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Abstract 

The authors give a survey o f  their papers on additive propert ies o f  general sequences and they 
prove several further results on the range o f  additive representation functions and on difference 
sets. Many  related unsolved problems are discussed. 

. 

The set of the integers, nonnegative integers, resp. positive integers is denoted by 

~7,~0 and ~. o~¢,M . . . .  denote (finite or infinite) subsets of ~o, and their counting 
functions are denoted by A ( n ) , B ( n )  . . . .  so that, e.g., 

A(n) = I{a: 0 < a ~ n,a ~ ~)1 .  

The asymptotic density d(~¢) of the set d C N0 is defined by 

d ( ~ 4 ) =  lim d ( n )  
n----~+:x~ /'/ 

if this limit exists. ~ ' l  + S~'2 + " ' "  + ~ k  denotes the set of the integers that can be 
represented in the form al + a 2  + . . -  + a k  with al E a l l ,a2  E ~¢2,.. . ,ak C ~¢k; in par- 
ticular, we write ~ '  + d = 2 ~  = 5P(d) .  For ~¢ C N, ~ ( d )  denotes the difference set 
of  the set sO, i.e., the set of  the positive integers that can be represented in the form 
a - a  r w i t h a E d ,  d E ~ .  

For ~¢ C ~0, k C ~ the number of  solutions of the equations 
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at + a 2 + ' - ' + a k  = n ,  

al + a 2 + ' " + a k = n ,  

al + a 2 + - - ' + a k  = n ,  

a l , a 2 , . . . , a k  E ~¢, 

al <~ a2 <~ . . .  <~ ak, 

al < a2 < . . .  < ak, 

a l , a 2 , . . . , a k  E d ,  

a l ,a2 , . . . , ak  E d ,  

is denoted by r l ( d , n , k ) ,  r 2 ( d , n , k ) ,  resp. O ( d , n , k ) ,  and in the special case k = 2 
we write r i (n)  = r i ( ~ , n )  = r i ( ~ 4 , n , 2 )  for i = 1, 2, 3. The number of  solutions of  the 
equation 

a - a  ~ = d ,  a ,a  ~ E ~ '  

is denoted by f ( ~ ' ,  d). 

For k, g E ~,Bk[g] denotes the class of  all (finite or infinite) sets d C ~0 such that 
for all n E t~ we have r2(~4, n, k) ~< g, i.e., the equation 

at + az + . . . + ak = n, al <<. a2 < . . . .  <~ ak, a t , a2  . . . .  ,ak, E d  

has at most g solutions. The sets ~1 E B k [1 ] are called Bk sets. In particular, the B 2 

sets are called Sidon sets. An excellent account of  the theory of additive representation 
functions, Sidon sets and Bk[9] sets is given in [17]. 

If  F ( n )  = O ( G ( n ) ) ,  then we write F ( n )  << G(n) . c l ,  cz . . . .  denote positive absolute 
constants. 

In the last 10 years, we have written 7 papers [7-13] on the representation functions 
rl (n) ,  rz (n) ,  r3(n)  and on Sidon sets. In this paper first (in Section 2) we will survey the 
main results and the most interesting unsolved problems discussed in these papers, and 
we will add several further unsolved problems. We remark that in this field the combi- 
natorial tools dominate. In many cases, the crucial tool in the proof is a combinatorial 
theorem, e.g., the main result in Erdrs'  paper [4] (see also [6]) is proved by using 

Ramsey's theorem. Even in the papers where analytical or probabilistic tools are used, 
the main difficulty is usually to force out the applicability of the analytical-probabilistic 
machinery by using an elementary-combinatorial argument. 

In the second part of this paper (Sections 3 and 4) we will continue the study of 
additive representation functions by investigating the range of these functions. Finally, 
we will study difference sets (Sections 5-8). 

o 

In an old paper Erdrs [3] proved the following result: there is an infinite set d C t~ 
such that 

cl log n < r l ( d , n )  < c2 logn forn > no. (2.1) 

The first two authors [7, 8] extended the problem by estimating I r l ( ~ ' , n ) -  F ( n ) l  for 
'nice' functions F ( n ) .  First we proved (see [7]) the following theorem. 
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Theorem 1. I f  F (n )  is an arithmetic function satisfying 

F(n )  ~ + o o ,  

F(n-4-1)  >~F(n)  f o r n  >1 no 

and 

then 

(,,; ) F(n)  ----- o 
O n )  2 ' 

max Irl (~¢, n) - F(n)l  = o ( ( F ( N ) )  1/2) 
n~N 

cannot hold. 

77 

(2.2) 

Theorem 2. I f  F (n )  is an arithmetic function satisfying 

F(n)  > 36 l o g n  f o r  n > no, 

and there exist a real function g(x), defined for  0 < x < +c~, and real numbers 

xo, nl such that 

(i) g~(x) exists and it is continuous for  0 < x < + ~ ,  

(ii) g'(x)  <<. 0 for  x >~ xo, 

(iii) 0 < g(x) < 1 f o r x  >1 xo, 

(iv) IF(n) - 2 fo/2 g(x)g(n - x)dx[ < (F(n ) log (n )  t,/2 for  n > nl, 

then there exists a sequence d such that 

[rl(sC, n ) - F ( n ) [  < 8 (F(n ) log  n) h/2 f o r n  > n2. (2.3) 

In particular, it follows from this theorem that 
(i) there is an d satisfying (2.1); 

(ii) there is an ~ '  with 

rl(~C,n) ~ log n log  log n 

(where log log n can be replaced by any o~(n)--~ + o c  which increases regularly 

enough); 
(iii) for all 0 < 7 < 1, there is an d with 

[ r l ( d , n )  -- n~[ << n~/2(log n) 1/2 . 

I r l ( d , n )  - F(n)l  << (F (n ) log  n) 1/2 : 

Indeed, we proved this in the sharper form that (2.2) cannot hold in mean square 
sense. 

On the other hand, the first two authors proved [8] that if  F(n)  is a 'n ice '  function, 
then there is an ~d with 
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Problem 1. (2.3) is worse than (2.2) by a factor (logn)l/Z; the problem is to tighten 

this gap. In particular, the following old question of  Erd6s is undecided yet: does there 

exist an infinite set d with 

r l ( ~ , n ) , , ~  e log n (with e > 0 ) ?  

In [11] we studied the following problem: what condition is needed to ensure 

lim sup ] r l ( d , n  + 1) - r l ( d , n ) [  = +oo  ? (2.4) 
n---+-b~ 

It turned out that one needs an assumption in terms of  the function 

B ( ~ , N )  = t{n: n ~< N, n ~ d , n  - 1 ¢ ~ } l :  

Theorem 3. I f  

lira B ( d ,  N ) N  -1/2 = + ~ ,  
N---*+oo 

then (2.4) holds. 

We showed that this theorem is nearly sharp. 

Theorem 4. For all ~ > O, there exists an infinite sequence ~ such that 

B ( d , N )  >> N -1/2-~ 

and r l ( d ,  N )  is bounded (so that [rl(~qC, N + 1 ) -  ra(~C,N)] is also bounded). 

Two related questions that we could not settle are given below. 

Problem 2. Is it true that 

lim sup B ( s / , N ) N  -1/2 = oo 
N---* +oc~ 

implies (2.4)? 

Problem 3. Is it true that 

lim inf B ( d , N ) N  -1/2 > 0 
N---*+oo 

implies (2.4)? 

In [9, 10] we studied the monotonicity properties o f  the three representation functions 

rl(n),r2(n),r3(n).  This is the only case where the behaviour o f  the three functions is 

different. 
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Theorem 5. (i) r l (~I ,n)  /s monotone &creasing f r o m  a certain point  on, i.e., 

rl(s~C,n + 1) /> rl(~C',n ) f o r n  >~ no 

i f  and only i f  A contains all the positive integers f r o m  a certain point  on. 

(ii) I f  

N - A ( N )  
lim -- + ~ ,  

N ~ + ~  logN 

then r2(~C,n) cannot be monotone increasing f r o m  a certain point  on. 

(iii) If 

A ( N )  = o 

then r3(~C,n) cannot be monotone increasin9 f r o m  a certain point  on. On the other 

hand, there is an infinite set d such that 

N - A ( N )  >> N 1/3 (2.5) 

and r 3 ( d , n )  is monotone increasing f r o m  a certain point  on. 

The result in (ii) was proved independently by Balasubramanian [2]. 

Problem 4. Does there exist an infinite set d C N such that ~ \ d is infinite and 
r 2 ( d , n )  is increasing from a certain point on? 

Problem 5. There is a large gap between the lower and upper bounds in (iii); the 
problem is to tighten this gap. The upper bound in (2.5) seems to be closer to the 
truth. Correspondingly, one might like to show that if  r3 (~ ,  n) is monotone increasing 
from a certain point on, then d ( ~ )  = 1. 

Problem 6. What condition is needed to ensure that 

r i ( d , n )  > max(ri(~qC, n - l ) , r i ( d , n  + 1)), 

resp. 

r i ( d , n )  < m i n ( r i ( d , n -  1),ri(~C,n + 1)) 

holds infinitely often (for i = 1,2, 3)? 

Problem 7. What condition is needed to ensure that 

lim sup(r~(d,n)  - m a x ( r i ( d , n  - 1 ) , r i ( d , n  + 1))) = + ~ ,  

resp. 

lim s u p ( m i n ( r i ( ~ C , n -  1),ri(~C,n + 1 ) ) -  r i ( d , n ) ) =  + c ~ ,  
n ~ q - O 0  

(for i =  1,2,3)? 
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Problem 8. So far we have studied the case of  two summands, i.e., the functions 
r i ( ~  ¢, n, 2). The problem is to extend these results to the case of  k summands, i.e., 
to the functions r i ( d , n , k ) .  In the case of  Theorems 1-4, we expect results of  similar 
nature for k > 2, while in the case of  the monotonicity properties we get a problem 
o f  completely different nature for k > 2. 

In [12, 13] we studied Sidon sets, mostly the structure of  the sum set 5 ~ ( ~ ¢ ) =  

{sl, s2 . . . . .  } o f  a Sidon set ~¢. In [12] first we studied the number of  blocks of  
consecutive integers in 5~(~¢). 

Theorem 6. There is a positive constant e3 such that f o r  every f ini te  Sidon set s~ 

and all d E ~ we have 

I{s: s E ~ ( d ) ,  s - d  ~ ~ ( ~ ) } 1  > c3 ld l  2. (2.6) 

Note that clearly the left-hand side of  (2.6) is ~< 1~12 (for all d and d)  so that (2.6) 
is the best possible apart from the value of  the constant c3. In particular, choosing d = 1 
we obtain that i f  we represent 6 e ( d )  as the union of  t blocks (o f  length vl, v2 . . . . .  vt) 

of  consecutive integers: 

) ~ ( d )  = { u i + / }  , ui ¢ ~ ( d ) ,  (2.7) 
i=1 

then the number t o f  these blocks is >> Idl  2. 
We also proved a theorem similar to Theorem 6 for infinite Sidon sets. 

Problem 9. Do there exist finite Sidon sets ~¢ such that I d ]  ---, +cx~, and representing 
5 e ( d )  in the form (2.7), we have 

( )  v 2 I d l - 2 ~ + ~ ?  
i=1 

Problem 10. Is it true that for finite Sidon sets d we have 

lim [{s : s - 1 ~ 5e(~¢), s E 5 e ( d ) , s  + 1 ¢~ 5 e ( d ) } [  = + o c  ? 

Next, we studied the size of  the gaps between the consecutive elements of  the sum 
set 6e(~¢) of  a Sidon set ~¢. 

Theorem 7. For all e > 0 there is an infinite Sidon set d and a positive integer io 

such that the sum set 5 ~ ( d )  = ~ + ~ = {sl,s2 . . . .  } satisfies 

Si+l - -  S i < s]/2(log Si )  (3/2)+~ f o r  i > io. (2.8) 
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Probably this is true with s~ on the right hand side o f  (2.8) but it seems to be 
hopeless to prove this. Again, we proved a similar result for finite Sidon sets. 

On the other hand we proved the following theorem. 

Theorem 8. There is a positive absolute constant c 4 such that i f  d is a f ini te  Sidon 

set with Idl /> 2 and we write 5 a ( d )  = {Sl, s2 . . . . .  su} (where sl < s2 < . . .  < su), 

then we have 

max - -  S i )  > C 4 log I d l  1 <~i<~u--I (St+l  

(The analogous result for infinite Sidon sets follows from an old result o f  Erd6s.) 
The proof  of  Theorem 8 gives the existence of  a gap si+t - si > c4 log [d ]  with an 

i 'much smaller '  than u (typically, i < Q/2+~). 

Problem 11. Is it true that if  e > 0 and [d [  > no(e), then every interval o f  length 
eu contains a large gap, i.e., for all x C Z there is a y E 7/ such that x < y < x + eu 

and y + j  g 6 : ( d )  for 1 ~< j ~< c (e ) log  1~¢1? Perhaps, this holds already for intervals 
much shorter than eu. 

Problem 12. Is it true that i f  d is a finite Sidon set whose sum set is 5 : ( d ) =  

{Sl, s2 . . . . .  Su} (so that u-~ I S q d ) l  = (t~l)  + I d l )  ' then for I ~ l  ~ + o c  we have 

U--1 

! - s , )  2 - ,  ? 
U 

i=1 

In [13] first we estimated the length of  blocks o f  consecutive integers in sum sets of  
Sidon sets. We proved that the maximal length of  a block of  consecutive integers in 
the sum set o f  a Sidon set selected from {1,2 . . . .  ,N} is between c5 NI/3 and c6N1/2: 

Theorem 9. I f  N c N , L  E N a n d e d  C {1,2 . . . . .  N }  is a Sidon set, then f o r  a l l K E  Z 

we have 

I{s: s E 5 e ( d ) , K  < s ~< K + L } ]  < 1 /2L+6L1/2N 1/4 . 

Applying this theorem with L = [200Nt/2], we obtain that for large N, b ° ( d )  cannot 
contain more than 200N 1/2 consecutive integers. 

On the other hand, we have the following theorem. 

Theorem 10. There is an infinite Sidon set d such that f o r  all n > no, 6 P ( d ) f )  
{ 1, 2 . . . . .  n} contains a block consistin9 o f  more than l n l / 3  consecutive integers. 

Finally (inspired by Freiman's  results [15]) in [13] we showed that B2[g] sets, in 
particular, Sidon sets cannot be well-covered by generalized arithmetic progressions; 
these results are too complicated to give the details here. 
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Problem 13. Is it true that if  d c {1, 2 . . . . .  N} is a finite Sidon set with 

[ d [  = (1 + o(1) )N 1/2 , (2.9) 

then 6e(~ ' )  must be well-distributed in the residue classes o f  small moduli? In par- 

ticular, is it true that (2.9) implies that about half  of  the elements o f  ~ ( d )  are even 

and half o f  them are odd? 

Problem 14. Does there exist an infinite Sidon set d which is an asymptotic basis o f  

order 3? 

Problem 15. Does there exist a Sidon set d C {1, 2 , . . . , N }  such that [ d [  << N 1/3 and 

it is a 'maximal '  Sidon set in the sense that there is no b such that 
b E {1, 2, . . . , N } , b  l i d  and ~¢U {b} is a Sidon set? (The answer to this question 

would throw more light on the role o f  the 'greedy algorithm' in this field.) 

Some o f  the problems studied above could be extended to 'nearly '  Sidon sets and 

Bz[g] sets. Moreover, some of  them could be extended to other structures along the 

lines described in [ 19]. 

o 

Nathanson [ 18] studied the following problem: when is A uniquely determined by the 

sequence rl(~ql, n o ) , r l ( d ,  no + 1 ) , r l ( d ,  n0 + 2) . . . .  ? The following related questions 
can be asked. 

For what sets d does the set 5 e ( d )  uniquely determine ~¢? 

Moreover, for i = 1, 2, 3, let ~ i ( d )  denote the range o f  the function r i ( d , n ) ,  i.e., 

~i(o~¢) denotes the set o f  the integers m such that there is a number n C ~ with 

ri( sC, n) = m . 

For what sets M C N0 can one find a set ~¢ with 

~ ' ( d )  = M, ~ c ~ ?  (3.1) 

This last question can be answered relatively easily. Here we restrict ourselves to the 

case i = 1 since the cases i = 2, 3 can be handled similarly: 

Theorem 11. For a set ~ c No, (3.1) can be solved i f  and only i f  either ~ = {0,1} 
o r  

{0, 1,2) C ~ .  (3.2) 

Proof.  If  (3.1) can be solved and d = {al,a2 . . . .  } (where 0 < al < az < " ") is a 
solution, then clearly 
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rl(ag, 1) = 0, r l (~ / , 2a l )  = 1 

so that {0, 1} C ~ l ( a g ) .  Moreover, for la¢ I = 1 we have ~ l ( d )  = {0, 1}, while for 

l~4l > 1 we have 

r l ( d ,  al + a2) = 2 

so that (3.2) holds in this case. 

Conversely, assume that (3.2) holds and let M =  {bo, ba,b2 . . . .  } where b0 = 0 ,  

b l - - 1 ,  b 2 - - 2  and b2 < b3 < ' "  (The case M----{0, 1} is trivial: we may take 
~¢ = {1}.) Then we will define a sequence of  sets ~'1,~¢2 . . . .  by recursion so that 

~/1 C ag2 C . . -  (3.3) 

and 

~ l ( agk )  = {b0, bl . . . . .  bk} ( =  {0, 1,2 . . . .  }) .  (3.4) 

Indeed, let 

dl ={1}; 

then clearly 

~ j ( d l )  = {0,1} 

so that (3.4) holds with 1 in place o f k .  Assume that k E r~ and a g l , d 2  . . . . .  d k  have 
been defined so that 

a / i C d i + l  ( fo rk  ~> 2, i =  1,2 . . . . .  k -  1) (3.5) 

and 

~ l ( a g i )  = {b0,bl . . . . .  bi} ( f o r / =  1,2 . . . . .  k ) .  

Then define ~¢k+~ in the following way: write 

t/, = [bk+l/2]. 

Let g = {el, e2 . . . . .  etk} (where el < e2 < "-" < % )  be a Sidon set such that 

el > 2 max a 
aE.~l k 

and 

(3.6) 

ei+l --el  > max a f o r / =  1,2 . . . . .  tk -- 1; 
aE~'k 

the existence o f  such a Sidon set can be shown easily by using the greedy algorithm. 

Write 



84 

and 

Let 

P. Erd6s et al./Discrete Mathematics 136 (1994) 75 99 

xk = 2etk + 1 

~ k  = {el, e2 . . . . .  etk,2Xk -- % , - - 2 x k  -- % -- 1 . . . . .  2xk -- el } .  

¢k U o~k ifbk+l is even, 
~k+l  = d k  U o~k U {xk} ifbk+l is odd. 

Then clearly, (3.5) also holds with k + 1 in place o fk .  Moreover, an easy consideration 
shows that 

and 

r l ( d k + l , n )  = r j ( d k , n )  

rl(~Ck+l,n) E {0, 1,2} 

for n E 5e(sc'k), 

for n ~ 5e(~Ck ), n # 2xk 

r l ( d k + l , 2 X k ) = b k + l ,  

so that (3.6) also holds with k + 1 in place of  i which completes the proof of  the 
existence of sets ~¢~, d 2  . . . .  with the desired properties. 

It follows trivially from the construction that the set 

d = U d i  
i 

satisfies (3.1) and this completes the proof of  Theorem 11. [] 

. 

As Theorem 11 and its proof shows, (3.2) is necessary for the solvability of  (3.1) 
(assuming Idl  > 1), and the necessity of  this condition is a consequence of the be- 
haviour of  the function r l (~C,n)  for 'small '  values of n. Thus if we want to get rid of  
this condition, then we have to modify the definition of  ~ l ( d )  so that it should not 
depend on the values assumed by rl(~C,n) for small n's. Indeed, for i = 1,2,3, define 
R ~ ( d )  as the set of  the integers m such that there are infinitely many integers n E N 
satisfying 

r i ( d , n )  = m .  

Theorem 12. For each i = 1,2,3 and f o r  all  :~ c N0, the equation 

R ~ ( d )  = ~ (4.1) 

can be solved 
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Proof .  We restrict ourselves to the case i = 1 since the cases i = 2, 3 are similar. 

Moreover,  the case M = 0 is trivial, thus we may assume that 9~ ~ 0. The proof  o f  

the existence o f  an za¢ satisfying (4.1) will be based on the following lemma. [] 

Lemma 1. There exist absolute constants c7, c8, ¢9 and no, and a set ~ C ~ such that 

c7 log n < r l (~ ,n )  < c8 logn  f o r n  > no (4.2) 

and, denoting the solution set o f  

e + e ~ = n ,e ,e  ~ E ~ , 

i.e., the set o f  the integers e with e E ~ ,n  - e E o ¢ by J - (~ ,n ) ,  we have 

lY-(d~,m) n Y-(~,n)l < c9 for allm,  n E ~ ,  m # n .  (4.3) 

Proof  of  Lemma 1. This is a combination of  results o f  Erdfs ,  Nathanson and Tetali 

[3, 5, 14]. [] 

To construct a set ~ '  o f  the desired properties, consider first an infinite sequence 

f l ,  f 2  . . . .  o f  nonnegative integers such that f n  E :~ for all n E ~d, and i f  b E ~ ,  then 

there are infinitely many n E ~ with f~  = b. By recursion we will construct an infinite 

sequence ff = {gl, g2 . . . .  } C ~ and an infinite sequence ~ 0 ,  .~1 . . . .  o f  subsets o f  

with the following properties: 

gk > 2gk--I f o r k = 2 , 3  . . . . .  

Jr% = d ~ , 

~(¢~x. C ~ k -  l for k = 1,2 . . . . .  

OWk M(O, g k / 2 ) = - - ~ k - I  N(O, gk/2) f o r k  = 1,2 . . . . .  

r l ( ~ k ,  gk) = f k  f o r k  = 1,2 . . . . .  

C7 
rl(Oet°k,n) > ~- log n fo rn  > no, n ~[ {gl,g2 . . . . .  gk} 

(where c7 and no are defined in Lemma 1 ). Then clearly, the set 

+ ~  

d =  [ ' ] ~ k  
k=0 

satisfies 

and 

r l ( d ,  g k ) = f k  f o r k =  1,2 . . . .  

e7 
r l ( d , n )  > ~- l o g n  fo rn  > no, n f [ ( # ,  

(4.4) 

(4.5) 

(4.6) 

(4.7) 

(4.8) 

(4.9) 
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whence, by the definition of f l , f 2  . . . . .  it follows that this set ~ '  satisfies (4.1). 
To construct this f¢ and ovf0,~l  . . . . .  first define oef0 by (4.5). Assume now that 

k E ~ and ,~ff0,~l . . . . .  ~ k - 1  and ( i fk  > 1) 91,02 . . . . .  Ok-1 have been defined so that 
also 

r l ( , k ~ i , n )  >~ r l (o~¢ t '~ i - l , n ) -  c9 ~ r l ( ~ , n ) -  c9i  

fork  > 1, i =  1,2 . . . . .  k -  1, n >~ g i /2 ,  n ~ g i .  (4.10) 

Then let gk be the smallest integer with the following properties (n0,c7 and c9 are 
defined in Lemma 1): 

2n0 if k =  1, 11 
gk > 294-1 i fk  > 1, 

(4. ) 

C7 
~- log(gk/2) > f k  + c9k (4.12) 

and 

odd if fk  is even, 
gi i s  (4.13) 

even and Ok~2 E JFk-1 i f f k i s  odd. 

It follows from (4.2), (4.10), (4.11) and (4.12) that 

r l ( ~ k - l , g k )  >~ r l ( ~ , g k )  --  c9 (k  - 1) > C7 log gk - c9 (k  - 1) > 2 f k .  

Thus denoting the integers h with h E ~ k - l ,  gk/2 < h < gk, h c Y ( J f k - l ,  gk) by 

hi < h2 < . . .  < hx, we have x >~ [fk/2] .  Let c,6o = {h[ fk /2]+l ,h[ fk /2]+2 . . . . .  h x } ,  and 
define ~ k  by 

Ygk = Ygk- 1 \ LPk. 

Then (4.4), (4.5), (4.6), (4.7) and (4.8) hold trivially. Moreover, it follows from 

£#k C J - ( Jgk- l ,Yk)  C 3-(o~,gk) and (4.3) (with m = gk) that (4.10) holds also with 
k in place of i. Finally, we have 

r l ( ~ k , n )  = r l ( J f k - l , n )  forn < gk/2 

and it follows from (4.2), (4.10), (4.11) and (4.12) that 

r l ( ~ k , n )  >>- r l ( J g k - l , n ) -  c9 >>- r l ( g , n ) -  cgk 

C7 
> c7 log n - c9k > ~ log n for gk/2 <~ n, n ¢ gk 

which proves also (4.9) and this completes the proof of Theorem 12. [] 

Note that in the proof of  Theorem 12; we constructed a solution d of  (4.1) 
(with i =  1) such that for almost all n we have r l ( d , n ) q [ M  (indeed, we have 
r t ( d , n )  ~ +wz on a set of  density 1). The problem becomes much more difficult 
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if we are looking for solutions s&’ such that rl(d,n) E .@ apart from a ‘thin’ set of 

integers n . 

Problem 16. For what sets L!# c NO has Eq. (4.1) a solution & such that for almost 

all n we have ri(&,n) E B? 

Problem 17. For what sets ~8 c NO has Eq. (4.1) a solution such that for n > no we 

have ri(d,n) E Z8? 

Problem 17 seems to be very difficult. Indeed, ErdGs and Tumn conjectured long 

ago that if ~1 (LZZ’, n) 2 1 for n > no, then 

lim ri(&,n) = +oo. 
nF++OS 

This conjecture has not been settled yet, and at present it seems to be hopelessly 

difficult. Correspondingly, it cannot be decided whether there is a finite set B c N 

such that rt(d,n) E B for n > no. 

5. 

So far we have studied sums a + a’. In the second half of this paper we will study 

differences a - a’. In particular, we will study the following questions: 

( 1) For what sequences ii, J-2,. . . of nonnegative integers can one find a set LX? c No 

such that 

f(@+,d) = Ad 

for all d E N? 

(5.1) 

(2) For what sets SY c N can one find a set L&’ c NO such that 

9(&S!) = z#? (5.2) 

(3) Do there exist sets ~59 c N such that there is a set d c NO satisfying (5.2) and, 

apart from translation (replacing LX? by d + {m}), this d is unique? If such sets 98 

exist, then what conditions are needed to ensure the uniqueness of &? 

In each of these cases, it seems to be hopeless to give a complete answer. Instead, 

we will be looking for possibly general sufficient conditions. 

As a partial answer to question 1, GroSek and Jajcay [ 161 proved the following 

theorem. 

Theorem 13 (Grosek and Jajcay). Zf ;I,, 22,. . . are integers such that 

1-d 3 2 (ford= 1,2 ,... ), 

then there is a set d satisfying (5.1) for all d E N. 
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First we will sharpen this theorem: 

Theorem 14. I f  21, 22 . . . .  are nonneoative inteoers such that for  all k E N there is an 
integer n = n(k ) with 

2d ~ 2 f o r d = n - k , n - k + l , . . . , n ,  

then there & a set ~¢ satisfyino (5 .1) for  all d E N. 

Note that the theorem could be extended easily to the case when also 2d = +o~ 

is allowed (i.e., for some d ' s  (5.1) must have infinitely many solutions); however, to 

simplify the discussion here we restrict ourselves to the case when all the 2 's  are finite. 
It follows from Theorem 14 that if ~ C N and ~ '  contains arbitrary long sequences 

o f  consecutive integers, then there is an ~ '  C No with ~ (~¢ )  = ~ :  

Corollary 1. I f  ~ C N and for  all k E N there is an inteoer n = n(k) E N with 

n - i E M  f o r i = O ,  1 . . . . .  k ,  

then there is a set d satisfyino (5.2). 

Proof of Theorem 14. We will construct the elements al < a2 < • "" of  ~¢ recursively. 

Let do denote the least integer d with 2a > 0, and let al = 1,a2 = al + do = 1 + do. 

Assume now that for some i E N, the numbers al < a2 < - "  < a2i have been 

defined so that, writing ~ i  = {al, a2 . . . . .  a2i}, 
(i) we have 

f ( d i ,  d) ~ 2a for a l l d E  N ,  

(ii) i f j i  is defined by 

Ji Jl +1 

d = l  d = l  

then we have 

f (~4i ,  d) = 2a f o r d  = 1,2 . . . . .  ji (5.3) 

and 

ji+l Ji 

Z f ( s ~ i , d  ) = Z 2a + f ( ~ t i , j i  + 1) >~ i 
d = l  d = l  

(Note that by the definition o f  al and a2, both (i) and (ii) hold with i = 1.) 

Then we define a2i+l and a2i+2 in the following way: 
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Let r denote the smallest integer with 

J.r > f ( J e l i ,  r )  

By the assumption in the theorem, there is an integer n such that 

n > 2a2i + r 

and 

89 

(5.4) 

f ( a g i + l , d )  = f ( ~ f i ,  d )  i f d  E I~, d ¢ r, 

d q~ {n  - (azi  + r ) , n  - (a2i + r )  + 1 . . . . .  n} .  (5.8) 

By the definition of  n, it follows from (5.6), (5.7) and (5.8) that (i) and (ii) hold also 
with i + 1 in place o f  i, and this completes the construction. 

Finally, it follows from (5.3) that the set ag defined in this way satisfies (5.1) and 

this completes the proof  of  Theorem 14. [] 

Proof of Corollary 1. This follows from Theorem 14 by choosing 

2 , , = { 2  for d C ~ ,  
0 f o r d  ~ ~ .  [] 

(5.9) 

and 

2a >~ 2 f o r d = n - ( a 2 i + r ) , n - ( a z i + r ) +  l . . . . .  n .  (5.5) 

Then let a2i+l = n - r, a2i+2 -~ n, 

~¢i+1 -~ .-~¢i U {a2/+l, a2i+2) = {a l, a2 . . . . .  a2i+2} .  

It is easy to see that the differences a - a '  with a, a '  C ag i+l ,  a > a ' ,  a f[ d i  (so 

that a = a2i+l or a = a2i+2) assume the following values: 
(a) a - a '  = r for a : a 2 i + 2 , a  t = a2i+t; 
(b) a -  a '  assumes one of  the values 

(a2i+l - azi =)n  - (azi  + r ) ,  n - (a2i + r )  + 1 . . . . .  a2i+2 - al  , 

and each of  these values is assumed only by at most two differences a -  a '  of  this 
type. Note that in this case, by (5.4) we have 

a - a '  >1 n - ( a z i  q-  r )  > azi 

and thus a - a '  ~ ~ ( d i ) .  
(a) and (b)  imply that 

f ( a g i + l , r )  = f ( ~ i , r )  + 1, (5.6) 

0 <~ f ( ~ t i + l , d )  ~ 2 f o r n - ( a 2 i q - r )  <<. d <~ n (5.7) 
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. 

The method o f  the proof o f  Theorem 14 is similar to the one used by Grogek and 

Jajcay in [16], and in both cases, there are differences d E ~ ( d )  such that representing 
them in the form a - a ~ -- d, the numbers a and a I are large in terms of  d. One might 

like to know whether this must be so or this is only a weakness o f  the method and, 
perhaps, having the additional assumption that ~ is 'dense' ,  for a given ~ one can 

also find an ~¢ such that ~ ( d )  = ~ ,  and for all b E ~ ,  the equation a - a '  = b has 

at least one solution a,a' 'not very large' in terms of  b. We will show 

Theorem 15. Assume that the function F(x)  is nonnegative in 0 < x < +oo and 
l imx~+~ F(x)  = +oo. Then there is an infinite set ~ C N such that 

(i) the asymptotic density d ( ~ )  o f  ~ exists and 

d ( ~ )  = 1; (6.1) 

(ii) there is an ~l C N such that 

~ ( ~ )  = .~ ;  (6.2) 

(iii) / f  ~¢ satisfies (6.2), then for infinitely many b E ~,  

a -  a I = b,a, a' E s l  

implies a > F(b). 

Proof.  (6.1) implies t h a t ~  contains arbitrarily long blocks o f  consecutive integers, so 
that by Corollary 1, it follows from (6.1) that there is an d satisfying (6.2). Thus it 

suffices to show that there is a set M satisfying properties (i) and (iii). 
First define the integers nl < n2 < ' ' "  ,dl < d2 < ' ' "  by the following recursion: 

Let nl = 2, dl = 3. I f  k E N and nl, n2 . . . . .  nk, d l ,  d E  . . . . .  dk have been defined, then 

let 

= ( max [ F ( d ) ] + l , 2 d  2) nk+l m a x  d2<d<<'2d~ 

and dk+t = nk+l + 1. Let ~1 = {1,2}, and for k E N let 

~k+l = {b : b E  N, n~ < b <~ nk+l, dk t b} . 

Finally, let 

+oc  

~ =  U ~ k -  
k = l  

We will show that this set N satisfies both (i) and (iii) in the theorem. 
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Clearly, for k, n E NI, nk < n ~< nk+l we have 

B ( n ) - B ( n k ) = B k + l ( n )  >1 ( n - n k )  1 -  - 1 .  

Thus by 

lim nk+l/nk = +oo ,  
k---++oo 

for n ---+ +oo  and defining k by nk < n ~< nk+l we have 

B(n)  ~ (B(n) - B(nk))  + (B(nk) -- B(nk-1 )) 

( ' ) ,  
>/ ( n - - n k )  1-- d7 - 1 + ( n k - - n k - i )  1 dk-1 

>i ( n - - n k _ , ) ( 1 - - d ~ _ l ) - 2 = ( n - o ( n ) ) ( 1 - d ~ _ l  ) - 2  

n 
= n - - -  - o(n) = n - o(n) 

d~_~ 

which proves (i). 

In order to prove 

(6.2). First we will 

A(nk+t) <~ dk 

Indeed, assume that 

adk+l ~ / ' / k + l  • 

Then by the pigeon hole principle, there exist i , j  such that 

(al ~ ) a i  < c{/ ~ nk+l 

and 
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(iii), assume that ag = {al, a2 . . . .  } (where al < a2 < ." ") satisfies 

show that this implies 

(for k E ~ ) .  (6.3) 

contrary to this assertion we have 

ai =- aj (moddk) .  

Then in view o f  (6.2) we have 

aj  -- ai < nk+l 

and 

(6.4) 

(6.5) 

dk ](aj - ai) .  (6.6) 

On the other hand, by the construction o f  M, there is no b with b C M,b <~ n~+l, dk[b. 

This contradicts (6.4), (6.5) and (6.6), and this contradiction proves (6.3). 
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It follows from (6.3) that 

I ~ ( d M { 1 , 2  . . . . .  nk+,})l ~ < ( A ( 2 + l ) ) ~  < ( d k ) <  d-~k22 " (6.7) 

By (6.1), for k ---+ +cx~ we have 

B(Zd 2) - B(d 2) = (1 + o(1))d 2 . (6.8) 

It follows from (6.7) and (6.8) that for k large enough there is a b such that 

b E ~ ,  (6.9) 

d~ < b ~< 2d~ (6.10) 

and 

b • ~ ( ~ n  {1, 2 . . . . .  nk+l}). (6.11) 

By (6.11), 

a - a ' = b ,  a , a  I E d  (6.12) 

implies that 

a > nk+l. (6.13) 

By the definition of nk+l, it follows from (6.10) and (6.13) that 

a > [F(b)] + 1 > F(b) .  (6.14) 

Thus for every large k there is a b such that (6.9) and (6.10) hold, and (6.12) implies 
(6.14) which proves (iii) and this completes the proof of the theorem. [] 

. 

Note that in the construction of the set ~ in the proof of Theorem 15, the order 
of magnitude of n -  B(n) depends on the function F(x). This dependence cannot be 
eliminated, i.e., (i) in Theorem 15 cannot be sharpened as the following theorem shows: 

Theorem 16. I f  the function F(x)  is nonnegative in 0 < x  < +e¢ and 

limx__++~ F(x)  = +e¢, limx__++~ (F(x)/x) = O, then there is a function G(x), defined 

in 0 < x < +cx~, with the followin9 properties." 

I f  ~ C ~ and 

x -  B(x) <<, F(x)  for all x > O, (7.1) 

then there is a set d c ~ such ~(~¢) = ~ and for all b E ~, 
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a - d = b ,  a, d E d  

can be solved with 

a < G(b).  
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Proof.  The proofs o f  Theorem 14 and Corollary 1 give this result. Indeed, all one has 

to observe is the following: defining the 2 's  by (5.9), for the smallest n satisfying (5.4) 
and (5.5) one can give an upper bound depending only on i and the function F(x)  in 

(7.1). [] 

. 

If  e is a set o f  positive integers and there is a set d o f  nonnegative integers 

such that 

@ ( d )  = 8 ,  (8.1) 

then we say that g can be difference represented, and (8.1) is said to be a difference 

representation o f  8. If  d = {al, a2 . . . .  },.~ = {bl,b2 . . . .  } are sets o f  nonnegative inte- 

gers such that one o f  them can be obtained from the other one by a translation, i.e., 

there is an integer m with an + m = b, for n = 1, 2 . . . . .  then the sets d ,  ~ are said to 

be equivalent. I f  the set 8 o f  positive integers can be difference represented, and 

~(o~')  = ~ ( ~ )  = # 

implies that d and ~ are equivalent, then we say that the difference representation o f  

8 is unique. 

One might like to study difference sets whose difference representation is unique. 
The first question to answer is whether there is a difference set 8 whose difference 

representation is unique. If  such a set g exists, then when is the difference representation 

o f  a difference set unique? Is it true that if  a difference set is ' thin '  in a well-defined 

sense, then its difference representation is unique? How 'dense'  can be a difference 

set with a unique difference representation? The following theorem provides a partial 

answer to some of  these questions: 

T h e o r e m  17. I f  d is an infinite B3 set o f  nonnegative integers with 

0 C d ,  

and ~ is a set o f  nonnegative integers with 

~ ( ~ )  = ~ ( d )  

and 

O c t ,  

then we have ~ = d .  

(8.2) 

(8.3) 

( 8 . 4 )  
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Note that by the greedy algorithm, there is an infinite B3 set d with 

A ( n )  >> n 1/5 . 

Then writing ~ (~1)  = g, we have 

E ( n )  >> n 2/5 

so that there is an infinite difference set ~ with unique difference representation whose 
counting function grows like n 2/5. 

Proof  of  Theorem 17. Assume that M satisfies (8.3) and (8.4), and write ~c¢ = 

{ao, al  . . . .  } ,~¢  --  {bo,  bl . . . .  } where ao = 0 < al < a2 < " " , b 0  --- 0 < bl < b2 < "'" 

Clearly, the assumption that ~¢ is a B3 set implies that 

d is a B2 se t  (8.5) 

as well. It follows from (8.5) that 

0 < ax  --  a y  = a ,  - av implies x = u ,y  = v. (8.6) 

Now we will show that 

C ~ ' .  (8.7) 

Assume that bi  E ~3. Then by (8.3) and (8.4), we have 

bi = bi - bo E ~ ( ~ )  = ~ ( ~ ¢ )  

so that by the definition o f  ~ ( d ) ,  there are u = u ( i ) ,  v = v ( i )  such that bi = a~ - a~: 

for all bi c g ,  there are a~, a~ c ~¢ with bi = a~ - a~ . (8.8) 

Note that by (8.6), bi determines a~ and av in (8.8) uniquely. 
We will prove (8.7) by contradiction. Assume that for s o m e  bi  E ~ ,  we have 

b, ([ ~ . (8.9) 

Then by (8.2), (8.4), (8.8) and (8.9), bi can be represented in the form 

b i = a u - a v ,  au C d ,  at, C d ,  u > v > 0 .  (8.10) 

Let us consider all the pairs (u,v) which satisfy (8.10) for some bi E ~ ,  and let 

(u0, v0) denote the pair (u,v) for that au 

is unique by (8.6).) Write 

- a ~  is minimal. (Note that the pair (uo, Vo) 

so that 

auo - avo = bi  0 , (8.11) 

0 < Vo < u0. (8.12) 
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Now we will show that every 

bi E ~ ,  b i > 0 (8.13) 

is o f  the form either 

bi = ax - av o, x >>- Uo ( 8 . 1 4 )  

o r  

bi = auo - a y ,  y > Vo.  (8.15) 

In fact, by (8.8), (8.13) implies that there are u, v with 

bi = au - av ,  u > v . (8.16) 

By (8.11), bi0 is of  the form (8.14), thus we may assume that 

i ¢ i o  

Then we have either 

0 < b i -  bi o E ~ ( , ~ ) =  ~ ( J : ~ )  

o r  

0 < b/o - bi E ~ ( ~ ' )  = ~ ( d )  

so that, by the definition of  ~ ( d ) ,  there exist az E s l ,  a t E d such that 

bi  - bio = az  - at  (8.17) 

and 

z ¢ t.  (8.18) 

It follows from (8.11), (8.16) and (8.17) that 

bi  - bi 0 : ( au - av ) - ( auo - avo ) = a~ - at 

whence 

au + avo + at = az  + a~, + a ,  o . (8.19) 

Since ~/  is a B3 set, it follows from (8.12), (8.16), (8.18) and (8.19) that either 

a~ = az, avo = av, at = a~ o (8.20) 

o r  

a~ = a~ o, avo = az ,  at  = av  . (8.21) 
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In case (8.20), (8.14) holds with x = z, while in case (8.21), (8.15) holds with y = t 
so that, indeed, (8.13) implies either (8.14) or (8.15). 

Now we will show that (8.15) cannot occur, i.e., (8.13) implies that b i is of the 
form (8.14). We will prove this by contradiction: assume that there are p , q  with 

0 < p ,  (8.22) 

vo < q < u0, (8.23) 

b p  = auo - aq (8.24) 

(note that q < u0 follows from (8.22) and (8.24)). (8.13) and (8.15) imply that 
Vo < y < u0, thus there are only finitely many b i ' s  of  the form (8.15). 
On the other hand, since ~¢ is infinite, thus ~ ( d )  = ~ (~ ' )  is infinite, so that M must 
be infinite as well. It follows that there are infinitely many bi's of  the form (8.14); 
thus there are r, s with 

br = as - av o , 

S > U o ,  

r > p .  

Then by (8.24) and (8.25) we have 

b r  - b p  = (as  - avo)  - (auo - a q )  . 

(8.25) 

(8.26) 

(8.27) 

(8.28) 

On the other hand, by (8.27) and br - bp E ~(~ ' )  = ~ ( d )  there exist f ,  g with 

br - bp  = a f  - -  ag , (8.29) 

f > g. (8.30) 

It follows from (8.28) and (8.29) that 

as + aq -+- ag = a f + avo + auo • (8.31 ) 

Since ~¢ is a B3 set, (8.12), (8.26) and (8.31) imply that 

as = a f  (8.32) 

so that 

aq + ag ~- avo + auo • 

By (8.23), here we have q # v0, q # u0 which contradicts (8.5), and this proves that 
every bi  with (8.13) is of the form (8.14). 

Now consider an arbitrary aw E ~¢ with 

w > 0. (8.33) 
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By 

aw = aw - ao E ~ ( ~ ¢ )  = ~ ( ~ ) ,  

aw  can be represented in the form 

aw = bu  - by  with b , , b ~  c ~ .  (8.34) 

Assume first that b~, --- bo = 0. Then by (8.33), 

aw = bu > 0 

and thus aw can be represented in form (8.14): 

aw = bu = ak  --  avo 

for some k > Vo whence 

aw -k av o = ak  = ak  -k ao . 

By (8.5) and (8.33), it follows that w = k,  vo = 0 which contradicts (8.12). 
Assume now that in (8.34) we have 

u > v > 0 .  

Then both bu and b~ can be represented in form (8.14): 

bu = ak - avo, b~ = a t  - avo (8.35) 

for some 

k >  l > vo ( >  0) .  (8.36) 

Then by (8.34) and (8.35) we have 

aw = bu - by : ( a k  - a v o )  - ( a l  - -  aoo)  : ak  - a l  

whence 

aw -b a l  : ak  : ak  q- ao  . 

Then by (8.5) and (8.33), it follows that w = k, l = 0 which contradicts (8.36). Thus 

indeed, (8.9) leads to a contradiction which completes the proof o f  (8.7). 

It remains to show that there is no ai E d with 

ai  ~ ~ .  (8.37) 

Assume that contrary to this assertion, there is an i satisfying (8.37). It follows from 
(8.4) and (8.37) that 

i > 0 ,  (8.38) 
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Clearly we have 

ai = ai  - ao E ~ ( d )  = ~ ( ~ ) ,  

thus ai can be represented in the form 

a i = b - b  r w i t h b ,  b t C M .  

By (8.7), there exist m, n such that b = am,  b '  = a,, so that 

ai ~ b - b t : -  a m - an 

whence 

ai  + an = am = am + ao • 

By (8.5) and (8.38), it follows that n = 0 so that b'  = a ,  

a i = b - -  b ~ = b C 

which contradicts (8.37) and this completes the proof  of  the theorem. 

(8.39) 

= ao = 0 and thus by (8.39), 

[] 
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