no two strongly independent edges, every copy of L in
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G is TMC. In particular, for every ¢ < e(n) and every graph L with no two
strongly independent edges,

C(e)n?

L)<
xs(n,q,L) < Togn

for all sufficiently large n.

Proof Let L be an arbitrary graph having no two strongly independent
edges. We shall show that there is a graph G with n vertices and at least e(n)
edges which can be colored using C(€)n?/log n or fewer colors so that every
copyof L in G is TMC. To prove this existence of such a graph, we use the
probabilistic method. Consider the random graph G, , on n vertices in which
each edge is chosen with independent probability p = 1 — e. The expected
number of edges of Gn,p is (1 —¢€)(3) and it has at least () — en? edges
almost surely. Extend the notion of strong independence by defining disjoint
pairs of vertices {u;,v;} and {u;,v3} in G to be strongly independent if
none of four pairs wujug, u1v2,v1u2,v1v2 is an edge in G (whether or not
ujv; and/or ugv, are edges). Let X be the number of m-tuples of pairs of
vertices in G, no two of which are strongly independent. The probability
that two disjoint pairs are not strongly independent is 1—¢* and the expected

value of X is

E(X) T (1-e)(3)

2mml(n — 2m)!
en?(1 - 64)("’_1)/2)m

<( 2m
(en enp(——;nnz— 1)e /2)),".

Now if m = [5log n/e*] then

E(X)=0(1) (n— o0).

Thus, for all sufficiently large n, there exist graphs with n vertices and at

2

least () — en? edges such that every list of m = [5log n/e*] disjoint pairs
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of vertices has two strongly independent pairs. Pick such a graph and simply
refer to it as G.

Partition the edges of G of into n or fewer matching. We claim that
the edges of an arbitrary matching in G can be colored using C(e)n/log n
or fewer colors so that every pair of edges which receive the same color are
strongly independent. The truth of this claim means that the edges of G
can be colored with C(e)n?/log n or fewer colors so that each copy of L is
TMC. If a matching has n/log n or fewer edges then the claim is trivial; just
give each edge a different color. Thus consider a matching M which contains
between n/log n and n/2 edges.

There is a positive number «(€) so that M contains at least & log n
strongly independent edges. To see this, consider the graph with vertex set M
in which two vertices are independent whenever the corresponding edges in M
are strongly independent. By the previous conclusion, this graph has no clique
of size m = [5log n/e*]. It must then have an independent set of k vertices
(so M must contain a set of k strongly independent edges) if |M| > r(k,m),

where r(k,m) denotes the classical Ramsey number. Since (see [GRS])

ms (F5707),

we certainly get the desired result if x(e) can be chosen so that k = [k(e)log n]

satisfies

k+m < n
k log n’

This follows easily from Lemma 7 (by setting z > 5/€¢” and replacing n by
n/log n).
Set



Further Results on Maximal Anti-Ramsey Graphs

205

Since we may remove sets of [«(e)log n] or more strongly independent edges,
giving each such set a distinct color, until there are at most n/log n edges of
M left, it follows that the edges of M can be colored with C(e)n/log n or
fewer colors so that every pair of edges receiving the same color are strongly
independent. This completes the proof of the earlier claim and thus of the
theorem.

Note that we have really done more than we needed to. The coloring of
G that we have given actually makes every copy of every graph in the entire
class of graphs without strongly independent edges TMC, not just copies of
L.

4. Concluding Remarks
As mentioned in [BEGS], our knowledge of the behavior of xs(n,e, L) is
strikingly incomplete even for some very simple graphs L. For example, how

does xs(n,e,Cs) behave? We only know:

1
xs(n,e,Cs) > c, N for e= (Z +e)n? e >0,

where ¢, — oo (very slowly) as n — oco; and

1
xs(n,e,Cs) = 0(n?/log n) for e= (5 —e)n?,e> 0.
The gap between these two bounds is embarrassing,.

For Py, the path of length 3, the situation is only slightly better.

2

xs(n,e,Py) > cin for e=en?, €>0

where ¢, — co (very slowly) as n — oo; and

xs(n,e,Py) <n for e=n?/exp(cy/logn)

for a suitable ¢ > 0.

Clearly a great deal more remains to be done in this area.
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