CHAPTER 45

An Additive Problem in Different Structures

Vera T. Sos*

1. INTRODUCTION

Additive number theory deals with the representation of positive integers
as sums of terms belonging to a given A C N.

Many of the problems are or can be considered for arbitrary groups, semi-
groups or for some specified structures, like for set systems. It is not without
interest to compare the analogous results and methods, often developed in-
dependently, and the difficulties of different nature which arise in the various
structures. Here we illustrate this relationship by considering Sidon-type prob-
lems on different structures.

Sidon Sets

Let H be a set in which a binary operation is defined, (where this op-
eration is not necessarily commutative or invertible). We will use the additive
notation +.

Definition A set S C H is called a Sidon set if the sums z + Yy, z,y €S
are all different. More precisely

r+yFutov (1.1)

for any z,y,u,v € S of which at least three are different.
We mention a few important special cases which will be discussed below.
a) H = N, the set of positive integers or H = {1,...,N} with the usual
addition.
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b) H=N or H={1,..,N} and + is the mod p addition.
¢) H is an arbitrary or a commutative group.
d) H ={0,1}" and the coordinatewise addition + is the usual one:

1+1=2.

e) H ={0,1}" and the coordinatewise addition + is the mod 2 addition; we

denote it by ®:
1¢1=0

(which corresponds to the symmetric difference of sets).

f) H = {0,1}" and the coordinatewise addition + is the Boole- addition; we

denote it by 1:
1+1=1

(which corresponds to the union of sets).
g) H={1,..,N}" where the coordinatewise addition is the usual one. (i.e.
the common generalisation of a) and d)).
The object of the investigation of Sidon-sets in different structures may
be to determine, how “large” a Sidon-set S C H can be, to construct “large”

Sidon-sets, to investigate the structural properties of large Sidon- sets.

Historical Note

In 1932, Sidon [S1] in connection with his work in Fourier-analysis consid-
ered power series of type 35 2% when (37 z%)* is of bounded coefficients.
This led to the investigation of finite and infinite sequences (a;) with the
property that for h fixed the number of solutions of

a1+t ap=n
is bounded by K for n € N. Sidon-sets, as defined above correspond to the
case h=2 and K =1 ‘

Another source for Sidon-type questions is coding theory.

In connection with coding theory (superimposed codes) in 1964 Kautz and
Singleton [KS] considered e.g. the problem of finding a large number of code-
words (of 0-1 vectors) such that the pairwise (resp. h- term) sums are all
different. Independently in 1969 Lindstrém [L1], [L2] investigated this ques-
tion and its different variations of the problem. Depending on the particular

problem, different additions (like Boolean sum or mod 2 sum) are considered.
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The following problem of independent interest was asked by Erdés and
Moser in 1969 [EM]: how large a family of subsets of an n element set can
be, if all the pairwise unions (Boolean sums!) are different. In that setting
the problem belongs to extremal set theory and so this al’so motivates different
variations.

Many problems in additive number theory are studied for arbitrary groups.
The investigation of Sidon-sets in arbitrary groups is motivated by and applied
for the investigation of Cayley-graphs. See [B1], [B2], [BS].

The aim of this short survey is to point out the similarities or dissimilari-
ties of the results or problems in the different structures and call attention to
problems which are relevant in one but not in another structure.

Needless to say, most of the known results concern the set of integers. We
shall discuss this in §3. In §4 we consider Sidon-type problems for vectors
(including set systems). §5 contains the Sidon- type results and problems
for groups. In §6 some generalizations, applications and open problems are
mentioned.

In §2 we state some facts about Sidon-sets in general.

2. ABOUT SIDON-SETS IN GENERAL

Let A+A:={a+0b:a,b€ A}. Denote by s(H) the maximum size of a
Sidon-set S C H. We use |H| to denote the number of elements of H. Below
€1, .-y Ck, ... Will denote positive absolute constants, and in different statements
their values are not necessarily the same.

The first question about Sidon-sets is: how large is s(H) for different
structures H. In the investigations of different structures it is not so much the
methods, but their power and efficiency that vary.

However, there are simple upper and lower bounds which hold for arbitrary

H.

Fact 2.1  Let S bea Sidon-setin H.If $+SC A, then

s < V2|AV2. (2.1)
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Though this upper bound is trivial, in some cases it is the best possible
one up to a constant factor, like in the cases (b) and (e) and in some particular
cases of (c). In some other cases - though it is the base upper bound known -
it still may be far away from the exact value of s(H).

A greedy algorithm provides a simple lower bound.

Fact 2.2  Suppose that fixing any three or any two of z,y,u,v in H,

z+y=utv (2.

[S)
(V]
iz

has at most k solutions in H (in the remaining variables). Then
S(H) > 51’;|H +HPS, (2.3)
In particular, if H is a commutative group and has no involution, then
s(H) > [H|'*. (2.4)

Proof We consider only the simplest case, when H is a commutative group
and has no involution. Suppose S C H is a Sidon-set. If z € H \S and

SU{z} is not a Sidon-set, then z is the solution either of
z+a=b+c (2.5)

or of

22=b+c (2.6)

for some a,b,c,€ S. Let s = |S|. The equations (2.5) and (2.6) exclude at
most s(s —1)(s —2)+s(s—1) elements. Therefore, if |S| < |H|*/3, we must
have an element z such that SU{z} is also a Sidon-set.

We do not know any particular structure where this lower bound gives
the exact answer or even the order of magnitude of s(H). However, there are

structures where not much more is known (e.g. (c))-
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Remark 2.3  Up to now, we have only considered the simplest common def-
inition of Sidon-sets. In some structures or in connection with some particular
problems it is more appropriate to consider Sidon-sets where we require (1]
only for z,y,u,v € S where all four are different, or when =z #y,u#v. In
the non-commutative case there are further variations of the definition. These

modifications may change the situation quite significantly.

3. SIDON-SETS OF INTEGERS

A sequence (a;) of positive integers (finite or infinite) is called a Sidon-
sequence (or B, sequence) if the sums a; + a; (or what is the same, the
a; —a; differences) are all different.

Let s(n) denote the largest number k for which there exists a Sidon-
sequence 1< ay <--- < ai < n.

By the simple arguments in §2,
1/2
n'? < s(n) < V2n 2
The asymptotically best possible result is given in

Theorem 3.1  [ET],[ECh] There exists that for all n, constants c;,co > 0
such that
n!/? — ¢n%/® < s(n) < n1/? 4 cpnt/t. (3.1)

For infinitely many n

nt/? < s(n). (3.2)

The lower bound was proved independently by Erdés and Chowla [Ch] in
1944, using Singer’s result.

Theorem 3.2 [S] If ¢ is a power of prime, there exist integers 1 < a; <
o+ < agy1 < ¢+ ¢+ 1 such that the a; —a; (i # j) differences are all
distinct mod (¢ + ¢ + 1). |

Consequently the ¢? 4+ ¢ differences represent all the nonzero residues
mod (¢*>+¢+1). Such sequences are called perfect difference sets. Obviously,

a perfect difference set is also a Sidon-set.
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The upper bound and the weaker lower bound (3 + o(1))n!/? was proved
earlier, in 1941 in Erdos-Turdn [ET] which is the first paper about Sidon-
sequences. The construction in [ET] for the lower bound is probably the origin
of all the known constructive lower bounds for analogous problems in other

structures. This is the following.

Construction 3.3 Let p be a prime and let

ay=2pl+ () for 1=1,2,.,p-1 (3.3)
where (z) stands for the least positive residue of z (mod p). From
a; t+a; =a,+a,
also
t+3=r+s

and

242 =r2 4o

would follow, which is impossible, if {i,;} # {r,s}.
Komlés-Sulyok-Szemerédi [KSSz] proved the following more general and

not obvious result:

Theorem 3.4 For an arbitrary n-element set C C N there exists a

Sidon-sequence S C C such that

IS| > ev/n.
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Infinite Sidon-sequences

Let § = {1 <a < ..} be an infinite Sidon-sequence and let A,(n)
denote the number of terms <n in S. The question is, how fast can Ag(n)
grow. In the infinite case much less is known than in the finite case. Beyond

what follows from Theorem 3.1, Erdés proved the

Theorem 3.5  (See [St] There is an absolute constant ¢ > 0, such that for

every (infinite) Sidon-sequence S

As(n) < e1(n/logn)!/? (3.4)

holds infinitely often.

On the other hand Krickerberg, improving a result of Erdés, proved in

1961 the

Theorem 3.6  [K] There is an (infinite) Sidon-sequence S such that

As(n) > %\/ﬁ (3.5)

holds infinitely often.
It is not known whether or not the factor -\715 is best possible. The greedy

algorithm gives the existence of an (infinite) Sidon-sequence for which

As(n) > n'/® forall n. (3.6)

It was a great achievement when after 30 years, in (1981) Ajtai, Komlés and

Szemerédi improved this:

Theorem 3.7  [AKSZ] There is a Sidon-sequence S such that
As(n) > ¢(n log n)'/? forall n>n,. (3.7)

The proof uses the “probabilistic method with deletion” and is based on

the following Ramsey-Turén type graph theorem.
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Theorem 3.8 [AKSZ] If G is a triangle free graph with n vertices e
edges and with average degree t = 2e/n, then it has an independent set of size
> c¢-n/tlog t.

(Without the requirement that G is triangle free, Turdn’s theorem yields
the lower bound cZ. The above result also led to the best known upper bound
of the Ramsey-function: R(3,k) < ck?/log k).

Though substantial progress has been made with the density question of
infinite Sidon-sequences, there is a major gap between the known lower and
upper bounds. It is not known whether or not any of (3.4), (3.5) or (3.7) can

13 vs. nl/2 (or n® vs. nP)gapis

be improved. As we will see, such an n
quite typical also in other structures. In most structures the situation 1s even
worse, there is such a gap in the finite case too. (While for integers the finite

case is, at least asymptotically, settled.)

4. SIDON-SETS OF VECTORS

Superimposed codes were introduced by Kautz and Singleton in 1964 [KS].
We quote from this:

“A binary superimposed code consists of a set of code words whose digit by
digit Boolean sums enjoy a prescribed level at distinguishability. These codes
find their main application in the representation of document attributes within
an information retrieval system, but might also be used as a basis for channel
assignments to relieve congestion in crowded communications bands.”

One of the basic definitions is

Definition 4.1 An mxn 0—1 matrix Aiscalleda (k,m) superimposed
code of length n, if all the Boolean sums composed of k-different rows of A
are different.

The problem is to determine the minimal possible n of a (k,m) code.
Obviously this is dual formulation of a Sidon-type problem. For further refer-
ence about superimposed codes see the “Survey of superimposed code theory”

by Dyachkov-Rykov [DR] and [DDR]. We already mentioned in the introduc-
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tion that for 0-1 vectors we may define the coordinate-wise addition several
different ways. We will consider the following three additions:

1) the Boolean-sum, when 141 =1,

2) the mod 2-sum, when 1@P1 =0,

3) the usual addition, when 141 =2.

Concerning the problem of Sidon-sets of maximum size in the correspond-

ing three structures, the first one is more difficult than the second and third.
In the last two, the problem is solved asymptotically, while in the first there is

a significant gap between the best known upper bound and lower bound.

1. Boolean sum (union of sets)

Recall, that S C {0,1}" is a Sidon-set, if

a+b#c+d for a,bc,d, €S (4.1)

for every a,b,c,d,C {0,1}™ where at least three of these are different.
Obviously {0,1}" corresponds to the family of all subsets of {1,...,n}
and the Boole-sum corresponds to the union of two sets.

A family S of subsets of {1,...,n} is a Sidon-family, if

AUB#CUD (4.2)

where at least three of A, B,C, D are different. (In [FF1] it is called union-free
family.)
Denote by f(n) the maximum number m of vectors in a Sidon-set

S c{0,1}™.
Theorem 4.1

2"=3/4 < f(n) <14 2(r+D/2 (4.3)

The lower bound was proved in [KS] 1964 and independently in [FF1] in 1984.
The upper bound is trivial, since all the (f (2")) sums must be different.

The lower bound in [FF1] is proved by a construction which is a modification
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of the Erdés-Turén construction. In [KS] parity-check matrices are used. If
H! is the transpose of an n xm parity check matrix, then the 0 — 01, — 10
substitution leads to a fnatri); A where the rows form a Sidon-set in {0,1}*".

Call a set S* C {0,1}" a weak Sidon-set, if (4.1) holds for every four
distinct a,b,c,d, € {0,1}". Denote by (F(n) the maximum number m of
vectors in a weak Sidon-set C* C {0,1}". It is clear that

f(n) < F(n). (4.4)
The best known result for F(n) is the following

Theorem 4.2

2(n—log 3)/3 < F(n) < (1+ 0(1))2%™. (4.5)

The lower bound, as well as a weaker 28" upper bound was proved in
Frankl-Fiiredi [FF1], the upper bound in Lindstrém [L3].

In the lower bound the “probabilistic method with deletion” is used; we
take a random set of vectors with appropriate probability and omit one vector
from each “bad” four-tuple, which does not satisfy (4.1).

The upper bound is proved by the following idea:

Let vy,...,um be n-dimensional vectors. Split each v Into two vectors,
u and w of dimension d and n—d, let v = (u,w). For a fixed d dimensional
u; let wgl),...,vgk) be all the n —d dimensional (complementing) 0-1
vectors such that (u;, wl(-j)), 1< j <k belong to our Sidon-set. Consider the
ng ) wgl) differences, which are —1,0,1 vectors. The observation , that for
a fixed i at each coordinate at least half of the differences are 0, and that all
the ng ) wgl) differences are distinct, with the choice d = |§] this gives
the upper bound.

Bollob4s [B1] considered the analogous question for k-uniform hypergraphs,

i.e. for 0-1 vectors of constant weight.
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In Frankl-Firedi [FF2] this “uniform” case is solved asymptotically. They
consider the following three different versions. Let fi(n) resp. Fi(n) denote
the maximum number m of vectors in {0,1}™ of constant weight & in a
Sidon-set C {0,1}" resp. in a weak Sidon-set C {0,1}".

Let Hg(n) denote the maximum number m of vectorsin {0,1}" and

constant weight k in aset H C {0,1}" such that

tt+y#ztw

where the addition means the usual one (141 = 2) for any four distinct
z,y,2,w € H. (For any two pairs of sets in the family either the unions or the

intersections are different.) Obviously,
fr(n) < Fi(n) < Hi(n).
Using the less obvious inequality

k!

EHk(n) < fi(n), ((4.6))

it suffices to get bounds for H(n).

Theorem 4.3 [FF1] c,nl**/31/2 < Hyi(n) < ¢ nl**/31/2,

For the lower bound Frankl and Fiiredi use an ingenious construction based
on a theorem they prove about systems (k-tuples) which are solutions of some
equations for symmetric polynomials over finite fields.

(4.6) follows from a theorem of Erdés-Kleitman [EK] which states that
every k-uniform hypergraph H contains a k-partite H' C H with |H'| >
k'k=¥|H|. Other generalizations and applications for information theory (for

certain search problems) are considered in [HS).
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2. mod 2 sum

Consider {0,1}™ with mod 2 addition. This corresponds to the symmetric
difference of sets.

Let S C {0,1}" denote a Sidon-set and h(n) be the maximum number

of vectors in a Sidon-set S.

Theorem 4.4  Lindstrém [L1]

lim "/h(n) = 2/2. (4.7)

n+—oo

The upper bound lim, "\/h(n) = 2!/2 follows from 2.1 (and is trivial).
The lower bound follows from a construction which is a modification of the
Erdés-Turén construction [ET1): Let S be the set of all vectors (u,u®) with
u € GF(2"™). Obviously S is a set of 0-1 vectors of length 2n,|S| = 2" and
S is a Sidon-set in {0, 1}2".

Remark 4.5 Since v; + vy = v; +v3 mod 2 implies v, = vz and
v1 +v1 = vy + v3 mod 2 cannot hold for v, # v3, in this structure Sidon-sets

and weak Sidon-sets are the same.

3. Addition in R”
Instead of {0,1}™ we consider more generally the set of vectors
{0,1,---,N —1}* and the usual addition +. Let Sy(n) denote a Sidon-set

in {0,..,N —1}" and sy(n) denote the maximum number of vectors in a

Sidon-set Sn(n).

Theorem 4.6  [L1] For fixed dimension n
sn(n) < NE 4 O(N™/Cm42)) a5 N — 0. (4.8)

For n =1 thisis the Erdos-Turan inequality for Sidon sequences of integers.

Remark 4.7 For N > 2 the trivial upper bound is only

sn(n) < V2N%. (4.9)
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The lower bound

sn(n) > (1+0(1))N% for n « oo (4.10)

follows from the corresponding lower bound for n = 1. Le., consider the N-ary
expansion of the integers m € [0,N™ —1] : m = Y2  z,(m)N”. The
bijection ¢ : [0,N® —1] > [0,..., N — 1], defined by

E(m) = (xl(m)v sy mn—l(m))

obviously has the property, that

e(a) + ¢(b) = p(c) + ¢(d)

implies a+b=c+d.
However the converse implication does not hold, hence (4.8) does not follow

from the classical result for n = 1.

Remark 4.8  In this case - though Sidon-sets and weak Sidon-set are not
the same the maximum sizes are asymptotically the same.

Since now

rt+y=z+=z

implies y = z, the only difference is that
2t =y+z

or

z—T=z—y

is excluded in Sidon-sets, but permitted in weak Sidon-sets. For each z we
have at most one such pair (y, z); there are at most 0(N?%) differences, which
may occur twice. This will not change the order of magnitude of the maximal

size.

i L S
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Remark 4.9  The problem of Sidon-sets resp. weak Sidon-sets is related to
anti- Ramsey type problems. If V is the set where a commutative addition
+ is defined, consider the complete graph H where V(H) =V and with
the colouring ¢ : [V]2 — V where ¢(a,b) = a+b. A Sidon-set 5 CV
is the vertex set of a TMC (totally multi-coloured) complete subgraph. Weak
Sidon-sets S* C V correspond to the vertex set of complete subgraphs where
only independent edges must have different colours.

If (V,+) is an Abelian group then ¢ isa “good” edge-colouring; adjacent
edges have different colours.

VThe edge-colourings belonging to the structures {0,1,..,N —1}", +
and {0,1}" with the mod 2 addition are obviously “good” edge-colourings,
but {0,1}" with the Boolean sum does not lead to a “good” edge-colouring.

In order to obtain nontrivial information about Sidon-sets in a certain
structure we must use some additional information about the coloring given by
the addition.

In [ENR1] anti-Ramsey type questions are considered for “good” edge
colourings. For the special case of complete graphs (which is related to Sidon-

sets) Babai proved the following:

Theorem 4.10 [B1] Let ¢ be a “good” edge colouring of K,. Let
ro(n) denote the maximum size of a TMC K; in that colouring. Put r(n) =

min,r,(n). Then

(2n)'/? < r(n) < 8(n log n)'/3.

5. SIDON-SETS IN GROUPS It is natural to ask analogous questions
for groups (see Babai-Sés [BS]). Beside its own interest, these are motivated
also by some applications for Cayley-graphs. Embedding graphs as induced
subgraphs in Cayley-graphs was investigated first in Babai [B1], [B2]. Results
for Sidon sets in groups provide an improvement of these results ([BS)).
There is a natural way to generalize the notion of Sidon-sequences to

Abelian groups. However there are two natural ways in the non-Abelian case.
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Definition 5.1 Let G be an Abelian group. We call S C G a Sidon-set

if for any z,y,z,w € S at least three of which are different

THy#Fz4w (5.1)
(or equivalently, z — z # w — y.)

Definition 5.2  Let G be a group, S C G is a Sidon-set of the first kind

if for any z,y,z,w € S at least three of which are different,

2y # 2w, (5.2)
Definition 5.3 $ C G is a Sidon set of the second kind if
zy~ ' # 2w (5.3)

for any z,y,z,w € S at least three of which are different.

Remark 5.1  In fact, Sidon-sets of second kind are relevant in the problem
of embedding graphs as induced subgraphs in Cayley-graphs, Sidon-sets of first

kind do not seem to have any relevance to these problems.

Remark 5.2 Let G be an arbitrary group of order n and S be a
Sidon-subset of either kind. For s = [S| the upper-bound s < \/2_711/2 as in
general follows trivially from the inequality (3‘;1) < n. On the other hand,
the best known lower bound is max s > cn!'/® and only for very particular
Abelian groups max s > c¢y/n is known.

Observe, that here even the cn'/? lower bound is not quite trivial,
the simple greedy algorithm cannot be applied in general. It would be, if we
consider weak Sidon-sets, if we exclude only 4-distinct elements which satisfy
(5.1), (5.2) or (5.3). However, for a given pair a,b which belongs to our set

z? = ab
or ar = b (5.4)

resp. az”! = gb~!
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may hold for arbitrary many z, so we cannot apply (2.2).

Theorem 5.3 [BS]. Let G be a (finite or infinite) group and WCG a
finite subset with |W| =n. Then W contains Sidon subsets of both kinds,

of size

(c+o()n'’

where ¢ = 3%\/2/8 ~ 0,47. Furthermore, W contains a subset of size (3/8 +
o(1))n!/® which is simultaneously a Sidon subset of both kinds.

The proof follows from a proposition that sparse hypergraphs have large
independent sets.

For some particular classes of Abelian groups the gap in the exponent

between 1/2 and 1/3 can be closed, the lower bound being cn'/2.

Theorem 5.4 [BS] Let g be a prime power and G the elementary
Abelian group of order ¢*. Then G hasa Sidon-subset of size q.
The proof follows by a slight modification of the original Erdos-Turan
construction [ET]
Let F = F, denote the field of ¢ elements, and G be identified with
the additive group of the 2-dimensional space F? over F. The set
. {{(x,z2),a: € F} if ¢ isodd,
{(z,2%),z € F} if ¢ is even,
is a Sidon-set.
If ¢ is odd, this is best possible, since s(s =1) < n—1 must hold.
For elementary Abelian 2-groups, when we have involutions there is a gap of a
factor /2, since only (;) < n—1 is the trivial, but best known upper bound.
An improvement of the above idea gives an analogously good construction
for some further class of Abelian groups. A more general, but still too specific

result is the

Theorem 5.5 [BS] Elementary Abelian groups of order n have Sidon sets

of size nl/2to(),
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For infinite groups we mention only the

Theorem 5.6 [BS] Any infinite subset of a group contains an infinite subset

which is a Sidon-subset of both kinds simultaneously.

This can be proved by a simple argument using Ramsey’s theorem.

6. SOME GENERALIZATIONS AND OPEN PROBLEMS

1. Extremal problems for systems of solutions of homogeneous linear
equations

In extremal graph theory a basic problem is the following: given a family
of graphs £ determine ex(n; L), the maximum number of edges in a graph
on n vertices not containing any member of L.

Besides the many results for some specific classes of £, the Erdos-Stone-
Simonovits type results ([ES]), [ESS]) have a particular importance and carry
some information about the hierarchy. According to these results the order of
ex(n; L) is determined by xo = max,(L);ez(n;£) = (1+ o(l))%fg—:nz; the
chromatic number is the relevant parameter in these extremal problems.

For x = 2 this gives f(n;£ = o(n?). One of the most difficult open
problems in extremal graph theory concerning the order of f(n;L£) is to find
the hierarchy in the class of bipartite graphs. (When is f(n;£;) < f(n; £2)?).

There is a very extended subject in extremal hypergraph theory or in

extremal set theory where analogous problems are considered.

Many classical or recent results and problems in number theory can be
considered as extremal problems for integers of the above type. Very often the
difficulty of the specific problem depends heavily ont he arithmetic structure of
integers. Though various beautiful results are known, we should have a better
understanding of the general phenomena. Our point here is to formulate some
problems which arose as generalizations of some specific results and may help

in the clarification.

Consider homogeneous system of linear equations
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N (6.1)

v
ajz; =0,v=1,..
=1

with integer coefficients. Let A denote the matrix in (6.1).

Let fa(n) resp fi(n) denote the maximum size of a subset B C
{1,...,n} such that the system (*) has no distinct solution (with z1,...,zk all
different) resp. non constant (z; =---=z =c) solutionin B.

How does fa depend on the system A? A few special cases have been

investigated intensively. The deepest one is the case of

Arithmetic progressions:  The systems of solutions of the system

Tip1 —2z;+x;—1 =0 for 1<:<k-1 (6.2)

are the k -+ 1-term arithmetic progressions. The celebrated theorem (Roth
[R] for k = 2,(z +y—2z =0) and of Szemerédi [Sz] k > 2 states that for
the system in (6.2)

f(n) = o(n) (6.3)
or more precisely, for k=3
ne~*V'osn < f(n) < n(log log n)~ . (6.4)

K
A weajjer upper bound is in Roth [1] and in Szemerédi [SZ], which was improved

by Szemerédi and by Heabte Brown. The lower bound is given by a construction
in Behrend [Be].

Another special case is the Sidon-problem we discussed above, with one
equation

z+y—z—w=0 (6.5)

and with f(n) ~ /n. The so-called sum free sets, when the solutions of

z+y—2z=0 (6.6)
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are excluded is a special case when f(n) > cn. In fact, it is easy to see that
Fn) = [21].

As stated also in [KSSz], the theorem below gives a general estimation.
Theorem 6.2 [KSSz] fa(n) = o(n) if and only if the system of solutions

of (6.1) is translation invariant, i.e. if and only if

k
Zaﬁ”:ﬂ for v=1,..,1L

=1

It is easy to see, that for one equation of the form

airy + -+ agTE = a1y + - + agyx

f(n) = 0(n%).
On the other hand, a straightforward modification of Behrend’s construc-

tion and argument gives, that for one equation of form

Ay =a121+ -+ arzg with a; >0 for 0<:1 <k

f(n) >n'~¢ forall €>0,and for n > ny(e).

Consider this class of systems, where f(n) = o(n).
Problem 1 When is  f(n) >> n'™¢ for all € > 0 (like for arithmetic
progressions), and when is
f(n) << n'~@
with some a > 0 (like for the Sidon-problem). Does there exist any % <ac<l,
such that for some system Az =0, f(n) = Q(n%)?

2. Representation function

For a given sequence A = (a;) let Ra(n) denotes the number of solutions

of

a; +a;=n with a; < a;.
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Ra(n) is called the representation function of A.
Let S be a Sidon-sequence in [1,n]. Consider the 0-1 sequence given by

the representation function Rg.

Problem 2
a) At least how many blocks of 1’s are in  (Rs(k))?
b) How long can blocks of s in (R(k)) be? Suppose Rs(k) = Rs(k+1) =
... = Rs(k + f(k)) = 1. How large can f(k) be?
c) How large ca!n f(k) be,if |S| > +/n?
d) How long must blocks of 0’s in  Rs(k) be?

4. Sidon-sets in families of sets

Let A C {0,1}* and F(m;A), f(n;A) resp.  h(n;A) denote the
maximum number of vectors in a Sidon-set S(n;+) C A, in a weak Sidon- set
S(n;+) C A resp. in Sidon-set S(n;®) C A.

Put
F(n;m) = If‘rllin F(n; A)

f(nym) = |ff|ﬁ=mf(n; A)

and

h(n;m) = I;r|n=r:n h(n; A).

Determine or estimate F(N;m), f(n;m), h(n; m). It is easy to see that

m=2()

then

F(n;m) <27

and

fln;m) <27

Is it true, that
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F(n;m) > 27

or

f(n;m) > 2°77?

5. The structure of A+ A

There is extended literature on the different properties of sum sets A4+ A
and difference sets A — A. We mention only the deep results of Freiman [F]
on the structure of A+ A. If A+ A is small, close to the minimum possible
value (which is attained, when A is an arithmetic progression), then A is
contained in a short arithmetic progression.

Let A—{A;,...,An,} be afamily of subsets of an n-element set S. Put
AUA={4;U4j;1<i<j<m}.

How does AU A| constrain the structure of A?

Obviously,

1< AUA < ("2‘")

‘The upper bound is attained if and only if A is a Sidon-set. |AU A| =1

implies |A| <n and the unique A extremal family is A; = S—{i},1<i<n.

Problem 3 Put

flm) = Iglli::n [AU Al

It is especially interesting to estimate f(m) for m ~ (146)™ or for m ~ 2™
for § >0, ¢ > 0. Is it true that Fle2dMy s e2™7
Erdos observed that

auA > AL
n+1

always holds. Most probably this can be improved for |A] > cn.
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For a given |A|, whenis |AU A| “small”?

6. EXTREMAL PROBLEMS AND RAMSEY PROBLEMS
Let Az =0 be a given system. We know that f4(n) = o(n) if and only
if A1 = 0. This “density” property obviously implies the Ramsey-property:
For any r and n >n,(A,r) at any r coloring ¢ : {1,...,n} — {1,...,7}

(6.10)

there is a monochromatic solution ofAz = 0.

(For further reference see [GRS]). Let N(A,r) denote the smallest integer
m such that property (6.10) holds with n > m.

N(A,r) was investigated intensively for arithmetic progressions. The
best known upper bound is an extremely rapidly growing function. It was
a breakthrough in 1988 when Shelah gave a new proof for Van der Waerden’s
theorem. This also gives an important improvement of the estimate for N(A4, r)
for k-term arithmetic progressions. To determine N(A,r) in general is just as
difficult as to determine fa(n) in general. But is the hierarchy the same for
(N;7) asfor fa(n)? There is more experience about the analogous question
for graphs where the answer is no, and very probably this is the situation here.

We formulate the problem more precisely:

Problem 4  Give two systems A;z =0 and Asz =0 such that

fa(n)a, << fa,(n)

and

N(A1,r) >> N(As,r).

7. THE STRUCTURE OF SOLUTIONS IN LARGE B C {1,...,n}
Let Az = 0 be a system of homogeneous linear equations. Suppose
B C{1,..,n} and |B|> fa(n).
Let Hp = {z = (z1,...,zx); Az = 0,{z1,...,zx} C B}. Put
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=m

Sa(n;m) = |1131|un |H Bl

Problem a. Obviously S4>m — fa(n).
Determine s4(n;m).
Problem 6 What is the structure of Hpg.

Consider the particular case

z+y—2z=0.

The sumgraph of B C {1,..,n} is the graph g(B;E) where (z,y) €
Eiff = +y € B. With the above notation |E| = |H,|. What can we say on
the structure of G? We formulate just one particular conjecture:

Problem 7 Is it true that, if B > 3n, then G(B,E) contains a triangle?

(Le. a solution of the system

T+y=u
y+z=v (6.11)
a:+zv=w

with z,y,z,u,v,w, € B.)
P. Erdos observed, that if it is true, then it is a sharp result (and gives the
exact value of f4(n) for the system (6.11).
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