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Abstract

The k-spectrum s(G) of a graph G is the set of integers
that occur as the sizes of the induced subgraphs of G of order
k. Properties of those sets S C {o0,1,2,:--, ’;)} that are the
k-spectrum si(G) of some graph G will be investigated. Gap
theorems, which indicate the distribution of elements in sx(G),
will be proved, and the k-spectra of large order trees will be char-
acterized as the union of two intervals. The number of subsets
that are the k-spectrum of a graph will be studied, and extremal
problems concerning the k-spectrum will be considered.

1 Introduction

The vertex and edge set of a graph G will be denoted by V(G) and
E(G) respectively, and the order and size of G are the number of
elements in |V(G)| and |E(G)|- Specialized notation will be introduced
as needed. If § C V(G), then (§) will denote the subgraph induced
by the vertices in S. For a fixed positive integer k, the k-spectrum of a
graph G is sx(G) = {{E((S)|: S € V(G) and |§| = k}. I [V(G)| < k,
then sx(G) = 0, so, sx(G) € {0,1,2,:--, (’;)} For example, sk(Kn) =
{(’2‘)} and sp(K1,,) = {0,k—1} for n 2 k. The k-spectrum of a graph
was studied in [1]. For small values of k all k-spectra of graphs were
determined, and several extremal problems involving the k-spectra of

graphs were considered.
There are some obvious properties of the k-spectrum. If H is an

induced subgraph of G, then clearly sk(H) C sx(G). Thus, if G is
the disjoint union of all nonisomorphic graphs of order k, then clearly

se(G) ={0,1,2-+-,(5)} HRC{0,1,2,-, %)}, and B*={(}) - r:
r € S}, then sx(G) = R implies sk(G) = R* for the complement G
of G. By Ramsey’s theorem [4], any large order graph G must have
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a clique of order k or an independent set of order k. Hence, at least
one of 0 or (12“) € s1(G). If both 0 and (I;) € sk(G), then what other
terms must be in sx(G)? A complete answer to this question can be
found in [1]. This type of question will be studied in section 2, where
gap theorems that give information about the distribution of terms in
a k-spectrum will be proved.

In section 3 the number of different subsets of {0,1,2,-.-, (’;)} that
are the k-spectrum of a graph will be studied. Which small collections
of sets that are the k-spectrum of a graph will be determined, and which
families of graphs are determined by their k-spectrum will be discussed
in this section. The k-spectra of large order trees will characterized in
section 4. Bounds on the number of possible subsets that are the k-
spectrum of a tree will be given, and other extremal problems involving
the k-spectrum of a tree will be discussed.

2 The Gap Theorems

Consider the graph K, — K} obtained from a K. n by deleting the edges

of a Kt. For n > 2k, it is easy to see that se(Kn — Ki) = {0,k —
1,2k -3,---, (’;) - (é), e (;)} If the elements of s;(K,, — Ky)
are ordered using the natural order of the integers, then the max-

imum “gap” between consecutive terms in the k-spectrum is at most
k—1, and in fact, the gap becomes smaller as the terms become larger.

However, the complement of X, — Ky, which is Ky, U__jfn_k, has the fol-
lowing k-spectrum: s (K} UK._) = {0, 1,8, »s s, (%), e (’;)}, which
has a maximum gap of k£ — 1 at the end and smaller gaps at the begin-
ning. More specifically, for consecutive terms S = (g) and sy = (J ;1)
in s;(KrUK,_;) the gap is j and j is approximately V251 (and 1/2s3).
Likewise, in the complementary graph K, — K}, the gap between the
two terms s; = (';) - (142-1) and s; = (';) - (-;) is 7, which is approxi-
mately equal to 2(’;) —2s; for ¢ = 1 or 2. These examples indicate
what will be proved about the gap structure of the k-spectrum of a
graph.

We start by stating and proving an elementary “gap theorem” for
the k-spectrum of a graph. If H is a subgraph of G and v is a vertex
of H, then (V(H) - {v}) will be denoted by just H — v; in the same
way, if u is a vertex of G, then (V(H)Uu{u}) will be denoted by H +u.

THEOREM 1 (Elementary Spectrum Gap) If sx(G) = {s; <
82 < ++- < 8}, then |s;yy — sil <k=1for1<i<r. Moreover,

[$i41 — 8i| < k — 2 except possibly when s; = 0 or s;y; = (;)
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PROOF: Let a = s; and b = s;41, and select sets X and Y with &
vertices such that |[E({(X))| = a and |E({(Y))| = b. We can assume that
X and Y have been chosen such that X NY is a maximum among all
pairs of sets with the above property. Let X — Y = {z1,29,+--,2:},
Y -X = {ylayZ) : 7yt}7 and X NY = {217227 *ty Rk— t}7 a'nd let
Hy = (X) and H; = (Y). Define a sequence of graphs starting with
Hy and ending with H; by letting H;4y = Hi+ yi —zifor 1 <i < .
By assumption, |E(H;)| < a or |E(H;)| > b. Observe that | |E(H;)| —
|E(Hi41)| | £ k — 1 with equality if and only if one of z; and y; has
degree k — 1 and the other has degree 0 in the graphs H; and H;};
respectively.

First consider the case when ¢t > 1. If |E(Hy)| > b, then b—a <
|E(Hy)| - |E(Ho)| £ k—1. If |E(H;)| < a, then select the first j such
that |E(Hj41)| > b (possibly j =t — 1). By assumption, |E(H;)| < a,
and so again b —a < |E(Hj41)| — |E(H;)| < k—1. If t = 1, then the
result follows unless z; has degree 0 in Hp and y; has degree k — 1 in
H,. However, if Hy = K} (or Hy = Ky), the result follows. If this does
not occur, then there is a vertex, say 21, such that 0 < dp,(21) < k—-1.
Then, for the graph H' = Ho — z; + y1, we have a < |[E(H')| < b, a
contradiction that completes the proof of Theorem 1. O

The examples presented prior to Theorem 1 indicate that the max-
imum gaps in the k-spectrum decrease as the terms of the spectrum
move away from the extremes 0 and (’;) We will give an improved
gap theorem for s;. But first we prove a gap theorem for the de-
gree sequence of a graph If G is a graph of order n with degree
sequence d1 < dy < --+ < dp, ther the gap degree for G, denoted
by gd(G), is the maximum of diy; — d; for 1 < i < n. If G is
regular, then gd(G) = 0, and if G is a star, then gd(G) = n — 2.
The graph G = K; U fn_j has (%) edges and gd(G) = j — 1, and
so gd(G) = +/2|E(G)| - (j — 1). Also, for the complementary graph
G = K, — K;, we have gd(G) = \/(’2‘) —2|E(G)|+ (j — 1). These ex-

amples indicate the sharpness of the following degree gap result, and
parallel the examples given for the k-spectrum of a graph.

THEOREM 2 (Gap Degree) If G is a graph of order n, then
§d(G) < max{ @), /() - AE@)D-

PROOF: For n < 5 it is straightforward to verify Theorem 2, so
we will assume that n > 6. Let G be a graph of order n and size

= |E(G)| for which gd(G) is a maximum. We can assume that
IE(G)I > n(n — 1)/4, since gd(G) = gd(G), and the upper bound is
symmetric.
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Let h and £ be the degrees of two consecutive terms in the degree
sequence of G such that h — £ = ¢gd(G). We now partition the vertices
of G into two parts, those of degree at least h, which we call high degree
vertices and denote by H, and those of degree at most £, which we will
call low degree vertices and denote by L. Replacing an edge in L or
an edge between H and L by an edge in H will not lower the gap. If
possible, we will do this. The same is true of replacing an edge in L
by an edge between L and H, so do this when possible. Thus, we can
assume that if there are any edges in L, there is a complete bipartite
graph between L and H. We can also assume that if there are any
edges between L and H, then H induces a complete graph. Let m be
the number of vertices in H, and so there are n — m vertices in L.

We will first consider the case when (L) contains some edges, say
g > 0 edges. In this case, we know that (H) is a complete graph,
and the edges between H and L form a complete bipartite graph. If
g > n —m — 1, then we will change G. Let G’ be a graph of order n
with a complete subgraph H' of order m+1 such that all of the vertices
in H' have degree n — 1, and with an additional ¢ — (n — m — 1) edges
placed in L’ = G’ — H' arranged such that this graph is nearly regular
(vertices differ in degree by at most 1). Then, |E(G’)| = ("‘;’1) +(m+
D(n-m-1)+g-(n-m-1) = (3) + m(n—m)+q = |E(G)|. Also,
9d(G") = n—1—(m+ 14 [HEBRN]) = 11— (m+ [ 215]-1) 2
n—1—(m+ [2¢/(n—m)]) > gd(G), since ¢ > n —m — 1. Thus, it is
sufficient to consider G’ instead of G. A repetition of this change results
in a graph G” with m” high degree vertices and less than n — m" — 1
edges between the low degree vertices. Thus, we can assume that G
has the property that L has ¢ < n —m — 1 edges.

We now show that gd(G) < 1/2|E(G)|. In fact, gd(G) <n—1-
(m+[2¢/(n—m—1))] £ n—m—1. To complete the proof of this case,
it is sufficient to show that (n —m —1)? < 2((7) + m(n —m) +¢), and
this is equivalent to 4nm — 2m? — n? + m 4+ 2n+2¢ — 1 > 0. However,
since | E(G)| > n(n — 1)/4, we have (7) + m(n—m)+q¢ > n(n—1)/4,
and this is equivalent to 4nm — 2m? — n? — 2m + n + 4¢ > 0. Thus, it
is sufficient to show that 3m +n — 2¢ — 1 > 0, or (using the fact that
q < n—m —2),it is sufficient to show that 5m —n + 3 > 0. This is
true, which completes the proof of the case when L has edges.

From this point on we can assume there are no edges in L. If there
are no edges between H and L, then £ = 0, and gd(G) = h < m.
The number of edges in G is at least mh/2, and clearly h? < mh <

(/2| E(G)|)?, which completes the proof of this case. We can assume
there are edges between H and L and (H) is a complete subgraph.
The number of edges between H and L is cm(n—m) for some ¢ with
0 < ¢ < 1. Therefore the “average degree” of a vertex in H relative to
L is ¢(n—m) and the average degree of a vertex in L is cm. There is no
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loss of generality in assuming that each vertex of L has degree either
lem] or [em], and each vertexin H has degree either m—1+[¢(n—m)]
or m — 1+ |¢(n — m)]. Therefore, gd(G) = m— 1+ |¢(n—m)] —
[em] < m — 14 cn — 2cm. To complete the proof, it is sufficient to
show that (m — 1+ cn — 2em)? < m(m — 1) + 2em(n — m), which is
equivalent to 4c¢2nm — 4c*m? + 2¢m? — c2n? +2cn —2cm+2m—12> 0.
By assumption, n(n — 1)/4 < |E(G)| = m(m —1)/2 + em(n — m),
which implies 4enm — dem? + 2m? — 2m — n? + n > 0. The fact that
c(1-c)n?*+2m+cn—120 and the previous inequality immediately
%ives the required inequality. This completes the proof of Theorem 2.

We are now prepared, using Theorem 2, to prove an gap theorem
for the k-spectrum of a graph. ,

THEOREM 3 (Spectrum Gap) If sx(G) = {s1 < 82 <+ < S
then |sip1 — si| < max{y/2sit1, \/(T“';l) —2s;+k} for1<i<r.

PROOF: The structure of this proof will be identical to that of The-
orem 1. Select sets X and Y with k vertices such that |[E((X))| = s
and |[E((Y))| = siy1. Let X -V = {z1,22, -+ 24y and ¥ = X =
{y1,Y2, ", s}, and let Ho = (X) and H; = (Y). Define a sequence
of graphs by letting Hit1 = H;+vyi—z;foreach 1 <1 <t By
assumption, |E(H;)| < s or |E(Hi)| > sit1 for 1 < i < t. Se
lect the first j such that |E(Hjt1)| > sit1, and so |E(Hj)| £ si.
Consider the graph H' = H; U Hj4, which has k + 1 vertices and
between s;41 and s; + k edges. Let d; and dj41 be the degrees of
z; and y; in H'. Then sj41 — 8; = dj+1 — dj, and by Theorem 2,

djy1 — d; < max{\/QlE(H')l,\ﬁk';l) — 2|E(H")|}. The required in-

equality follows from the fact that sj41 < |E(H")| < sj + k, and the
proof of Theorem 3 is complete. O

Previously described examples indicate that the order of magni-
tude of the bounds given in Theorem 3 cannot be improved.

3 Extremal Problems

Let nx be the number of subsets of the 2(3)+1 subsets of {0,1,2,---, (’;)}

that are the k-spectrum of a graph. It is clear from Theorem 3 that
not all subsets of {0,1,2,---,(’;)} are the k-spectrum of a graph.
For any integer r < k — 1 and any selection of nonnegative integers
0 < ay,ag, -+,a; < k—1, consider the graph H obtained from a com-
plete (r+1)-partite with r parts of order k and one part of order n—rk

by adding edges to form a star K1, with a; edges into the ¢** part of
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the complete (7 + 1)-partite graph (1 £4 < r), and making the last
part complete. The smallest r terms in s;(H) are {ay, ay, - - *,a,}, and
all of the remaining terms are at least k — 1. This implies ng > 2k-1,
In fact, this lower bound can be improved. Consider, for example, any
selection of ¢ integers by, by, -+, b; C [k, 2k — 5] — {ay + k- 2,a; + k —
La+k—-2,a04+k—1,---,a, +k—2,a,+ k- 1}, where [k, 2k — 5] are
the integers from k to 2k — 5. In this case let G be the graph obtained
from a complete (r + ¢t + 1)-partite with = + ¢ parts of order k£ and
one complete part of order n — (r + t)k by adding a star K ,, into
the i** part of the complete (7 +t + 1)-partite graph (1 < ¢ < 7) and
adding a nearly regular graph on k vertices and b; edges in the j** part
(r+1<j5<r +1). It is straightforward to show that the only terms of
5k(G) less than or equal to 2k — 5 are {ar a9, -+, ap,b1,bg, -+« by k —
Lai+k-2,a1+k—-1,024+k-2,a04+k—1,-- “yart+k—2,a,+k—1}. This
implies that there are at least 3 51 (F-1)2*=4-2r distinct sets that are

the k-spectrum of a graph. Since, g (F-1)ok-1-2r (5/2)F1/18,
we have verified the following rather crude bounds for ng. This type
of construction can be extended to give additional, but not significant,

improvements.

THEOREM 4 For any integer k > .2, &= (g)k_l < ny < 2041,

For small values of £ it is possible to enumerate all the f-sets that
the k-spectrum of a graph G of large order.

By [4] any such graph G must have either 0 or (’;) in its k-spectrum.
Thus, {0} = sx(K,) and {(12‘)} = sk(Ky) are the only sets with one el-
ement that are the k-spectrum of some large order graph G. Note that
sk(K2UKn—2) = {0,1}, s(K1,n-1) = {0,k—1}, and {(%), (¥)-1}, and

{(I;f) , (’2“) —(k—1)} are the k-spectrum of the respective complementary

graphs.
Moreover, these are the only sets with precisely 2 elements that

are the k-spectrum of some graph G. To see this, let G be a graph for
which this is not true. We can assume that k& > 3. With no loss of
generality we can assume (by [4]) that 0 € s4(G), and of course G has
at least one edge. If

(5) € sk(G), then by Theorem 1 there will be at least 3 terms
in the spectrum. If G has a large connected component, then this
component of G must contain an induced tree on k vertices, and so
k —1 € sx(G). If G has no large connected component, then it has
many components (at least k£ — 1), so 1 € sx(G).

The graphs 1(1’2 U_I?n_g, K3U?n_3, Kl,n—2 UKy, I(g,n_g, and K, +
Kn_3 have as k-spectra {0, 1,2},{0,1,3},{0,k—2,k—1},{0,k— 1,2k —
4}, and {0,k—1,2k—3} respectively. Using straightforward techniques
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these sets, along with the k-spectra that are complementary to them,
can be shown to be the only sets with 3 elements that are the k-
spectrum of a graph. More generally, there is the following result.

THEOREM 5 For any fized positive integer T, the number of k-
spectra of a sufficiently large order graph with ezactly v terms is bounded

by a constant C = C, (independent of k).

PROOF: For each large order graph G with |sx(G)| = r at least one
of 0 and (’;) is in sx(G) by [4], and for k > 2r not both, since Theorem
1 implies there are at least k/2 terms in sk(G). Thus, with no loss

of generality we can assume that 0 € sk(G) but (g) ¢ sk(G). Select
a graph G of order n such that sk(G) = {a1,a2,-+-,a-} and a, is a
maximum element in all such k-spectra. If a, < r2, then the number

of sets with r elements that are the k-spectrum is at most (T:), which

is independent of k. Thus, we assume that a, > 2. Let A be a set of
k vertices of G with a, edges. If there is a large set, say n/2 vertices of
G that are not adjacent to any vertex of A, then by [4] there is a large
independent set B with the same property. By successively replacing
vertices in A of degree at least 1 by vertices in B, more than r terms
in sx(G)

will be generated. _

We can assume that half the vertices in A are adjacent to a vertex
in A. This implies that there is a vertex v of A of very large degree
(at least n/2k). Denote the neighborhood of v by D. If there is a
sufficiently large (as a function of 7) number of vertices not in D, then
by [4] and a bipartite version of Ramsey’s theorem (see [2]), there is
either a complete bipartite graph Kark or the bipartite complement
of this graph with the k vertices in D and the 2r vertices not in D.
Moreover, we can assume that the k vertices are independent and the r
vertices form either a clique or an independent set. Denote this graph
by H. If H contains the complete bipartite graph, then Theorem 1
implies that sx(G) has at least r+1 terms. If not, then by using v and
the vertices of H, at least 7 + 1 terms of the k-spectrum can also be
generated. This implies v must be adjacent to at least n — c]. vertices
of G, where ¢/, is a constant depending only on 7.

Let T be all the vertices of G, which like v, are of very large degree.
Then each vertex in T has degree at least n — ci.. Also, |T| < r, for
otherwise, K, p—, C G and Theorem 1 implies si(G) has at least 7+ 1
terms. Let S be the vertices of G adjacent to each vertex of T'. Thus,
|S| > n — ¢x for some constant c; depending only on 7. If (S) has r?
edges, then there is a subset of § with k vertices and at least 72 edges.
Thus, using the same argument used‘with the set A, there must be a
vertex in S of very large degree, a contradiction. Hence, there are at
most 72 edges in (S). If a vertex u not in SUT has as many as 2r 4
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adjacencies in §, then there is an independent set of k + 7 vertices of S
such that u is adjacent to precisely r of these vertices. Using u, v, and
these k + r vertices, 7 + 1 terms of sk(G) can be generated. Therefore,
we can assume that u has less that 2r2 + r adjacencies in S. This
implies that there is a set R (vertices in § and vertices of S of degree
at least 1 relative to §) of at most ¢, vertices, (¢, depends only on
r), such that G differs from the complete bipartite graph between S
and T by only the edges in R. Thus, the number of different k-spectra
depends only on r. This completes the proof of Theorem 5. O

In some cases the k-spectrum of a graph determines the family of
graphs. For n > k > 3, it is true for K,, which has sl Ky,) = {(’;)},

and K ,,, which has sk(K,) = {0}. The same is true for K1 n-1, which
has sp(K1,n-1) = {0,k — 1}. More generally, the following is true.

THEOREM 6 Fork >3, m > |%|, andn >k, si(Km ) = {0,1(k—
1),2(k-2),---, L%J . I'L;]} Also, any graph of sufficiently large order
with this k-spectrum must be a member of this family of complete bi-
partite graphs.

PROOF: It is straightforward to verify that sg(Kmn,) = {0,1(k —
1),2(k —2),---,|k/2] - [k/2]}. Conversely, assume that G is a graph
of large order n with this k-spectrum. First consider the case when G is
a bipartite graph. The largest term in the k-spectrum is |k/2] - [k/2],
so clearly G must contain at least |k/2| vertices in each part. If G
is not a complete bipartite graph, then clearly i € s(G) for some
0<i<k-—1,

< As<sume G is not bipartite. Select the smallest odd cycle of G, say
C, of order 7, which is an induced cycle. If # > k+2, then k-2 € sk(G),
a contradiction. Thus, we assume that 7 < k+ 1. If 7 > 3, then any
vertex not in C, is adjacent to more than 2 vertices of C,, and if there
are two adjacencies they must be at a distance 2 on the cycle. If r = 3,
then the number of adjacencies could be 3. Since the order of G is
large, there is a large set § of vertices not in C, that have precisely
the same adjacencies in C,. The graph G does not contain a K} since

(5) > |k/2] - [k/2]. Therefore, by [4], we can assume that S is an
independent set with at least k vertices. Using S and C,, it is easy to
show that 1 € sx(G) (which gives a contradiction) unless r = 3 and
each vertex of S is adjacent to either 2 or 3 vertices of Cj. Hence,
we can assume that 7 = 3. In either case, k¥ — 2 vertices of S with an
appropriate 2 vertices of the C's implies that 2k —3 € s;(G), which give
a contradiction except when k£ = 6. A straightforward case analysis
shows that graphs containing either Ky + K¢ or K5+ Kg cannot have
a 6-spectrum of {0,5,8,9}. This completes the proof of Theorem 6. O

The most obvious open question from this section is the determi-
nation of the order of magnitude of nj. It would also be interesting to
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know of additional families of graphs determined by their k-spectra.

4 The k-Spectrum of a Tree

If T,, is a tree of order n > k, then sx(T») € {0,1,2,---,k— 1}, since a
forest on k vertices can have at most k—1 edges. Clearly k—1 € sx(Ty),
and if n > 2k — 1, then Ty, has a independent set of order k. In this
case 0 € sx(T) as well. For the star Ki,n with n > k, 0 and £ — 1 are
the only elements in the k-spectrum (i.e. sg(K1,n = {0,k —1})).

If sx(T,) = [0,k — 1], (the integers from 0 to k — 1) we say the k-
spectrum is tree complete. There are several conditions on a tree that
insure that the k-spectrum is tree complete. Consider, for example,
a path. For any n > k, sp(P,) = [max{0,2k —1~-n},k—1]. In
particular, if n > 2k — 1, then sx(Pn) = [0,k — 1]. To see this, let
P, = (z1,%2,"**, %) be a path with n vertices. Note for any ¢t with
2k —n S t S k, that the set {21, T,y Tty Ti42yTt44y """ xt+2(k—t)}
induces a graph with t—1 edges. Thus s¢(P,) 2 [max{0, 2k—1-n}, k-
1]. Also, a simple induction proof shows that if n < 2k — 1, then any
set of k vertices of P, will induce a graph with at least 2k —1—n edges.
This proves the claim. The next result give some elementary conditions
on a tree T, that insure that the k-spectrum is tree complete.

THEOREM 7 The k-spectrum of a tree T, is tree complete if (1) Ty
has diameter at least 2k —2, (i) T, has at least k independent endedges,
or (iii) A(T,) < k and n > max{3k — 5,2k — 1}.

PROOF: (i) If T, has diameter at least 2k — 2, then T, contains a
path Ppi_;. We have already observed that the k-spectrum of P, is
tree complete if n > 2k — 1, and thus the same is true for 7.

(ii) For any positive integer ¢t < k, select a subtree T; of T, with
t vertices. Then, k — t endvertices from the k independent endedges
can be chosen that are not adjacent to any of the vertices in the tree
T.. This set induces a subgraph with ¢ — 1 edges, which completes the
proof of this case.

(iii) Fix some integer r such that 0 < r < k — 2. We will show
that there is a subtree Tx_, with k — r vertices and 7 independent
vertices that are not adjacent to any vertex of Tx_,. This will insure
that k —r — 1 € sg(T%). Since, clearly 0 € $k(T) this would imply the
k-spectrum is tree complete.

Prune the tree T}, by deleting an endstar (including the center of
the star) with the smallest number of vertices. Continue to do this
until at least 2r — 1 vertices have been pruned, leaving a tree T”. If in
this process, the subtrees being pruned are never stars, then no more
than half of the remaining vertices ate pruned at any step. Thus, at
most 27 — 24 (n — 2r +2)/2 = n/2+4 r — 1 vertices are pruned. Hence
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1" has at least n/2 — 7+ 1 > k — r vertices, as required. If one of
the pruned subtrees is a star, then this tree has at most k edges, and
therefore n < 2r—2+k < 3k —6, a contradiction. Hence, we have that
the procedure terminates with a tree 7’ with at least k — r vertices.
A set of 7 independent vertices from the pruned vertices (endvertices
of the endstars) can be selected that are not adjacent to any vertex of
T'. This completes the proof of this case and of Theorem 7. O

Not every subset of {0,1,2,---,k—1} is the k-spectrum of a large
order tree; in fact, in general very few subsets are. We will give a
characterization of the k-spectrum of large order trees, but before doing
so we describe a family of examples that indicate the nature of the k-
spectrum of a large tree. For positive integers a, b and c, let Tobe
denote the tree formed from a path P,;1, a star Ky p, and a star K .
by identifying the center of the star K 4, an endvertex of the path Py,
and an endvertex of the star K; .. Thus if a,b,¢ > 0, then Tapc has a
total of a+b+c+1 vertices, b+c vertices of degree 1, one vertex of degree
b+ 2, one vertex of degree ¢, and the remaining a — 1 vertices of degree
2. Note that if @ = b = 0, then T, is just a star with ¢ edges. Let
n = a+b+c+1,and denote this tree by Ty,. If a+b < k < ¢, then it is
straightforward to show that sx(7,) = [0,a+bJU[k—1—[a/2] —b,k—1].
If r=a+band s=[a/2] +b, then by an appropriate choice of a and
b, we have sx(T,) = [0,r]U[k — 1 — s,k — 1], where 0 < [r/2] < s < 7.

Before proving the characterization result for the k-spectrum of a
large tree we will prove a useful result that will be needed in the proof.
We have already shown that if a large order tree 7, does not have a
vertex of degree at least k, then the k-spectrum is tree complete. The
next result geals with the case of a vertex of large degree.

THEOREM 8 If A(T,) > k, then there ezist integers r and s with
0< [r/2] <s<r< k-1 such that sk(Tn) = [0, 7] U [s, k - 1].

PROOF: Let v be a vertex of T, of degree A > k, let vy, vg, - - -, VA
be the vertices of 7, adjacent to v, and let T,; be the subtree of T, — v
that contains v;. If m; is the number of vertices in Ty;, then we can
assume that m; > my > ---m; > 1 for some t > 0, and m; = 1 for
i > t. Clearly [k — 1 —t,k — 1] C s(T,), since for any j < t one can
select j vertices (one from each of the first T, (1 < ¢ < 7)) that are
not adjacent to v and a star with kK — 1 — j edges centered at v that
contains no vertices in any of the Tp,,. f m = my +mg+ -+ m; > k,
then by selecting appropriate subtrees of some of the T L L35 &
and by selecting an appropriate number of vertices of the v; from
the remaining 7, that do not contain the chosen subtrees, one can
insure that [0,k — ¢ — 1] C k(7). This, along with the fact that
[k = 1—t,k—1] C sg(T,), implies that [0,k — 1] = sk(Ty), so we
assume m < k.
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The previous observation also implies that [0,m —1] C sk(Ty). Let
o be the independence number of the forest F* = (T, —v1)U(To, —v2)U
-+ -U(Ty, —v¢). If a > k, then just as above, we have [0, k—1] C sx(Tn),
since we can select an independent set of j < k vertices and add an
appropriate star centered at v to get a set of k vertices that induces a
graph with k£ — 1 — j edges. Thus, we assume a < k. To complete the
proof of Theorem 8, we will verify that sk(Ty) = [0,m—tJU[k—1—a, k-
1]. It has already been verified that sk(Ty) € [0,m—t]JU[k—1-a,k—1].
Let S be a set of k vertices of T,. If v € S, then, by definition of T,
all of the edges of S are in Ty, U Ty, U-- -T,,, and so there can be at
most m — t edges in the graph induced by S. If v € S, then let §
be the number of vertices of § in F. Thus, the graph induced by S
contains v, which is the center of a star with at least k — § — 1 edges.
f<a,thenk—f-1>2k—-a— 1, as required. If 8 > ¢, then there
are at least 8 — o edges induced by the vertices of S in F, since « is
the independence number of F'. This implies that the number of edges
in the graph induced by S is at least k-pf-1+p-a=k-1-a
Note that & < m and also a > [m/2}. Thus, this completes the proof
of the claim and of the Theorem 8. O

An immediate consequence of Theorems 7 and 8 is the following.

THEOREM 9 If n > max{2k — 1,3k — 5}, then for any tree Tn,
there ezist integers T and s with 0 < [r/2] <s<r<k-1 such that
sk(Tn) = [0,7]U [,k — 1].

The characterization of sk(T}) from Theorem 9 is not valid for all
values of n > k. For example if n = k + 1, then it is easy to de-
termine sg(Ty). If (dl,d2,---,dk+1) is the degree sequence of Tk41,
then sp(Th41) = {6k —1-— di,k —1—dg,---,k—1- dky1}, since
any subgraph with k vertices is determined by deleting single ver-
tices. Thus, this family of examples does not satisfy the conclusion
of Theorem 9. The condition that n > max{2k — 1,3k — 5} is not
sharp, but it is not clear what the sharp condition should be. The
tree Tox_4 that contains two adjacent vertices of degree k — 2 has
sk(Tak—a) = {0,2,3,---,k =3,k - 1}, s0 n > 2k — 3 is certainly needed
to insure the spectrum is the union of at most 2 intervals. It could be
n > 2k — 1 is sufficient. Certainly, n > 9k — 1 is needed to insure that
0e Sk(Tn).

Let ¢ denote the number of different k-spectra of trees. There
are 2% subsets of {0,1,2,+--,k — 1}, but by Theorem 9 less than (g)
of these subsets are the k-spectrum of a large order tree T,,. However,
this is not true when n is small. For example if n = k+ 1, it has
already been noted that the k-spectrum of the tree T}, is determined
by the degree sequence (actually the degree set) of the tree. For any set

S C {3,4,---, |v/2k + 2] — 2}, there is a tree with degree set precisely
S U {1,2}, and so we have olv2k+2]-2 < ¢, < 2k, Such a tree can
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easily be constructed by attaching stars of appropriate degrees to a
path of appropriate length. Since the number of integer partitions of

k is bounded above by 2V<F (for an appropriate constant c) (see [3]),
the lower bound of the previous inequality has the correct order of
magnitude for the number of sets that are the k-spectrum of a tree of
order k£ + 1. This may not be true in general, as the upper and lower
bounds for 5 given above are of different orders of magnitude.

For a positive integer r, let k = 2" and let n = 2" + 7 = k +log, £.
Let T, be the tree formed from a K, by attaching a star with an
additional 2/=1 edges at the jt* endvertex of the Ky ,. Thus, T, has
order n = 27 +r with vertices of degree 2,4,---,2"1 r and k vertices of
degree 1. The k-spectrum of T}, is tree complete. To see this, determine
the binary representation of any integer m (0 < m < k —1). If the jt*
term of this binary representation is 0, then delete the center of the
jth star; otherwise, delete an endvertex of the jt* star. This will leave
a graph with k vertices and precisely m edges. Moreover, trees with
very few less vertices than this cannot have a k-spectrum that is tree
complete, as the following result indicates.

THEOREM 10 For ¢ < 1/3 and k sufficiently large, any tree T, of
order n < k + elog, k cannot have a k-spectrum that is tree complete.

PROOF: Assume the k-spectrum of T, is tree complete. Since 0 €
sk(T,), there is an independent set A of k vertices in T,,. Let B be
the remaining vertices in T;,. The sum of the degrees of the vertices
in B is at least k, since §(7,) > 1, and so the sum of the degrees of
the vertices in A is less than k + 2elog, k. This implies that T;, has at
least k — 2¢log, k vertices of degree 1, which we will denote by C. Let
D denote the remaining vertices, and so |D| < 3elog, k.

Any subset of V(T,) with k vertices is determined by deleting at
most €log, k vertices, say a set C’ from C and a set D’ from D. The
set C' can be selected in at most 23¢lo82% = k3¢ ways. However, after
the set C has been deleted, only the number of vertices of D’ that
are now of degree 0 in this resulting graph is important as far as the
k-spectrum is concerned. Thus, D’ can be chosen in at most €log, k
ways (i.e. maximum number of vertices of degree 0 in D’). Therefore,
the maximum number of terms in the k-spectrum of T, is at most
k3¢elog, k < k, if € < 1/3 and k is sufficiently large. This completes
the proof of Theorem 10. O

Several questions are left unanswered. It would be interesting to

determine the order of magnitude of tx; in particular, is #; = 0(k)?
Determination of the smallest integer n* = n(k) such that if n > n*,
then sg(7y) is the union of two intervals is also of interest.



THE k-SPECTRUM OF A GRAPH 389

References

[1] R. Faudree, R. Gould, M. Jacobson, J. Lehel, and L. Lesniak,
Graph Spectra, manuscript.

[2] R. L. Graham, B. L. Rothschild, and J. H. Spencer, Ramsey
Theory, John Wiley Inc., New York, (1980).

[3] M. Hall, Combinatorial Theory, John Wiley Inc., New York,
(1967).

[4] R. P. Ramsey, On a Problem of Formal Logic, Proc. Lond.
Math. Soc., 48, (1930), 264-286.



