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Intersection Theorems for t-Valued Functions

R. H. ScHELP, M. SiMoNoOVITS AND V. T. SOs

This paper investigates the maximum possible size of families # of t-valued functions on an
n-element set S = {1, 2, ..., n}, assuming any two functions of & agree in sufficiently many
places. More precisely, given a family # of k-element subsets of S, it is assumed for each pair #,
g € # that there exists a B in 4 such that A = g on B. If # is ‘not too large’ it is shown that the
maximal families have ¢~ members.

INTRODUCTION

Recently, theories have been developed relating set systems which have some specific
intersection properties with intersection properties of other structures.

Sets

A theorem of Erdos, Ko, and Rado [3] asserts if S is an n#-element set and .o/ is a family
of k-element subsets of S any two of which have a non-empty intersection, then

n—1
k—1

This result is sharp as shown by the family of k-tuples containing a fixed element of S.
An analogous but much simpler assertion is the following observation.
If o is a family of subsets of an n-element set S such that the intersection of any two of
them is non-empty, then

|| << ) n = 2k. ¢))
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This estimate is again sharp; simply take all subsets of S containing a fixed element
x of S.

PrOBLEM 1. Assume S is an n#-element set and o/ is a family of subsets of S such that
the intersection of any two has at least k elements. What is the maximum cardinality of /7

One family o/ satisfying the above condition is obtained by taking all supersets of a fixed
k-element subset of S. For this family

|| = 2k, ?3)

Unfortunately, this is not the largest family satisfying the condition. Indeed, if n + k is
even and .o/ is the family of all subsets of S with at least (n + k)/2 elements, then any two
of them intersect in at least k elements. The number of sets in this family is

n-02 (n
Ny (1) @

This number is much greater than that given in (3) except when k = 1, when they are the
same. Katona [7] proved that, indeed, (4) is the best possible result and also settled the case
when n + k is odd.
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DerFmNITION 1. Let S be an n-element set and 4 a family of subsets of S. The intersection
problem corresponding to (S, #) is to find the maximum sized family o such that the
intersection of any two members of .o/ belongs to #. The families attaining the maximum
cardinality are called the extremal families corresponding to (S, #).

Generally, one could distinguish between strong and weak intersection problems. If one
requires that the intersection be an element of 4, then it is a strong intersection problem,
while if one requires that the intersection only contains as a subset some element of 4, then
it is a weak intersection problem.

REMARK. Here one should clarify that the distinction between strong and weak inter-
section problems is not a mathematical one, in the sense that # can be enlarged to contain
all supersets of the original members of 4. The strong intersection problem corresponding
to the enlarged & is identical with the weak intersection problem corresponding to the
original 4.

Minimal Extremal Set Systems

Throughout, the strong version of the intersection problem is assumed, thus if B € # and
B < B’,then B’ € 4.

Surely the smaller £ the smaller the extremal system corresponding to (S, #). Whenever
4 contains some k-tuples, then by letting o/ be the family of all supersets of a fixed k-tuple
in 4 the family .« has 2" * elements each pair of which intersect in #. This means that the
minimal size of the extremal family corresponding to (S, 4) is 2"~*. In the case when the
extremal families contain at most 2" % members, the family or system is called a minimal
extremal system. The aim of the paper is to investigate under which conditions minimal
extremal systems are obtained.

Such questions were discussed in [2, 4, 6]. One result obtained independently in [2] and
[4] is the following. Let .S be an n-element set and let X;, X5, . . ., X] be a partition of §
into non-empty subsets. If o7 is a family of subsets of S in which the intersection of each
pair of «f contain k (k < /)elements Y;, Y;, . . ., Y, belonging respectively to k cyclically
consecutive members of the partition X, X,, . . . , X}, then |oZ| < 2"~*. Thus this extremal
system is a minimal one and is already obtained by restricting oneself to a small intersection
family.

Functions

In [4] and [6], in addition to intersecting families of sets the authors also consider
intersecting families of functions. Given a family & of functions mapping the n-element set
S to a t-element set, two functions h, g € & are said to intersect or agree at U < § if
U = {ie S: h(i) = g(i)}. Usually, when h(i) = g(i) we simply say 4 and g agree at i.

Families of intersecting or agreeing functions are connected with families of intersecting
sets. In particular, the family of characteristic functions defined on a family of intersecting
sets gives an intersecting family of functions with ¢ = 2. In the light of an earlier remark,
it is not surprising that the following theorem holds.

THEOREM A [4]. If F is a family of 2-valued functions on an n-element set S, and S is
partitioned into | non-empty sets X,, X,, . . . , X, such that each pair in F intersect or agree
in at least k (k < 1) points y,, y,, . . . , y, belonging respectively to k cyclically consecutive
members of the partition X,, X,, . . ., X, then |F| < 2"°*,
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RESULTS

One of the questions left unanswered in [4] is whether Theorem A holds for z-valued
functions. We establish this and more, showing that the agreement of pairs of functions at
points of k£ consecutive members of the partition can be replaced by agreement at points
of k members whose indices form either an arithmetic or geometric progression with a fixed
increment or ratio. This is the content of the next three theorems.

Throughout the remainder of the paper it is always assumed that S is an n-element set, #
is a family of t-valued functions defined on S, X,, X, . . ., X, is a partition X of S into
non-empty sets, and k is a positive integer, k < l. In addition, the | members of the partition
X, X,, ..., X, will be assumed to be cyclically ordered.

THEOREM 1. If each pair of functions in F agree at some point of each of k consecutive
terms of the partition X, then |F| < t" .

THEOREM 2.  Let d be a positive integer such that id # O(mod 1),1 < i < k — 1. Ifeach
pair of functions in & agree at some point of each of k terms of an arithmetic progression of
terms of X with increment d, then |F| < " .

THEOREM 3. Let | = p" — 1 for some prime p and let r be a positive integer such that
F# lmod! + 1), 1 <i <k — 1. If each pair of functions in F agree at some point of
each of k terms of a geometric progression of terms of X with ratio r, then |F| < " *.

Each of the above theorems result in a family & that is minimal extremal. It will be
apparent from the proof given, that a slightly more general ‘agreement condition’ for the
family & can be given such that & is again minimal extremal. Since this amounts to an
appropriate permutation of the partition X, there is no need to include it.

These theorems have obvious set intersection theorem consequences.

COROLLARY 1 (set system version). Let P be either the progression mentioned in Theorem
2 or the one in Theorem 3. If of is a family of subsets of S such that the intersection of each
pair in o contains-an element of each member of some progression P, then || < 2"7*,

Clearly, when d = 1 and ¢+ = 2 the results of Theorem 2 and Corollary 1 reduce to ones
given in [4].

Dropping the Consecutiveness

In an earlier paper [6], Frankl and Fiiredi consider the family & (of ¢-valued functions
on n points) in which each pair of its members (functions) agree at k£ or more points of their
domain S. They let f(n, ¢, k) denote the maximum size of such a family. They prove the
following theorem.

THEOREM B [6]. Fort > 3,1/t < f(n, t,k) < t')(t — VY and for k = 15,f(n, t, k) =
" *ifandonlyift 2k + lorn <k + 1.

Since then, Richard Wilson has shown that the condition £ > 15 can be dropped in this
theorem. We consider a generalization of the Frankl-Firedi bound.

THEOREM 4. If each pair of functions in F agree at some point of each of k members of
the partition X, then |F| < f(, t, k).
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In particular, the Frankl-Fiiredi result shows that the family # of Theorem 4 satisfies
\Z| < f(l,t, k)" ' = ¢~* ¢ = ¢ * and is minimal extremal when ¢ > k + | or
n < k + 1. Also, the inequality of Theorem B shows "/t* < f(I, t, k)" ' < "/(t — 1).

Erdos posed and Kleitman [8] showed that

u-kpr (1
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G2, k) = (%)
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2 ¥ ( ) if I — k is odd.

i=0 i

This gives an exact upper bound on |#]| in Theorem 4 for t = 2.
When ¢ is a power of some fixed positive integer one can prove the following theorem,
which in some cases gives a more useful upper bound than the one in Theorem 4.

THEOREM 5. If t = d™ and F satisfies the condition of Theorem 4, then |F| <
f, d k-

To demonstrate the usefulness of the bound of Theorem 5 consider the case whend = 2
and, consequently, f(/, 2, k) is known exactly. In particular, consider a comparison of the
bounds of Theorems 4 and 5 in the case when/ — k = d and m are both fixed with / large.
To do this, observe by (5) that (f(/, 2, k))" < [*"?, a polynomial upper bound in /, while
S, 2" k) < F)t — 1) = (¢t — 1)*(t/(t — 1))} by Theorem B, an exponential upper
bound in /. Hence this is an instance where the bound of Theorem 5 is considerably more
effective to use than the one of Theorem 4. Similarly, Theorem 5 is better in cases when m
and / — k are not fixed but tend to infinity slowly (as functions of /).

One of the most interesting open questions left unanswered is a slight generalization
of one initially posed in [2]. Select any k element set T of indices from the index set
L ={1,2,...,1}ofthepartition X = {X|, X,, . .., X;}. Let # have as elements the set
T together will all its cyclic translates in L. If each pair of functions in & agree at some point
of each element of the partition indexed by an element B in £, then is |#| < " *? Some
evidence is given in [2] and [4] that the answer to this question is yes.

PROOFS

In order to prove Theorems 1, 2 and 3 a special case of the theorem is needed.

LemMMA 1. Letl = n < 2k so that the partition X consists of singleton sets. If each pair
of functions in F agree at k consecutive terms of the partition X, then |F| < " *.

This lemma was proved in [4] for 1 = 2, and the proof for arbitrary ¢ is similar. To make
the paper self-contained an outline of the proof is provided.

Proor (outline). Let X; = {i} for each member of the partition and let Y = S =
{1, 2, ..., n} be the set on which all elements of & agree (have the same values). Surely
if |Y| = k then the result follows. Using the ‘agreement condition’ for pairs of functions
in # it follows when i and j are at a distance at most k in either direction along the n-cycle
(i.e. when 2n — k < |i — j| < k), that either i or j belong to Y. Thus for each i ¢ Y there
are 2k — n + 1 consecutive elements of S in Y, and each additional element not in Y
accounts for an additional element in Y. Hence |[Y| > 2k —n + |S — Y| = k.

ProOOF (Theorem 1). For / = uk + ¢, 0 < ¢ < k, partition the index set of the
partition X = {X,, X,, ..., X;} into k + ¢ subsets {Y,}{*¢ by letting ¥, = {i, k +
i...,(u— Dk +ijforl <i<kandY,,, = {uk + i}forl < i < g. Note that any
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two distinct integers in the same term of this partition differ by at least k, so any &
consecutive integers (1 and [ are assumed consecutive) will be in k cyclically consecutive
terms of the partition Y;, Y5, . . ., Y, of the index set of X. Let W, W5, ..., W, be
the partition of S defined by W, = {Jjey, X, for 1 < i < k + ¢. Due to the choice of the
Y;’s each pair of functions in # agree at some point of each of & cyclically consecutive terms
of the partition W, W,, . .., W, ,.

Let #* be the set of all r-valued functions defined on S. Clearly, #* has " functions
which will be partitioned into " °~* classes as follows. For each g, h € #* define g ~ h
(equivalent to) if g(x) — h(x) has a constant value on each W,. Clearly ‘~ is an equivalence
relation. Let [g] denote the equivalence class containing g. Observe that each class [g]
contains r¥*¢ functions.

Letw,e W, 1 < j < k + g, be fixed elements of the partition W;, W, ..., W, ,. Let
F ** be the set of all t-valued functions with domain {1, 2, . . ., k + ¢}. For each class [g]
define a function y: [g] —» F** by y(h) = h, h € [g], where A(j) = h(w;) for all j. Observe
that g(x) — h(x) = g(w;) — h(w;) for all j. Clearly y is a one-to-one function. Also if
hy, h, € [g] N F, then h, and h, agree at points of at least k cyclically consecutive terms
of W, Wy, ..., W,,,, so that h, and £, agree at k cyclically consecutive points of
{1,2,...,k + ¢}. Hence from the one-to-one correspondence of y it follows from
Lemma 1 that |[g] n #| < #@*P=% = e Since this is true for each equivalence class [g],
|F| < ek re = ik,

Since the proofs of Theorems 2 and 3 are similar adaptions of the strategy used in the
proof of Theorem 1, their proofs will be given as a single proof.

PROOF (Theorem 2 and Theorem 3). Consider a maximal length progression X =
{Xon,» Xomys . . ., Xm,} of distinct terms of the partition X = {X;, X,,.. ., X,} which is
arithmetic with increment d in the case of Theorem 2 and geometric with ratio r in the case
of Theorem 3. The conditions in each of the theorems make s > k. Consider this sub-
partition X = {X,, Xm,, . - . , Xim,} of X ordered cyclically as listed. For s = uk + o,
0 < o < k, partition the set of indices of X into k + ¢ subsets {¥{V}f7¢ by letting
YO = {my, my iy omy_ gy forl i< kand YY), = {my,}forl <i<o.

If s < [ then find another maximal length progression X@ of distinct terms of X disjoint
from X. Clearly, its length is also s. Form the analogous sequence of indices { ¥;?}/X¢.
Repeat this process sequentially until the maximal progressions exhaust all terms of X,
giving subpartitions X, X@ ... X% (each cyclically ordered) with corresponding
sequences of vertices { Y }F*0, 1 <j <v.Let Y, = U}, Y} forl1 i<k + o

At this point the proof becomes identical with the proof of Theorem 1. Set W, = Ujey, X;
for 1 € i < k + ¢. Note that if a pair of functions in & agree at some point of each of
k terms of a progression of terms of X, then they agree at some point of each of k cyclically
consecutive terms of the partition W, W, . .., W, ,,. Hence |#| < "~* as required.

ProoF (Theorem 4). This proof is similar to part of the proof of Theorem 1. Let #*
be the set of all r-valued functions defined on S. Surely #* has ¢" functions which we
partition into "~/ classes as follows. For each g, h € #* define g ~ h if g(x) — h(x) is
constant on each X;, 1 < i < I Thus the equivalence class [g] containing g has ¢ elements.
Select fixed elements x; € X;, 1 < i < [, and let #** be the set of all -valued functions with
domain {1, 2,...,/}. For each class [g] define a function y: [g] - F** by y(h) =
k, h € [g], where A(j) = h(x;) for all j. Surely y is one to one and if h,, h, € [g] » F then
h, and h, have values which agree at k points of their domain. Hence |[g]l n #| < f(, 1, k),
so that |#| < f(l, t, k)",
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Before Theorem 5 is proved some observations are needed. A family #* of r-valued
functions defined on the n-element set S can be replaced by ¢ = ab-valued functions where
the set of values is {(z, w)|l < z < a,1 < w < b}. For € < Z* let P/(%) (P,(¥))
be the projection of members of € onto the first (second) coordinate. Surely |#*| =
|P(F*)| - |Py(F*) with |[P(F*)| = ', |P)(F*) =b", and |€] < |Pi(B)-[P,(F)].
Also, given the equivalence defined in the proof of Theorem 4, for g e F*, |[g] =
|P,[g]l - |Py[g]l = &' - b

PrROOF (Theorem 5). We show by induction on m that |[g] n F* < [f({, d, k)I"
where F*, is as given above, ab = d” = t, ge F*, and [g] is the equivalence relation
defined in the proof of Theorem 4. It is clear that one may assume @ = dand b = d" .
Further, since [g] N & satisfies the conditions of Theorem 4 so do P,([g] n #) and
P,([g] n &). Thus as in the proof of Theorem 4 |P,([g] n F)| < f(, d, k) and by induction
onm, when m > 1, |P,([g] » F)| < f(, d, k)"

Thus |[g] n Z| < |Py([g] n F)||IP,(g] n F)| < [f{, d, k))”. Since this holds for each
of the "' equivalence classes |#| < [f({, d, k)]" - "~".
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