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A (finite or infinite) set & of positive integers is said to be a Sidon set if the sums
a+a with ae o, a' e, a<a’ are distinct. Denote the sum set o + o/ of a Sidon
set o by &, = {5, 55, ..}. The size of the gaps s,, , —s,, the length of the blocks
of consecutive integers in %, and the number of solutions of s<n, s—d¢ o, s o
are studied.  © 1994 Academic Press, Inc.

1

The set of the positive integers will be denoted by N. o, 4, ... will denote
(finite or infinite) subsets of N, and their counting functions will be
denoted by 4(n), B(n), ... so that, e.g.,

A(n)=|{a:a<n,ac s}

We denote the sum set o + .o/ (i.e., the set of the numbers that can be
represented in the form a+a' with a,a'e o) by &£, = {s,,5,,..}. For
A =N, deN we write

B(t,d)={a:a—d¢ A, ae A}
and we denote the counting function of this set by B(.#, d, n). ¢, ¢5, ... will

denote positive absolute constants. If f(n)=0O(g(n)), then we write

f(n) < g(n).

2

Clearly, for a finite set & < N we have

B4

2|M|—1<|yd|<<2

>+ |t (2.1)
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If in (2.1) the upper bound is assumed, i.e., the sums a + @’ with g, a’' € &,
a<a are distinct, then o is said to be a Sidon set. An excellent account
of the theory of Sidon sets is given in [5] (see [2] for a more recent
result).

Freiman [4] studied the structure of the sum set ¥, under the assump-
tion that

%) < || (22)

where « is fixed and || - +o0. He showed that this assumption implies
that o/ can be “well-covered” by a generalized arithmetic progression. It
follows from his results that assuming (2.2), there is a number # = n(«) and
an integer d=d(%/)€ N such that for |.o/| =2 we have

|B(L s D) < (1 =1) | F,].

While Freiman studied the case when || is close to the lower bound
in (2.1), here our goal is to study the other extreme case when |%,| is
close to the upper bound, ie., & is a Sidon set or “nearly” Sidon set.
Indeed, we will show that for Sidon sets & the structure of %, is just the
opposite of the one in Freiman’s case, i.e., nontrivial lower bound can be
given for |#(S,, d)] for all de N. Next, we will estimate the size of the
gaps between the consecutive elements of the sum set &, of a Sidon set .
Finally, in the last section we will discuss several unsolved problems con-
cerning Sidon sets.

In Part IT of this series we will estimate the number of elements of sum
sets of Sidon sets in short intervals. Moreover, we will show that the sum set
of a Sidon set cannot be well-covered by generalized arithmetic progressions.

It follows from (2.1) that for every finite 4 = N and all de N we have

|B(S g, D <Ly < | (3.1)

On the other hand, we can show that for every finite Sidon set ./ and all
de N we have |B(%,, d)| > ||

THEOREM 1. There is a positive constant ¢, such that for every finite
Sidon set of and all de N we have

|B(Ly, AN >y 1|2

In particular, choosing d=1 we obtain that if we represent ¥, as the
union of ¢t = |#(¥,, d)| blocks of consecutive integers:

L= tknki+ 1, .k, + 1}, ki—1¢%,,

i=1

then the number ¢ of these blocks is > |«/|2
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We can prove an analogous result for infinite Sidon sets:

THEOREM 2. There is a positive absolute constant ¢, such that for every
infinite Sidon set of and all de N we have

lim sup B(%,,d, N)(AN)) 2>c,. (3.2)
N —» 4o
Indeed, it will be shown that here ¢, =10"7 can be taken.
Note that if & = {a,, a,, .., a,, ..} is an infinite set of positive integers,
then for all N we have

B(%,,d, NYAN)) *<c;.

Moreover, a simple construction show that the lim sup in (3.2) cannot be
replaced by lim inf. Indeed, define N, N,, ... by the following recursion: let
N,=1000 and N,,,=NM for k=1, 2, .... Furthermore, let o = {1} and
if o, < {1,2,.., N.} has been defined, then, by using the greedy algorithm,
it can be shown that there is a set %, <N such that %, c [N, ,—
(N2, Nes1ds 1Bl >N/ and o, 0%, is a Sidon set. Let o, =
o B,. Then it is easy to see that o ={J;/ > o is a Sidon set and we

have
B(%,,d, N)<|Z, 0 [L, NS ey |P + i o] 1Bl
<A(N, _()log A(N, 1)

Thus Theorem 2 is best possible apart from the value of the constant c,.

Since Theorems ! and 2 can be proved similarly but the proof of
Theorem 1 is simpler, thus here we will give only the proof of the more
difficult Theorem 2.

4

Proof of Theorem 2. We start out from the indirect assumption that for
al 6 >0 there is an infinite Sidon set ./ such that
lim sup B(¥,,d, N)(A(N))~*<3é. (4.1
N>+
We will show that for sufficiently small §, (4.1) leads to a contradiction.

First we will show that for an infinite set o e N, there exist infinitely
many integers N such that

A(N+j)<<N+j

2
AV N ) forall jeN. (4.2)
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We will prove this by contradiction. Assume that contrary to this assertion,
(4.2) holds only for finitely many integers N. Then there exists an integer
N, such that

A(No) =1
and for all N > N, there exists an integer N' = N'(N) satisfying N’ > N and
A(Nl ) Nl 2
— 2 —_— .
A(N)
Then we get by induction that there exist integers Ny <N, <N, < .-+ <

N;< ---such that
AN ) (N z
A(N;) T\ N,

1

(in fact, N;,, can be defined by N,, ,=N'(N,)). It follows that for all
ke N we have

A(Nk+l)_ . A( j+1 < 1+1)2_<Nk+1)2
A(Np) _.H A(N,) =11 TN, )

j=0 j=0

Thus for large enough k we have

N 2
AN )2 AW (T2 3 NGV, > M2,

0

which contradicts the trivial inequality
A(Nk+1)= t{a:aSNkJrl’aEM}' S'{a:astJrl, GENH =Nei1s

and this contradiction proves the existence of infinitely many integers N
satisfying (4.2).

5

Throughout the rest of the Proof of Theorem 2, we use the following
notations:

¢ is a small but fixed positive number, &/ is an infinite Sidon set satis-
fying (4.1), and N is a large integer satisfying (4.2). We write ¢°™* =e(a),
and we put r =e~'/¥, z=re(x) where « is a real variable (so that a function
of form p(z) is a function of the real variable a: p(z) = p(re(a)) = P(a)). We
write

=z z

aesf
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(By r <1, this infinite series and all the other infinite series in the rest of
the proof are absolutely convergent.)
We start out from the integral

s=[ 1= P
0

We will give lower and upper bounds for #. Comparing these bounds, we
will get an inequality contradicting (4.1) for small enough 4, and this will
complete the Proof of Theorem 2.

6

In this section, we give a lower bound for #. By |z| =|re(x)| =r<1 we
have
|1 —2z7]

5 <1 forall O0<a<xl.

Thus by the Cauchy-Schwarz inequality we have

1 1 1
f=f l(l—zd)fz(z)lzdazj. I(1=2z%) f¥z )|2|___|_.da
0 0

2
j (1= 27) f(2)|* du> 5 (j I(l—z")f(z)lzda)- (6.1)

Write

(1-29) flz)= ) t(n)z

so that t(n)=1 for all ne #(«, d). By Parseval’s formula, it follows that

1 1]+ 2 +
f 1=z ) de=[ | T tin)2"| de= Y £(m)7
0 O lp=0 n=0
N
=Y 2Nz Y 1*(n)
n=0 n<Nne#(A,d)
~e~2B(of,d, N). (62)

By our assumption ./ is a Sidon set, thus

a—a =d, a,a e
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has at most one solution. This implies that for all large N we have

B(+, d,N);A(N)-1>f(—2JY~). (6.3)

It follows from (6.1), (6.2), and (6.3) that for all large N we have

AN

f?%(e’z ; ))2>10"‘A2(N). (6.4)

7

In this section, we will give an upper bound for #. Write

+ oo

@)=Y, uln)z"

n=0
so that
0 ifand onlyif n¢ %,
u(n)=<1 ifand only if #n=2xfor some ae o, (7.1)
2 ifand onlyif n=a+d forsomeae o/, a’' e, a<a
Moreover, write
+ o +
(1—z9) f2(z)= Y, (un)—uln—d))z"=}, v(n)z".
n=1 n=1

Then by Parseval’s formula we have

1 1]+ 2 + o0
F=[ 1=z f@)da={ | Y o(n)z"| da= ¥ v¥m)r* (12)
0 0 {,=1 n=1
It follows from (7.1) that
lvo(n) =0, 1,0r2 for all n; (7.3)

if |v(n)] >0, then one of the followings holds:
neS,n—de¢es, e, ne#B(L,. d); (7.4)
nes,, n—de%,; (7.5)

n—d=2aorn=2a for some ae . (7.6)
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Let 2 and & denote the set of the positive integers n satisfying (7.5) and
(7.6), respectively. Clearly, for all me N we have

B(%,, d,m)> D(m) (7.7)
and
E(m)<2A4(m). (7.8)

Thus writing
Vim)= 3, vi(n),
n=1

by formulas (7.3)-(7.8) we have

V(m) < Y 4<4(B(S,,d, m)+ D(m)+ E(m))

n<m,|o(n) >0
<4(B(¥%,,d, m)+ B(¥,, d, m)+24(m))
=8(B(Sy, d, m)+ A(m)) forall meN. (7.9)

By (4.1), (7.2) and (7.9), if N satisfies (4.2) and N —» +oo, then we have

+ o0 + o

=Y V) r"—r"*)=(1=r*) Y V(n)r™

<(1+r)(1—r) g 8(B(%y, d, n) + A(n)) r*

n=1

<2(1 —e””)(0(1)+ 8 f (64%(n) + A(n)) rz")

n=1

<2 -]lv(ou)+95 bl AZ(n)r2">

n=1

=0(1)+ 185N ! +ZOOA2(n)r2" (7.10)

n=1
since we have

l—e *<x for O0<x<l.

(Here the O(1) term may be depend on 4 and ., but it is bounded for
fixed 6 and & as N— +o0.)
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By (4.2) we have

+ oo N + oo
Y AXn) =Y AXmr+ Yy, A(n)r™

n=1 n=1 n=N+1

+ o n 2\ 2
<NA*(N)+ Y (A(N)(;v—>> r

n=N+1

+ ¢
< NAXN)+ AX(NYN~* Y nrn, (7.11)

n=1

For 0 < x <1 we have
+ o0 4 1t
(1-x)7°=1+ 3% (n:— )x">§—4~n§1 n*x",

Thus it follows from (7.11) that

EC AXn)r <NAN)+ A*(N)N ~*.24(1 = r%) 73

n=1
= AXN)(N+ 24N 41 —e V) %)
< AXAN)N+24N-*.N5)=25NAYN)  (7.12)

since we have
l—e"‘>§ for 0<x<1.
If N is large enough, then it follows from (7.10) and (7.12) that

F<O(1)+ 185N ' - 25NA*(N) < 5006 4%(N ) (7.13)

for every large N satisfying (4.2).

8

In this section, we will complete the proof of Theorem 2. By (6.4} and
(7.13) we have

10 %4*(N) < ¢ < 50064%(N)
(for every large N satisfying (4.2)). It follows that
10 % < 5008



SUM SETS OF SIDON SETS 337

which cannot hold for sufficiently small & (say, for = 10~7). Thus, indeed,
the indirect assumption (4.1) leads to a contradiction which completes the
proof of the theorem.

9

In Sections 9-11 we will study the following question: how small can one
make the difference between the consecutive elements of &, for a (finite or
infinite) Sidon set? First we will study finite Sidon sets. For ne N define
H(n) as the smallest positive integer H such that there is a Sidon set
o< {1,2,..,n} with

{i+1,i4+2, ,i+H}n&,# for i=0,1,.. n

We will prove

THEOREM 3. For ne N, n> n, we have
H(n)<3n'2
We remark that almost certainly we have
H(n)=o0(n'?)
but unfortunately we have not been able to prove this, and, perhaps, even
H(n)=o0(n%)

holds (for all ¢ > 0).

Proof of Theorem 3. We have to show that for n> n, there is a Sidon
set o/ < {1, 2, .., n} such that

{i+1,i+2, .., i+[30'"?]}nZ, #0 for i=0,1,..,n. (9.1)

Since the construction will be similar to the one given by Erdds (see [6]
and also [5, p. 90]) we shall leave some details to the reader.
Let p denote the smallest prime number with

2Ap—2)p>n
so that by the prime number theorem we have

p=(1+o0(1))n/2)""2 (9.2)
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Let
a,=2tk=1) p+rk’ p) for k=12, .,p—1

where r(k? p) denotes the least non-negative residue of k? modulo p so
that

r(k? p)=ki(mod p) and  0<r(k? p)<p,
and let
o ={ay,ay,..a,_}n{l,2, ., n}

Then we have & < {1,2, .., n}, and it is easy to see that ./ is a Sidon set.
Clearly, a, =1 and by the definition of p we have

a, >2p—2)p>n 9.3)
Moreover, we have
s,=a,+a,=2e%, (94)
and
a,+a e, forall a,<n. (9.5)

Finally, in view of (9.2), for i=1, 2, .., p—2 and large n we have
0<(ai +a)—(a;+a))=a;,,—a;<(2ip+p)—2(i—)p=3p<3n'’

(9.1) follows from (9.3), (9.4), 9.5), and (9.6), and this completes the Proof
of Theorem 3.

10
For infinite Sidon sets, we can prove the following slightly weaker result:

THEOREM 4. For all € >0 there is a Sidon set & and a positive integer
io such that the sum set ¥ = + & = {s,, 55, ...} satisfies

Siy1— 8 <s/?(logs;) ¥+ (10.1)

for i>1i,.

We remark that probably the right-hand-side of (10.1) can be replaced
by s¢ but it seems to be hopeless to prove this.
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Proof of Theorem 4. We shall adapt the probabilistic method of Erdds
and Reényi [1, 3]. The Halberstam—Roth book [5] contains an excellent
exposition of this method thus we use the terminology and notation of this

book.
Let € denote the family of the subsets of N, and for n=1, 2, ... write

a,=n"Y*log(n+3)) U +ers (10.2)
Then we have
O<a,<1 for n=1,2,...

Consider the probability space (£2, s, u) with the following two proper-
ties (cf. Theorem 13 in [5, p. 142]):

(i) For every neN, the event B = {o: o €, nesl}) s
measurable, and p(B™)=ua,.
(ii) The events B, B®) .. are independent. Moreover, denote the
number of solutions of
ata =n, a,a' e, a<sd
by r,(.o/). First we will prove two lemmas.

LEMMA 1. Let E, denote the event

E,={B RBecQ,r(B)>1}

and write
+ oc + oc
F=\ ﬂ (U E,,) (10.3)
j=1 \n=j
so that B e F if and only if there is a number no=no(#) such that we have
r.(#)<1 for nzn,. (104)
Then we have
uw(F)=1. (10.5)

Proof of Lemma 1. For 1 <i<j<n/2, let G,(i, j) denote the event
G, i, )={B - B icBn—icRB jeB n—jck#}

Then clearly,
Ec ) G,))

I<i<j<n/2
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whence

wENS Y G, ) (10.6)

I<i<j<n2

By (i) and (ii) we have

. o0, 00, for 1<i<j<n/2
maunh{ s =J=
e ST T for 1g<i<j=n/2.

Thus by (10.2), we obtain by a simple calculation that

Z .u(Gn(l’ J))': Z xianfi(xjanfj_,—énanﬂ Z 00y, g

I<i<j<gn 1<i<j<n/2 L<i<n/2
2
S( Z aian~i+ 5nan/2>
1<i<n/2
<n Ylogn) U+9 (10.7)

where §,,=1 if n is even and 4,=0 if »n is odd, and the implicit constant
depends on &. By (10.6) and (10.7) we have

+ o

S WE,) < 4.

n=1

Thus by the Borel-Cantelli lemma (cf. [S5, p. 135}), with probability 1 at
most a finite number of the events E, can occur which, by (10.3), proves
(10.5) and this completes the proof of Lemma 1.

Now for a fixed ¢> 0, define the integers u, <u, < --- by the following
recursion: Let

u,; = 1000.
If u,, have been defined, then let
v, = [Lul(log u,) )+
and
Uy 1 =U,+ 20,

LemMMa 2. Let K, denote the event K, = {#: B e Q, there are no b, b’ ¢ B
with [u,/10)1<b<bu, <b+b' <u,, }, and write

L=\ hw(UK) (10.8)

j=1 X n=j
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50 that B € L if and only if there is a number n, =n(#) such that for nzn,
there are integers b, b’ with

b,b e [u,/101<b<d, u, <b+b <u,, . (10.9)
Then we have
u(L)y=1. (10.10)

Proof of Lemma 2. First we will estimate p(K,). Define the positive
integer j, by

[un/IO] +j0vn < un/2 < [un/lo] + (,]0+ l)vn
so that for n > +00 we have

2u,
Sv,

Jo=(1+0(1)) (10.11)

n

For 1< /< j,, let M, (j) denote the event that there are no b, b’ with

def

be [[u,/10]+ (j— 1) v,, [u,/10]) + jv,) = I,
b'e [ll,,—‘ [un/l()] _(.]_ 1) Uy, U, — [un/lo] - (j—_z) vn) q_if Ij,
Then clearly,

Jo
K,c () M.()),

J=1
moreover, the events M, (1), ..., M,(j,) are independent so that
Jo
w(K,) < [T (M, (1)) (10.12)
j=1
It remains to estimate u(M,(j)). For n — +aoo clearly we have

WM, () =1 —(1 “T] ~a.—))(1 “I1 —a.-))< L (1= (1 =2, )")?

iely 1511

=1—(1+o(1))v,x,) (uniformly for 1 <j < j,). (10.13)

It follows from (10.11), (10.12) and (10.13) that for sufficiently large n we
have

WK, < (1= (1+o(1)(v,a,)* Y0 =exp(— (1 +0(1)) jo(van,)?)

=exp(—(3+0(1)) u,v,2; ) =exp(—(Fs+o(1)) log u,)' * ) <u, 2

641/47:3-7
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It follows that

“+ a0

Y uK,) < +ow.

n=1

Thus again by the Borel-Cantelli lemma, with probability 1 at most a finite
number of the events K, can occur which, by (10.8), proves (10.10) and this
completes the proof of Lemma 2.

Completion of the Proof of Theorem 4. By Lemmas 1 and 2, we have
wWFALy=1
so that Fn L is non-empty. Consider a set
#BeFn L.
By % e F, there is a number n, = ny(#) such that (10.4) holds. Let
oA =%Bn[ng, +w0) (10.13)

It follows from (10.4) that o/ is a Sidon set. To complete the proof of the
theorem, it suffices to show that if / is large enough, then there are g, o’
with a4, a’ e &/ and

s;<a+a <s;+s!*(logs;) 2 e (10.14)
Define # by
u, <s;<u,,. (10.15)

By # e L, if i is large enough in terms of the number #n, = n,(#) defined in
Lemma 2, then there exist b, b" with

b, b eB, u,/10<b<d’ (10.16)
and
u, <b+b' <u,,,. (10.17)

If i and thus also #n is large enough, then it follows from (10.13) and (10.16)
that b, b’ e.o/. Moreover, by the definition of the numbers u,, u,, .., it
follows from (10.15) and (10.17) that (10.14) holds with » and ' in place
of a and «’, respectively, and this completes the proof of Theorem 4.
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11

So far we have given upper bounds for the large gaps between the con-
secutive elements of &, for Sidon sets. In case of infinite Sidon sets, a result
of Erdés gives a lower bound for these gaps. In fact, Erdés [6] or
[5, p- 89] proved the following result: if ./ is an infinite Sidon set, then we
have

lim inf A(n)n~"?(log n)'? < +o0. (11.1)

n-— +oo
[t is easy to see that this implies

lim sup(s,,,—s;)(logs;)"!>0. (11.2)

i— t+o

We conjecture that the limit on the left hand side is + oo, but this seems
to be very difficult.

Moreover, the method of the proof of (11.1) can be adapted easily to the
finite case. In this way, we get

THEOREM 5. There is a positive absolute constant ¢, such that if &/ is a
finite Sidon set with || 22 and we write &, = {s,, 55, .., $,,}, then we have

max (s;,.,—35;)>c4log ||

I<igu-—1
Proof. Write o ={a,,ay,..,a,} where a,<a,< ... <a,. If a;>1,
then we may replace & by o' = {a}, a3, .., a,} where a/=a;— (a,—1).
Then we have a) =1, and the differences between the consecutive elements
of &, resp. ¥, are the same; thus we may assume that
a =1. (11.3)
Moreover, clearly we may assume that |&/| = v is large enough:
v>v,. (11.4)
Write N=[a.] so that
(11.5)

Let
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Then the argument in [5, pp. 89-90] gives that

1,(N)<1
so that there is an / such that
1IN
and
log IN\'?
A(IN)< % =1 (N)<cs
whence
IN 72 IN \'?
IN —_— .
AUN) <es <log IN) =& (log N)
Write

F*=SF,n{1,2, ,IN}={5,5, ... 8}
Then by (11.3) we have
s;=a,+a;=2.
Moreover, it follows from (11.5) and (11.6) that
INSKN?’<a,<a,+a,e,.
Thus &, has at least one element s, greater than /V:
S,41 >IN
By (11.7) we have

t=|#*={(a,d )aed desd, a+a <IN}
<|{aaest,a<IN}|*=A%IN)<c N
S P - ®log N’

It follows from (11.4), (11.8), and (11.9) that

S (Siy1—8)=5,1—5>IN=2>3IN

i=1

(11.6)

(11.7)

(11.8)

(11.9)

(11.10)
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whence, by (11.4) and (11.10),

IN
max (s,-+1—s,-)>—t>c7 log N>cgloga,=cglogv=cglog ||

l<igy 2

and this completes the proof of Theorem 5.

12

Finally, we will discuss several unsolved problems concerning Sidon sets.

Problem 1. We conjecture that for finite Sidon sets o/ we have

lim |{s:s—1¢%,,5€e%,,5+1¢F,} =+

1] = +0
Is it true that we have
Hs:s—1¢%,,5€L,, s+ 1¢F, > |
For infinite Sidon sets <, the problem is to estimate the function
Flo,n)=|{s:s<ns—1¢5,,5€SL,,5+1¢5L,}I

Problem 2. Is it true that if for finite Sidon sets & we write &, =
{51,532, 5.} (s0 that t = |Z, | = ("7') + |&#]), then for || - +00 we have
11~1
7 Y (Sivy =) > +a0?
i=1

(Again, the problem can be extended to infinite Sidon sets.)

Problem 3. Is it true that if o/ < {1,2, .., n} is a finite Sidon set with
[«/]=(1+0(1))n'? (12.1)

then %, must be well-distributed in the residue classes of small moduli? In
particular, is it true that (12.1) implies that about half of the elements of
&, are even and half of them are odd?

Problem 4. Let F(N) denote the cardinality of a maximal Sidon set
selected from {1, 2, .., N }. Is it true that for every ke N there is a number
Ny = No(k) such that

FIN+k)-F(N)<1 for N> Ny?

Perhaps, this holds even with eN' in place of k.
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Problem 5. One might like to extend the problems studied above to
“nearly” Sidon sets. In particular, is it true that if .« is a finite set with

| Ll = (3 +0(1)) |,

then |B(¥,,d)| must be large (perhaps, »|o/|?) for all de N? The
method used in the Proof of Theorem 2 cannot be adapted to study this
problem.

Problem 6. Let &, denote the difference set of the finite set <7, i.e., the
set of the positive integers </ that can be represented in the form a—a' =d
with g, o’ € o/. One might like to study the difference analogues of the
problems discussed in Sections 3-11, ie., to replace the set ., in each of
these problems by Z_. Indeed, the proofs given above can be modified
easily to prove the difference analogues of Theorems 1 and 3 so that, e.g,
we can prove (by the method used in the Proof of Theorem 2) that for a
finite Sidon set o/ we have

Hnin—d¢D ,,ne D} >cy ||

On the other hand, it can be shown easily that there is an infinite Sidon
set & such that &, =N, so that the difference analogues of Theorem 2 and
(11.2) fail, while the difference analogue of the problem studied in
Theorem 4 1s trivial. The difference analogue of Theorem 5 gives the only
interesting new question and, indeed, we cannot answer the following ques-
tion: is it true that if for finite Sidon sets &/ we write 2, = {d,, d,, ... d,},
then for |&/{ — +co0 we have

max (d;,—d;)— +o?

1<iger—1

Problem 7. Does there exist a Sidon set &/ < {1,2, ., n} such that
|.o/| <n'? and it is a “maximal” Sidon set in the sense that there is no b
such that be {1,2,..,n}, b¢.of and &/ U {b} is a Sidon set? (The answer
to this question would throw more light on the role of the “greedy algo-
rithm” in this field.)

Problem 8. Does there exist an infinite Sidon set ./ which is an
asymptotic basis of order 3?

Problem 9. A set o 1s said to be a B,[g] set if for all ne N, the
equation

ata =na<sa, ac A, a A

has at most g solutions (so that a Sidon set is a B,[1] or briefly B, set).
One might like to extend the problems and results above to B,[g] sets.
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This seems to be very difficult and, indeed, the difficuities concerning
B,[ g] sets can be illustrated by the following fact: while we have a quite
good asymptotics for the cardinality of a maximal Sidon set o with
& < {1,2, .., n} (it is known that |max |.o/| —n'?| <n*'®), we do not have
any asymptotic formula for the cardinality of a maximal B,[ g] set ./ with
o <= {1,2, ., n}. Moreover, it is not known whether (11.1) can be extended
to B,(2], or more generally, B,[ g] sets. In other words, is it true that an
infinite B,[2] set o/ must satisfy

lim inf A(n)n = 1?*=0?

n— +oc
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