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Let the Kp-independence number <xp(G) of a graph G be the maximum order of an induced
subgraph in G that contains no Kp. (So /^-independence number is just the maximum size
of an independent set.) For given integers r,p,m > 0 and graphs L\,...,LT, we define the
corresponding Turan-Ramsey function RTp(n,L\,...,Lr,m) to be the maximum number
of edges in a graph Gn of order n such that ap(Gn) < m and there is an edge-colouring of
G with r colours such that the / h colour class contains no copy of Lj, for j = 1,. . . , r.
In this continuation of [11] and [12], we will investigate the problem where, instead of
a(Gn) = o(n), we assume (for some fixed p > 2) the stronger condition that ap(Gn) = o(n).
The first part of the paper contains multicoloured Turan-Ramsey theorems for graphs Gn

of order n with small JCp-independence number ap(Gn). Some structure theorems are given
for the case ap{Gn) = o(n), showing that there are graphs with fairly simple structure that
are within o(n2) of the extremal size; the structure is described in terms of the edge densities
between certain sets of vertices.

The second part of the paper is devoted to the case r = 1, i.e., to the problem of determining
the asymptotic value of

W ) = . i m ^ ,

(5)
•tfor p < q. Several results are proved, and some other problems and conjectures are stated.

0. Notation

In this paper we will consider graphs without loops and multiple edges. Given a graph
G, e(G) will denote the number of edges, v(G) the number of vertices, x(G) the chromatic
number, and a(G) the maximum cardinality of an independent set in G. More generally,
given an integer p > 1, <xp(G) denotes the p-independence number of G: the maximum
cardinality of a set S such that the subgraph of G spanned by S contains no Kp. Given a

t Supported by GRANT 'OTKA 1909'.

• This notation, where we put o(n) in place of f(n) is slightly imprecise. It means that any function f(n) = o(n)
and will be clarified in Section 2.
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graph, the (first) subscript will mostly denote the number of vertices: Gn, Sn, will always
denote graphs on n vertices. For given graphs L\,...,Lr, R(Li,...,Lr) will denote the
usual Ramsey number, that is, the minimum t such that for every edge-colouring of Kt

in r colours, for some v the vth colour contains an Lv*. If we partition n vertices into q
classes as equally as possible and join two vertices iff they belong to different classes, we
obtain the so-called Turan graph on n vertices and k classes, denoted by Tn^. This graph
is the (unique) fc-chromatic graph on n vertices with the maximum number of edges.

For a set Q, we will use \Q\ to denote its cardinality. Given two disjoint vertex sets, X
and Y, in a graph Gn, we use e(X, Y) to denote the number of edges in Gn joining X and
Y, and d(X, Y) to denote the edge-density between them:

Given a graph G and a set U of vertices of G, we use G[U] to denote the subgraph of
G induced (spanned) by U. The number of edges in a subgraph spanned by a set U of
vertices of G will be denoted by e{U). We will say that X is completely joined to Y if every
vertex of X is joined to every vertex of Y.

Given two points x, y in the Euclidean space Eh, we use p(x,y) to denote their ordinary
distance.

1. Introduction

Ramsey's Theorem [23] and Turin's Extremal Theorem [33, 34] are both among the most
well-known theorems of graph theory. Both served as starting points for whole branches
of graph theory. (For Ramsey Theory, see the book by R. L. Graham, B. L. Rothschild
and J. Spencer [21], and for Extremal Graph Theory, see the book by Bollobas [2], or
the survey by Simonovits [29].) In the late 1960's a new theory emerged connecting these
fields. Perhaps the first paper in this field is due to V. T. Sos [30], and quite a few results
have been found since then.

The 'historical' part of the introduction of this paper is slightly condensed, to avoid too
much repetition. For some further information see [12]. Some important references can
be found at the end of the paper, see [3, 11, 12, 18, 20, 31].

In [11] P. Erdos, A. Hajnal, V. T. Sos, and E. Szemeredi investigated the following
problem:

Suppose that a so-called forbidden graph L and a function f(n) = o(n) are given.
Determine

RT(n,L,f(n)) = max{e(Gn) : L <£ Gn and a(Gn) </(«)}.

They showed that this number depends (in some sense) primarily on the so-called
Arboricity of L (which is a slight modification of the usual arboricity of L). In a
continuation [12] of that paper, we started investigating the following problem:

This is the only case when the (first) subscript is not the number of vertices: i.e. when we speak of the
excluded graphs L,.
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Let Gn be a graph on n vertices the edges of which are coloured by r colours
Xi>->Xr, so that the subgraph of colour Xv contains no complete subgraph KPv,
(v = l,...,r). Let a function f(n) be given, (mostly f(n) = o{ri)) and suppose that
a(Gn) < /(n). What is the maximum number of edges in Gn under these conditions?

In this continuation of [11] and [12] we will investigate the problem where, instead of
a(Gn) = o{n), we assume a stronger independence condition: that the maximum cardinality
of a .Kp-free induced subgraph of Gn is o(n):

ap(Gn) = o{n).

The concept of ap(G) was introduced long ago by A. Hajnal, and also investigated by
Erdos and Rogers, see [16]. (A similar 'independence notion' is investigated for random
graphs in a paper of Eli Shamir [24], where he generalizes some results on the chromatic
number of random graphs.)

The general problem

Assume that Li,...,Lr are given graphs, and Gn is a graph on n vertices, the edges
of which are coloured by r colours Xi,...,xr, and

( for v = 1,.. . , r the subgraph of colour %v contains no Lv

\ and o.p(Gn) < m.

What is the maximum ofe(Gn) under these conditions?

The maximum will be denoted by RTp(n,Li,...,Lr,m). The graphs attaining the max-
imum in this problem will be called extremal graphs for RTp{n,L\,...,Lr,m). It may
happen that there exist no graphs satisfying our conditions. Then we will say that the
maximum is 0.

Of course, for fixed m and large n - by Ramsey's theorem - there are no graphs with the
above properties: the maximum is taken over the empty set. However, we are interested
mainly in the case m —• oo, m = f(n) = o(n), but m/n —> 0 very slowly.

The existence of graphs satisfying (*) is far from being trivial. We will use a theorem
of Erdos and Rogers to prove the existence of such graphs for the case of one colour
and when the forbidden graph is a complete graph. We will sketch a constructive proof
of the Erdos-Rogers theorem in Section 4, and return to this question in a more general
setting in the Appendix, where we will characterize the cases when (•) can be satisfied
(for 2-connected forbidden graphs). Among others, we will see that (*) can always be
satisfied when all the forbidden graphs L, are complete graphs of more than p vertices
and m = nl~c for some small c > 0.

Some motivation Our problems are motivated by the classical Turan and Ramsey The-
orems [33, 34, 23], and also (indirectly) by some applications of the Turan Theorem to
geometry, analysis (in particular, potential theory) [35, 36, 37, 13, 14, 15], and probability
theory (see, for example, Katona, [22], or Sidorenko, [25, 26]), (see also [38]).

In [12] we proved (among others), for the problem of RT2(n,K^,...,Ktrr,o{n)), the
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existence of a sequence of asymptotically extremal graph sequences of relatively simple
structure'.

Assume now, that a(Gn) is much smaller than en, for example a(Gn) < ^Jn. Then we
know (since R(K^,Kk) < k2/\ogk) that for every fixed c > 0, every set of > en vertices
of Gn will contain not only an edge, but also a K3. Similarly, if we choose even smaller
upper bounds for a(Gn), we can ensure the even stronger conditions that every induced
subgraph of Gn of at least en vertices contains a larger complete graph Kp. This also leads
to the problems of the present paper, though apart from Theorem 2.1 we will deal only
with the simplest case f(n) = o(n).

Some basic definitions It is probably hopeless to give an exact description of the maximum
in the general problem. Therefore we will try to find an asymptotically extremal sequence
of graphs of relatively simple structure. The definitions listed here are needed to make
precise what we consider 'relatively simple'.

Notation. For any given function / , let

a n d

where the limsup is taken for the r-coloured graphs Gn satisfying (•) with m = zf(n):

for v = 1,..., r the subgraph of colour /v contains no Lv

and ap(Gn) < e/(n).

(If the limsup is taken over the empty set (of graphs), it is defined to be 0.) Clearly, if
e —* 0, the limsup above will converge, since it is monotone in £. One can easily see the
following claim.

Claim 1.1.
0,

,: RTp{n,Lu...,Lr,enf(n)) ^n
limsup T̂ r < i*pj(Lu...,Lr).

(b) There exist a sequence e* —> 0 and an infinite sequence (Sn : n € No) fNo £ NJ of
graphs with the property {*) for m = e*/(n) where the equality holds in (a).

(c) For every en > e*, en —• 0,

= pji u'''' r)"
RTp(n,Lu...,Lr, enf(n))

Proof. Here (a) is trivial from the definition, (c) is trivial from (a) and (b), by monotonicity,
and (b) follows by an easy diagonalization.

Indeed, assume that for k = 1,..., t—1 we have already fixed Snk. Now we fix s = e, = 1/t
and find an Sn, with the following properties: n, > n,_ls

and «p(Sni) < (l/t)/(nt). •

* The definitions can be found below.
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Unfortunately, we cannot prove the corresponding assertions for all n > no: we cannot
exclude the possibility that

RTp(n,L\,...,Lr,enf(n))

G)
jumps up and down as n —> oo.

We will often speak of the problem of determining RTp(n, L\,...,Lr, o(n)), meaning the
determination of 3pj(L\,...,Lr), for f(n) = n. This slightly imprecise notation will cause
no problems. Similarly, if f(n) = n, we will often use the notation $p(L\,...,Lr) instead
of Bpj(Li,...,Lr) . Observe that 9 is monotone: if we replace L\ by an L\ 2 L,, then
9pj(Li,...,Lr) < 3pj(L\,...,Lr). In particular, 9p(Kq) is monotone increasing in q.

Definition 1.2. (Asymptotically extremal graphs) Suppose that the forbidden graphs
L\,...,Lr, and the function / are given. An infinite sequence of graphs, (£„), will be called
an asymptotically extremal sequence (for L\,...,Lr and / ) if the edges of each Sn can be
r-coloured so that the vth colour contains no Lv, (v = l , . . . , r ) , <xp(Gn) = o(f(n)), and

e(Sn)

In Section 2 we will formulate some theorems asserting that, for any r, there are always
asymptotically extremal graph sequences of fairly simple structure. To formulate these
theorems, we have to introduce the notion of matrix graphs, and matrix graph sequences.

We will say that two disjoint vertex sets X and Y are joined e-regularly in the graph G
if for every subset X' £ X and Y* s Y satisfying |A"| > e\X\ and \Y'\ > e\Y|, we have

\d(X',Y')-d(X,Y)\<£.

In the following A = (ay) will always be a symmetric matrix with all ay e [0,1].

Definition 1.3. (^-matrix graph sequences) Given a t x t symmetric matrix A = (ay), a
graph sequence (Sn) - defined for infinitely many n but not necessarily defined for every
n > no - is said to be an A-matrix graph sequence if the vertices of Sn can be partitioned
into t classes Kln,.. . , FI>n so that in Sn

— eiyij = o(n2), for every i=l,...,t,
— d(Vt,n, Vfr) = ay + o(l) for every 1 <i<j <t and
— the classes Vifi and Vj<n are joined en-regularly for every 1 < i < j < t for some en —» 0.

We will associate a quadratic form u/liir to A and maximize it over the simplex
X>i = 1,uu...,Ui > 0 :

:= max{iL4ur : J ^ u, = 1, w, > 0}.

The quadratic form will be used to measure the number of edges in the corresponding
matrix graph sequence. The vectors attaining the maximum will be called optimum vectors.
(Optimum below will always mean maximum.)
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Definition 1.4. (Dense matrices) A matrix A is dense, if for any i deleting the ith row and
the ith column of the matrix A we get an A' with g(A') < g(A).

One can easily see [4] that if A is dense, it has a unique optimum vector and all the
coordinates of this optimum vector are positive. The uniqueness implies that the sym-
metries of the matrix leave the optimum vector invariant: the corresponding coordinates
are equal. This means that if a permutation n of l,...,t applied to the rows and to the
columns of A leaves A invariant, then n applied to the optimum vector also leaves it
unchanged. Further, if g(A') < g(A) for some symmetric minor A' of A, there exists an A"
obtained from A by deleting just one row and the corresponding column and satisfying
g(A") < g(A). For a more detailed description of this function g(A) see [4, 7].

Definition 1.5. (Asymptotically optimal A-matrix-graph sequences) Let A be a fixed matrix
and u = («!,..., ut) be an optimum vector for A. We will call an ^-matrix graph sequence
(Sn) asymptotically optimal if the classes V^, can be chosen so that \Vi>n\/n = «,- + o(l), for
i = 1,..., t.

Clearly, an optimal matrix graph has

lg(A)n2 + o(n2)

edges. If the matrix A has a submatrix A' such that g{A') = g(A), we can always replace
the matrix graph sequence corresponding to A by the simpler matrix graph sequence
corresponding to A'. This is why we are interested only in dense matrices.

2. Main results

We start with the existence of the limit.

Theorem 2.1. For any p\,...,pr and for f(n) = n,for any en —> 0:

(a) Let (Sn) be an extremal graph sequence for RTp(n,KPl,...,KPr,enn). Then

lim sup 41^ <

(b) There exists an e*n —> 0 for which on the left-hand side of (la) the limit exists and

e ^ ,...,KPr). (Ib)

(c) For every en —» 0 with en > e* the same - namely, (lb) - holds.

Here /(n) = n means that we consider the case ap(Gn) = o{n). The difference between
this theorem and Claim 1.1 is that there we regard all possible forbidden graphs, here only
complete graphs, and there we assert only the existence of a sparse subset of integers along
which a limit exists, (i.e., we assert that the limsup can be obtained in some specific way)
here we assert that the actual limit exists.
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The meaning of Theorems 2.2 and 2.3 below is that in the general case there are
asymptotically extremal graph sequences of fairly simple structure, where 'simple' means
that the structure depends on n weakly. This is a weak generalization of the Erdos-Stone-
Simonovits Theorem (from ordinary extremal graph theory) [17, 19]. The optimal matrix
graph sequences - in some sense - generalize the Turan graphs, while the matrix graphs
generalize the complete t-partite graphs. (See also [8], and [28]).

Theorem 2.2. For any p\,...,pr let £„ —> 0 sufficiently slowly (which means that the condition
of (c) of Theorem 2.1 is satisfied). Then there exists a dense Q x Q matrix A with Q <
R(KPl,...,KPr) and an asymptotically extremal sequence (Sn) for RTp(n,KPl,...,KPr,enn)
that is an asymptotically optimal A-matrix graph sequence.

For general L i , . . . ,L r we have the following theorem.

Theorem 2.3. Let r forbidden graphs L\,...,Lr be fixed. Let f(n) —• oo (f(n) = O(n)) be
an arbitrary function for which for every c G (0,1) there exists an n = r\ffi > 0 such that

f(cn) > nfj(n).

Then there exist a dense matrix A = (a,;)fiXn — for some Q < R(Li,...,Lr), and an asymp-
totically extremal sequence (Sn() (for L\,...,Lr and f, for some subsequence of integers)
that is an asymptotically optimal A-matrix graph sequence.

This means that the structure of some asymptotically extremal sequences is simple.
The matrix A depends on the function / : for different / ' s we get different extremal
densities. The matrix depends primarily on the sample graphs and on / . However, we are
unable to exclude the possibility that A must, even in the simplest case / = n, depend
on the actual subsequence of integers as well: that there is no common A for all n > no.
The condition f(cri) > rjf>cf(n) is a 'smoothness' condition, which is satisfied in 'all the
reasonable cases'.

Remark 2.4. We are primarily interested in functions of type f(n) = ri1'. By the quantitative
Ramsey Theorem, for every family L\,...,Lr we can fix a T > 0 so that if a(Gn) < f{n) =
nr, then every r-colouring of Gn contains an Lv of colour v for some v < r (since it
contains a large clique of colour v): no graphs satisfy (*).

Remark 2.5. When we assert the existence of a matrix A in Theorems 2.2 and 2.3, we
do not know too much about this A. The only thing we know is that it is dense and
(therefore, by Lemma 3.3) its off-diagonal entries are all positive.

Unfortunately, most of the non-trivial results for the Xp-free case (p > 2) are related to
the special case when all the forbidden subgraphs Lv are complete graphs. So in Sections
4-6 we will assume that the graphs L, are complete graphs. In Section 4 we will prove
some general upper and lower bounds for the case of one colour (r = 1). The following
result is a direct generalization of the Erdos-Sos Theorem from [18].
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Theorem 2.6.
(a) For any integers p > 1 and q > p we have

- * " " « ' - 2 \ q - l

(b) For every k, for q = pk + 1 this is sharp:

To get the lower bound in Theorem 2.6 (i.e., Theorem 2.6(b)) we will use a geometric con-
struction of ErdSs and Rogers [16]. Here we formulate their theorem, but the verification
is postponed to Section 4.

Erdos—Rogers Theorem. Let p > 2 be an integer. There are a constant c = cp > 0 and an
no(p,c), such that for every n > no(p,c), there exists a graph Qn not containing Kp+\, but
satisfying ap(Qn) < nl'c.

Construction 2.7. Let q = pk + 1. Take k vertex-disjoint Erdos-Rogers graphs of size
(n/k) + o(ri) (described in the previous theorem) and join each vertex to all the vertices in
the other graphs. (We will sometimes describe this as putting (p, e)-Erdos-Rogers graphs
into each class of a Tn^.) Thus we get a graph sequence (Sn) with <xp(Sn) <, knl~c for some
c> 0 and Kpk+i £ Sn.

This proves the lower bound in Theorem 2.6. For q = p+t, £ = 2,3,4,5 we can improve
the upper bound of Theorem 2.6, see Theorem 2.11.

Remark 2.8. Now, for p > 2 fixed, we know the value of every pth Sp(Kq). Perhaps the
other values have a 'pseudo-periodical' behaviour similar to that of &2(Kq): the extremal
structure is determined by the residue of q mod p. The situation is analogous to that in
the Erdos-Hajnal-S6s-Szemeredi [11] Theorem, where the case of odd values of q was
much simpler (and also much simpler to prove) than the case of even q's.

In Section 5, we investigate some special cases that seem to be interesting, because they
suggest some conjectures for the general case. Perhaps the following conjecture holds.

Conjecture 2.9. The asymptotically extremal graphs for RTp(n,Kq,o(ri)) have the following
structure: Let q = pk + (, (( = 1,2,...,p). Then n vertices are partitioned into k + 1
classes Vo>n,..., V^. For each pair {i,j} £ {0,1}, V^n is almost completely joined to Vjn in
the sense that every x € V^ is joined to every y € Vj^, with a possible exception of o(n2)
pairs xy. Further, d(V0>n, VUn) = ((£ — l)/p) + o(l) (as n -> ooj, and F0>n, V\,n are joined
o(l)-regularly. Finally, e(Vitn) = o(n2), i = l,...,/c.
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Remark 2.10. For graphs of this kind the optimal sizes of the classes Vt can easily be
computed: the optimal class-sizes are as follows. The edges in G[F,] can be neglected,

and

From this, e(Sn) can easily be calculated: if Sn is the graph described in the conjecture, it
is almost regular, and the degrees in V2 are n — | V2I. Hence

We describe some cases below, where we can prove the upper bound in Conjecture 2.9.

Theorem 2.11. Let ( = 2,3,4 or 5 and £ < p + 1. If Kp+g £ Gn and <xp(Gn) = o(n), then

e(Gn) < i^- n2 + o(n2).
4p

By Theorem 2.6, we know that 9p{Kp+i) = 0 and Bp(K2p+i) > 0. Here one of the main
problems is:

Problem 2.12. For fixed p determine the minimum (for which

Bp{Kp+i) > 0.

In particular, is 9p(Kp+2) > 0 or not? If 9p(Kp+f) > 0, how large is it?

Theorem 2.13. For any p^2, 9p(K2p) > •=.
o '

It is worth observing that replacing Klp by K2p+\ we get by Theorem 2.6(b), for any
P>2, 9p(K2p+1) = l/4.

For p = 2 Theorem 2.13 is sharp: #2(K4) ^ 1/8 was proved by Szemeredi [31] and
^2(^4) ^ 1/8 was settled by Bollobas and Erdos in [3], via a high-dimensional geometric
construction. In a slightly different form, Bollobas and Erdos did the following. Fix
a high-dimensional sphere S* and partition it into n/2 domains Di,...,Dn/2, of equal
measure and diameter (l/2)/i, with /i = e/y/h. Choose a vertex x, e D, and an yt e D,
for 1 = l , . . . ,n /2 and put X = {xi,. . . ,xn / 2} and Y = {yu---,yn/i}- Let X U Y be the
vertex-set of our Sn, and

join an x e X to a y € Y if p{x,y) < y/2 — n;
join a n x e l t o a f e l if p(x, x') > 2 — //;
join a y e Y to a y' e y if p(y, / ) > 2 — ^.

, , CPC3
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For p > 3, our result follows from a generalization of this construction. Theorem 2.13
may also be sharp for p > 3, but we cannot prove it. Let p = 3. Our results show only
that

0 < 93(/C5) < -rz

and
1

One of the most intriguing problems is to determine the values and some asymptotically
extremal graphs for RTj(n, K$, o(n)) and RTi(n,Ke,o(n)). Unfortunately, this task seems
to be too difficult. We do not know the answer to the simplest subproblem if 9i(Ks) > 0.

The last section contains some further open problems.
The basic proof techniques include primarily the application of Szemeredi's Regularity

Lemma, [32], a modification of Zykov's symmetrization method, [39] and multigraph
extremal-graph results [4, 5, 6, 7] (in the background).

Remark 2.14. It is difficult to find the places in this paper that would distinguish between
the conditions '(+) Sn contains no L,' and '(++) Sn can be coloured in r colours so that
the vth colour contains no Lv'. The reason for this is that the limit constants are the ones
that are different: we have the existence theorems in the same generality for the more
general case (++).

3. Proofs of Theorems 2.1-2.3

The aim of this section is to prove Theorems 2.1-2.3. We will start with the simpler
Theorem 2.1, move on to the proof of Theorem 2.3 and then return to the proof of
Theorem 2.2.

Proof of Theorem 2.1. Again, as in the 'proof of Claim 1.1, (a) is trivial, (c) follows from
(a) and (b) and the only thing to be proved is that if the forbidden graphs are complete
graphs and we have an infinite sequence (Sm,), as described in Claim 1.1 (b), then we can
extend this sequence to every n > no-

First fix an e > 0. Assume that Sm, is an extremal graph for RTp(m,,KPl KPr,emt).
We may choose this sequence so that

So Sm, has an r-colouring in which the vth colour contains no KPv and ap(Sm,) < emt if
t > to(e)- Below, we will sometimes abbreviate mt to m. Let h be an arbitrary integer
and put Zmh = Sm ® //,, that is, let Zmh be the graph obtained from Sm by replacing each
vertex by h independent vertices and joining two new vertices in colour v iff the original
vertices have been joined in colour v*. Since the forbidden graphs are complete graphs,

t Here //, means the complementary graph of K^.
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the r-coloured Zmh will contain no KPy (either) in the vth colour. Further, trivially,

e(Zmh) = e(Sm)
(mh)2 m2 '

and

mh m
(Indeed, each Kp-independent set increases by a factor h, and each JCp-independent set X
of Zmh induces a Kp-independent set of Sm of size at least (l/h)\X\.)

As described in the proof of Claim 1.1, we may choose a sequence Sm, with s, = (1/t),
ap(Sm,) < etmt, and (for / = n and 9 = 9P;/ = Iim9£)

Now, for every n > m\ choose the largest m, ^ jn. Then choose h = \n/mt] and delete
n — mth vertices of Zmih to get a graph S*. Clearly, mt —• oo. Since we have deleted at most
mth — n = o(n) vertices from Zm,/,, we obtain a sequence S* with ap(S*) = o{n) and

e(Sm,) = 9^j+o(m2).

D

(As mt -> oo, we cannot get all the integers in the form hmt. Therefore we must
approximate some n's by hmt > n: to delete < h = o(mth) vertices from some of the
Zm,h's.)

One of the basic methods we use to handle Turan-Ramsey type problems is the
Regularity Lemma [32].

The Regularity Lemma The regularity condition means that the edges behave (in some
weak sense) as if they were random. The Regularity Lemma asserts that the vertices of
the graph can be partitioned into a bounded number of classes VQ, ..., Vk such that almost
every pair is e-regular.
The Regularity Lemma. (See, for example, [32].) For every e > 0 and integer K there
exists a ICO(S,K) such that every graph Gn, the vertex set V(Gn) can be partitioned into sets
VQ, V\,...,Vk -for some K < k < ko(e,K) - so that \V0\ < en, \Vt\ = m (is the same) for
every i > 0, and for all but at most sfy pairs (i,j),for every I s K / and Y £ Vj satisfying
\X\,\Y\ > Em, we have

\d(X,Y)-d(Vi,Vj)\<E.

Remark 3.1. The role of VQ is purely technical: it makes it possible for all the other classes
to have exactly the same cardinality. Indeed, having a K and choosing K7 > K,E~2 and
applying the Regularity Lemma with this K, one can distribute the vertices of Vo evenly
among the other classes so that \Vj\ « \Vj\ and the e-regularity will be preserved with a

12-2
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slightly larger e. So from now on (for the sake of simplicity) we will assume that V$ = 0.
The role of K is to make the classes Vt sufficiently small, so that the number of edges
inside those classes are negligible. The partitions described in the Regularity Lemma, or
here, will be called Regular Partitions of Gn.

Now we turn to the second tool used in our proof: the application of matrix graph
sequences.

Dense matrices, matrix graph sequences

Lemma 3.2. Let Abe a symmetric matrix, z and n,x =f= n be given integers, and let axn — 0.
Then deleting either

— the T"1 row and column, or

— the nth row and column

we get a matrix A' with

g(A') = g(A).

This implies

Lemma 3.3. If a symmetric matrix A is dense, then all its off-diagonal entries are positive.

The lemma is a variant of Zykov's symmetrization [39], and its proof can be found, for
example, in [4]. Hence we only sketch its proof here'.

Proof of Lemma 3.2. (Sketched) Let u be an optimum vector for A, i.e.,

g(A) = max | IL4U T : u, > 0 (i = 1,. . . , () and ^ u{ = 1 j .

We define n{h) to be the vector where the rth coordinate of the optimum vector u is
decreased by h and the nth is increased by h. Clearly,

cp(h) = u(h)Au(h)T = (a,,, + ax,T)h2 + ah + c2

for some constants c\,ci (because ax^ = anjt = 0). For any interval, such functions attain
their maximum at some end of the interval (and maybe, inside as well). Hence we may
choose either h = uz or h = —un and still get the same maximum g(A). But now one of
the coordinates is 0, therefore the value of g(A) is the same as if we had deleted the tth

or 7ith row and column: g(^) = g{A'). •

Lemma 3.4. Assume that f(n) satisfies the condition of Theorem 2.3. Then for every sequence
£„ —* 0 we can find a sequence /?„ —» 0 such that

f(Pnn) > JTnf{n). (2)

i A. Sidorenko [27] has found a generalization of this lemma, providing a necessary and sufficient condition
for being dense.
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Proof. Let t be an integer and /? = l/t. Then f{fln) > r\f#f{n). If n > nt then en < tij^.
Thus /(/?n) > JeHf(n). We may assume nt+i > n,. Define /?„ = l / t for n e [nt,nt+i),
t := 1,2,3... Then )?„ -> 0 and (2) holds. •

Proof of Theorem 2.3. For every fixed £ > 0, for some infinite set of integers N6, for every
n G N£, we may fix an Sn satisfying

J for v = 1,..., r the subgraph of colour Xv contains no Lv

W \ and «p(S«) < ef(n),

and

(ii) 9e = limneNs

Apply the Regularity Lemma to this sequence (Sn) with this £ and K = 1/E (where K is the
lower bound on the number of classes). Thus we get a /co = /co(fi) such that the vertices of
Sn can be partitioned into the classes Vi>n,..., V^n for some K < k < ko so that

(iii) all but eQ pairs are £-regular, (k = k(n).) '

Using a diagonalization, we may find an infinite set of integers N* and for each n e N*
an r-coloured graph Sn, with a Regular Partition {Vi,„,..., Fi(n),n}, satisfying

for v = 1,.. . , r the subgraph of colour /v contains no Lv

and ap(Sn) < e«/(n),

with some £„ —> 0, and

(ii*) 9 = limneN- 4 R and

(iii*) all but£,,(2) pairs are£n-regular in the corresponding Regular Partition.

Here en usually tends to 0 very slowly, but still it tends to 0! We may assume that S > 0.
Next, delete the edges (x,y) : x e Vitn,y e VJ>n if

(a) either (7f>n, K7)n) is nonregular, or
(b) d(Vi>n, Vjj < 2en.

Thus we have deleted by (a) at most £n(*)(n/fc)2 < (l/2)£nn2 edges and by (b) at most
2en(«//c)2 (*) edges. In this way we have ensured that all the pairs (Fi;n, K/>n) are £n-regular.
The number of edges has been changed by at most (3/2)enn

2. Denote the resulting graph
by Tn.

There is a matrix A = An of k < ko{en) rows (and columns), corresponding to this graph
Tn (and its £n-regular partition), where ai; = d(Vin, Vj^) (this value being the density
in Tn). Clearly, if e is the k-dimensional vector each coordinate of which is n/k, then

= 0 is assumed, by Remark 3.1.
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(l/2)eAeT counts the edges between the classes (but it does not count the edges within
the classes) and

1 T , 1 , ,

e(Tn) < -eAe' + enn
2 < -g(A)nz + enn

2.

Thus
9(^-snn

2<e(Sn)<
l-g(AW + 3enn

2
>

and therefore

g(A) > 29 - 8en.

In the following m = \V\\, M = \ UI£/ Vt\. We will find a subgraph HM of Tn, equally
dense (but possibly much smaller), spanned by the union of some ft = ft,, < R{L\,..., Lr)
classes Vi<n. (This makes the problem bounded in some sense.) For any subset {Vin : i e /}
of {Vi,n} we have a symmetrical minor (submatrix) A' of A and a corresponding number
g{A'). We will choose an / for which g(A') > g(A) and |7| is the minimum. (Since
g(A') < g(A), we will actually have g(A') = g{A).) By Lemma 3.2, all the densities between
these classes are positive in Tn, and therefore are at least 2e. Further, the resulting matrix
A' is dense.

So, if we end up with ft classes, any two of which are joined by density > 2en, then,
by a very standard application of the Regularity Lemma, Tn => Kn'. (See, for example,
[11]) Hence ft < R = R(Li,...,Lr). In other words, we end up with a bounded number
of classes (independently of n and e).

Originally, when n —> oo, we have en —• 0, and the number of classes in the Regular
Partition could have tended to oo and the entries a,; to 0. Now the situation is nicer, the
numbers of rows and columns in the matrices A' are bounded, independently of e and n.
So we can take a convergent subsequence of these matrices, while n -* oo: we may assume
that the matrices A'n converge to a matrix A'. Still, it can happen that A' is not dense. In
that case we can take a dense submatrix Ao of A'. (Otherwise Ao = A'.)

Now we have a (mostly very sparse) sequence of integers n( and the corresponding
graphs Sni with their Regular Partitions (described in the Regularity Lemma) and the
corresponding matrices Ant with their dense submatrices A'ni converging to A'. We consider
only the dense submatrix Ao of A'. Let Ao be an ft x ft matrix. It has an optimum vector
u and each coordinate of u is positive, say at least y > 0. So we can fix the corresponding
ft < R(L\,...,Lr) classes, say V\,..., VQ, and the corresponding u,m vertices in them, thus
getting an optimal /lo-matrix graph sequence

Since each class of Wt := F,n V{Hm) of Hm has at least ym vertices, the Wt's will be joined
to each other (l/)>)2n-regularly: they will induce an optimal Xo-matrix graph sequence.

We have to prove four things:

I Here we need that e is small in terms of the Ramsey number R(Li,...,Lr).
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(a) The corresponding graphs can be coloured in r colours so that the vth colour contains
no Lv;

(/S) <xP(Hm) = o(f(m)),
(y) this matrix graph sequence has enough edges to be asymptotically extremal.
(8) e(Wi) = o(m2).

(a) This is trivial, since Hm, s Sn, and the Sn's have this colouring property.
(/?) Up to this point we have used one fixed sequence £„. Replacing this sequence by

another £'„ > £„ tending to 0, everything above remains valid (with the same regular
partition). Given the original sequence £„, we fix a sequence /?„ as described in Lemma
3.4. For any fixed £ the upper bound ko of the Regularity Lemma is a constant.
So we may find an e'^ —» 0 (very slowly) for which, for ej,' and K = 1/EJ,' we have
fco(K,£^') < l/pn. If £„ = max{Je^,pn,£^}, then with this ln -> 0 we have for every
induced subgraph Hm s Sn of at least n/k vertices

«,(#«) < yfaf(n) < f(n/k) < f(m).

(y) This follows by a simple computation: we have g(A'ni) > 9 — Set. Hence g(Ao) > 9. So
for an /to-graph Hm, we would know that e(Hm) > (l/2)g(Ao)m2. Now the subgraph
of Sn, spanned by the selected classes Vijlit : i e /„, is only a 'nearly'-y4o-graph: the
entries in A'nt tend to the corresponding entries of AQ, but they are not equal. Thus
we have only

2/

However, this is enough to ensure that (Hm) is an asymptotically extremal graph
sequence.

(3) In principle, some classes of Hm could contain too many edges (in terms of m). Now
we exclude this. By the construction, g(̂ 4o) = 9pj(L\,...,Lr) = 9. Hence, on the one
hand, for Wt = VUn n V{Hm),

e{Hm) > \ (g(/l0) - o{\))m2 + iye(Wi) = ^ (9 - o(l))m2 + Ve(W,).

On the other hand,

e{Hm)< -9m2 + o(m2).

Thus J2e(wi) = °(m2)-

a

Remark 3.5. This remark is aimed primarily at those who know the Zykov symmetriza-
tion. Here we try to explain something of the background of the above proof. In con-
structing (finding) the 'good" subgraph Hm £ Sn, we have basically used a modification of
Zykov's 'symmetrization' method [39]. The original Zykov type symmetrization means that
(instead of deleting vertices) we change the edges incident with some vertices, obtaining a
graph with the same number of vertices, but of simpler, more symmetric structure. This
method breaks down because the symmetrization may increase the independence number
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(<x(Gn) or <xp(Gn)), and that is not allowed here. Further, symmetrization can introduce
unwanted subgraphs: it may happen for example that Gn contains no K3(10,10,10) but
after several symmetrizations it will. Deleting vertices, we can replace the original method
of symmetrization: unless we delete too many of them, ap{Gn) = o(f(n)) will be preserved,
and of course, no new subgraphs occur. At the same time, the structure becomes simpler
and, in some very vague sense, more symmetric.

Proof of Theorem 2.2. We know that there is a sequence of graphs (described in the proof
of Theorem 2.3) that is for some fixed matrix A an optimal A-matrix graph sequence. We
need to show that for each n > no the same matrix A can be used. As in the proof of
Theorem 2.1, we will blow up some good graphs Sm,.

If we have an infinite sequence (Sm,) and a fixed matrix A such that (Sm,) is an
optimal A-matrix graph sequence, and asymptotically extremal for some e, —> 0, for
RTp(mt,KPl,...,KPr,Etmt), then Zmih = Sm, ® h will also be optimal /1-matrix graphs.

Hence, fix the matrix A obtained in the proof of Theorem 2.3 for a sequence £ , -»0
and some sequence mt. For every n, take the largest mt < ^Jn, then put h = \n/mt] and
delete {hmt — n) vertices of Zm,h = Sm, ® //,. The resulting ^-matrix graph sequence (S*)
proves Theorem 2.2. •

4. Quantitative results for one colour

In this section we obtain various estimates for 9p(Kq).

Proof of Theorem 2.6. In the following, the constants co,ci,C2,... are positive and inde-
pendent of n, m. Assume indirectly that there exist a constant Co > 0 and infinitely many
graphs Gn not containing Kq, satisfying ap(Gn) = o(n) and yet having many edges:

By a standard argument, for some constants c\, ci> 0, there exist subgraphs Hm ^ Gn

with minimum degree

^-y +c\\m, m> c2n and <xp(Hm) = o(m). (3)

By a 'saturation argument', we may assume that Hm => Xq_i: if not, add edges to it one
by one, until it does. Clearly, (3) remains valid. Fix a Kq_i £ Hm. Now

Therefore, for some C3 > 0, there exists a set U of cim vertices of Hm — K,_i, each joined
to the same q — p vertices of this fixed Kq-\. By the assumption, ap(Gn) = o(n), if n (and
therefore m) is sufficiently large, then there is a Kp c U. This Kp, together with the fixed
q — p vertices of Kq-\ forms a ^ c ^ c Gn. This contradiction proves (a). As we have
mentioned, Construction 2.7 provides the lower bound, i.e. (b). •
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For q = p + 1, Theorem 2.6 reduces to the following claim.

Claim 4.1. For any p > 1, 9p(Kp+i) = 0.

This also has a trivial direct proof.

Proof. (Direct) Suppose that (Gn) is a graph sequence with

Kp+i £ Gn and «P(GB) = o{n).

If x is an arbitrary vertex, then its neighbourhood JV(x) contains no Kp. Therefore
d(x) = \N(x)\ < ap(Gn) = o(n). Hence e(Gn) < nap(Gn) = o(n2). D

Now we can return to the proof of Theorem 2.11, which improves Theorem 2.6 in some
special cases. We will need the following two lemmas.

Lemma 4.2. For any integers p > 2 and 0 < y < p, and constant c > 0, there exists a
constant Mpfi with the following properties. Let e > 0 be fixed and n > MP;Ce. Suppose
0Lp(Hn) = o(n) and Be £ Hn be a bipartite graph with colour classes V\ and V2 that are
joined e-regularly. Let \V\\ = \V2\ > en and d(V\, V2) > (y/p) + n and n > n^(p,c,n). Then
Hn => Kp+y+i.

Obviously, we are thinking of the case when we apply the Regularity Lemma to a
large graph and V\, V2 are two classes in the resulting partition connected to each other
regularly and with a sufficiently high density.

Proof. For n large enough, all but at most en vertices of V\ are joined to at least ((y/p) +
(l/2)n)\V2\ vertices of V2. Hence V\ contains a Kp joined with at least (y + (l/2)pn)\V2\
edges to \V2\. Thus (for some fixed constant c\ > 0) V2 contains at least c\n vertices joined
to the same y + 1 vertices of this Kp <= V\. They form a Ky+i s K p s V\. The c\n vertices
in V2 contain a Kp completely joined to Ky+i £ V\: Kp+y+i £ Hn. D

Lemma 4.3. For any integers p,k > 2, and 0 < y < p and constant c > 0 there exists
a constant MPyCj( with the following properties. Let e > 0 be fixed and n > Mp,cj(E. Let
ctp(Hn) = o(n) andVu...,Vk^ V(Hn), Vt n Vj = 0, | Vt\ > en. Assume that for every 1 < i <
j < k the pairs\ of classes (Vi, Vj) are e-regular, and d(Vt, Vj) > n. If d(V\, V2) > (y/p) +n
and n > no(p,c,n), then Hn z> Kp+y+k-i.

Proof. For j = k,k — 1,...,3 we fix, recursively, a vertex x; e Vj, so that they form
a complete k — j + 1-graph and are joined completely to some sets F,; £ Vt (i < j)
and \Vtj\ > c'jn for some constant c* > 0. For j = 3 we get a complete (k — 2)-graph
joined completely to some sets V[ £ V\ and V{ £ V2, |7,*|, |K2*| > c'n, for some constant
c* > 0. (We use n > Mp^e to ensure that all the sets Ky above are large enough
to apply the £-regularity of the Regularity Lemma iteratively.) Applying Lemma 4.2
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to the corresponding bipartite graph H{V^ K2*) (with r\ — ke instead of rj), we get a
Kp+y+1+k_2 = Kp+y+i^ g H ( F , U F 2 U . . . U F l ) . •

Proof of Theorem 2.11.

(a) Let ap(Gn) = o(n) and Kp+s <£ Gn. Fix an e > 0 and put r\ = Mp^e. We apply the
Regularity Lemma to Gn, with this E. Thus we get a partition F j , . . . , Ft of the vertices
into k < ko(e, K) sets of size « n/fe (see Remark 3.1 on Fo).

(b) For any graph G let

<t(G) = e(G)

We apply symmetrization in the sense described in the proof of Theorem 2.3: we find
a subset of the classes F,, say Vi,...,Vt so that the density between any two of them
is at least 2r\ and the density for the obtained GM = G [U1:£tF,] is high:

<D(Gn) < <D(GM) + 2t\.

There is a unique integer y such that for these t classes the largest density occuring is
^ (y/p) + 1 but < ((y + l)/p) + rj. The density O(GM) = e{GM)/{^) can be estimated
as follows:

'y + 1

Here GM 2 fCp+(+v_i and GM ^ ^p+/- Therefore y < ( — t, so

Put

For t = 2 we get the conjectured density: /i(2,/) = (<f — l)/4p. What we have to prove
is that for 1 = 2,3,4 and 5, fc(t,0 < fc(2,^:

l / l
2 \ tj p -4 p '

which follows from

D

Proof of Theorem 2.13 In proving the lower bound on RT2(n,X4, o(n)), Bollobas and
Erdos used a geometric, or more precisely, an 'isoperimetric' theorem. Theorem 2.13 is
a generalization of the Bollobas-Erdos result. So it is natural to prove Theorem 2.13
using a generalization of the original Isoperimetric Inequality. This generalization was
conjectured by Erdos and proved by Bollobas [1].

We need the following definition.
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Definition 4.4. ([1]) For k > 2 define the k-diameter of a set A in a metric space by

dk(A) = sup min

(In other words, this is the kth 'packing constant' of A.)

A spherical cap is the intersection of an /i-dimensional sphere Sh and a halfspace II.
Bollobas Theorem. ([l])Let A be a nonempty subset of the h-dimensional sphere Sh of outer
measure n'(Ay, and let C be a spherical cap of the same measure. Then dk(A) > dk(C) for
every k>2.

In the following, whenever we speak of 'measure', we will always consider relative
measure, which is the measure of the set on the sphere Sh divided by the measure of the
whole sphere.

Denote by 8 — 8P the diameter of a p-simplex. (82 = 2, 63 = >/3,...)
Corollary 1 of Bollobas Theorem. Let the integer p and two small constants e and r\ > 0
be fixed. Then for h > ho(p,e,rj), if A is a measurable subset ofSh of relative measure > s,
there exist p points x\,...,xp € A such that all d(xj,Xj) > 8p — n.

Proof. Indeed, if A does not contain such a p-tuple, its p-diameter is at most 8p — t\.
Hence - by the Bollobas theorem - the outer measure of A is at most as large as that of
a spherical cap of p-diameter 8p — r\. For some constant cM > 0 the ordinary diameter of
such a cap is at most 2 — cOT, independent of the dimension h. Hence the relative measure
of such a spherical cap is at most {QM)h for some constant 0 < QM < 1 and so the
relative measure of A is at most {QM)h <eifh> ho(p,e,rj), a contradiction. •

Corollary 2 of Bollobas Theorem. (Erdos-Rogers Theorem) For any integer p, there exists
a sequence (Sn) of graphs with Kp+l ^ Sn but ap(Sn) = O(nl~c) for some c > 0.

Proof of the Erdos-Rogers Theorem. Let 8P be the edge-length of the regular p-simplex

SP := y ^ . (5)

^Clearly, 3P \ y/2.
For a given e > 0, we fix a sufficiently high-dimensional sphere S* and fix an n > h.

We partition the surface of S* into n domains £>, (i = 1,...,«) of equal measure and of
diameter

3P — <Vn
4

(This can be done if n is sufficiently large.) Then we choose n vertices x, e £>, (1 = 1,..., n).

t We will only use 'nice sets', but Bollobas formulated his result in this generality. The reader can replace 'outer
measure' by 'measure'.

» (5) is taken from [16], and will be obtained (as a by-product) in the proof of Theorem 2.13.
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They will be the vertices of our graph Qn. We join x, and xj if

<5p+i + dp

Trivially, Kp+i ^ Qn. If we choose en vertices xg of Qn and A is the union of the
corresponding 0,'s, then the relative measure of A is at least e, and - by Bollobas
Theorem - A contains some wl,...,wp with p{wi,Wj) > 8P, (1 < i < j < p). Replacing
each wi € D, by the corresponding vertex x, G At, we still have p(x,,x;) > (l/2)(<5p + <5p+i),
i.e. we have found a Kp in the subgraph induced by these n'~c vertices: ccp(Qn) =< en. As
e -> 0, the dimension h —> oo and otp(Qn) = o(n). Using a more careful calculation, we get
«P(Qn) = O(n'-C). D

Proof of Theorem 2.13. We will use a Bollobas-Erdos type construction (see [3]) to get
a graph sequence (Bn) to prove Theorem 2.13. Fix a high-dimensional sphere Sh and
partition it into n/2 domains D\,...,Dn/2, of equal measure and diameter (1/2)^, with
fi = E/yfh. This can always be done if e > 0 is first fixed, h is then chosen to be sufficiently
large, and, finally, n > no(e, h).

Choose a vertex x, e D, and a y, G D, (for i = I,...,n/2), and put X = {xi,. . . ,xn / 2}
and Y = {yi,...,yn/2}- Let X U Y be the vertex-set of our Bn and

join an x € AT to a y G 7 if p{x,y) < y/2 — \i\
join an x 6 I to a x' 6 I if p(x,x') > 8P — /i;
join a y G y to a y' G 7 if p (y , / ) > dp — p..

(a) First we show that ap(Bn) = o{n). To show this, choose en vertices of Bn. At least
(l/2)sn vertices belong to (say) X and the union of the corresponding D;'s has relative
measure > (l/2)e. Denote by A the union of the £>,'s corresponding to these x,'s. By
Bollobas Theorem, if dp(A) < (1/2)(<5P + 8p+l), then fx(A) < e, provided that h > h0. So
we may choose w\,...,wp G A such that for each i ^ j , p(wi,Wj) > 8P — (l/2)/z, and
therefore p(xt, xj) > 8P — p., yielding a Kp in the subgraph of Bn spanned by these en
vertices.

(b)Now we show that the resulting graph Bn contains no K2p. Clearly, if 2p vertices
form a K2p £ Bn, then p of them must be in X and the other p in Y, since - for
sufficiently small e - neither X nor Y contains a Kp+i. Suppose that a\,...,ap € X and
b\,..., bp G y form a K2p. In the following, a,'s and b/s are unit vectors and points of
the sphere at the same time. The idea of the proof is as follows. We will show that the
existence of such a K2p implies that (J2 a, — ^ bj)2 < 0, which is a contradiction. To
get this, we will estimate £ axa.j, and £ btbj from above, and J2 a^i fr°m below.
Let d = 8P — p. and t = y/2 — p. Now, |a,-| = 1, \bj\ = 1, and |a,- — a,-| > d. Therefore

The same holds for the fc,'s. Hence

2
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Let us now turn to the mixed terms. By \at — bj\ < t, we have

2 E E *,bj = E £(aj + b)) - E X > " bj? > P2(2 - t2).
1=1 7=1 i=l 7=1 i=l >=1

This implies that

- + 2 L (aiaj+bibj)-
j l<i<j<.p i=l 7=1

< 2p + 2(p2-p)-(p2-p)d2-(2p2-p2t2)

= P2t2 - (P2 - p)d2 = p 2 ( 7 2 - fi)2 - (P2 - P)(SP - fi)2

= (2p2 - (p2 - p)82
p) - 2 ( 7 2 p 2 - (p2 - p)Sp) fi + Vii

2.

To avoid clumsy calculations involving bp, observe that in all the above formulas we
have equality if s = 0, fi = 0, that is, a,'s are the vertices of a regular p-simplex and
b/s are the vertices of another. Indeed, in this case J2at = 0 and ]T bj = 0. Hence
2p2 - (p2 - p)<52 = 0, that is,

Returning to the fi > 0 case, we get

= -2V2p (p - Vp2 - p) n + pfi2 < 0,

provided that fi is sufficiently small, is a contradiction. This shows that Bn

(c) Each vertex has degree (n/4)+o(n), since each a, is joined to the fe,'s on an 'approximate
half-sphere' and thus the the surface considered has measure > (1/2) — 0(e) and the
number of vertices bj is proportional to this measure. So

D

j - O(en2) < e{Bn) < j + O(en2).

This completes the proof.

5. Two special cases

The last problems we discuss here are:
How large are 9i(Kg) and ^(Kg)?

Conjecture 2.9 asserts that &i(Kg) = 3/11 and 9}(K9) = 3/10. The conjectured extremal
structures (described in Conjecture 2.9) in both cases have 3 classes and are as follows.
Put x = (3n/ll) + o{n) vertices in the classes V\, V2 and y = (5n/ll) + o(n) vertices into
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V-i. Then join V\ and V2 with d(Vi, Vj) = 1/3, o(l)-regularly, and join F3 completely to
the other two classes. The classes Vj contain some edges to ensure a.i{Gn) = o{n). However,
the problem is that we are unable to find such graphs.

One reason that we cannot prove Conjecture 2.9 (even for p = 3, q = 8,9) is that we
are unable to construct bipartite graphs analogous to the Bollobas-Erdos [3], or Erdos-
Rogers graph [16], but with density 1/3 (or 2/3) instead of 1/2. Here the 'analogous'
means that we fix, for some t, a t x t matrix D = (d,y) of positive elements, and on a
high-dimensional sphere S*, we choose some sets X\,...,XC, each uniformly distributed
on the sphere in some sense, and join two vertices u G X,,and v G Xj if their Euclidean
distance p(u, v) « dy, or p(u, v) > dtj, ...

So we have only an upper bound on the number of edges.

Theorem 5.1. 93(X8) < —-.

In the proofs of this and the next theorem we need some case-distinction. In many cases
we know that the graph structure considered is dense, and we can easily calculate the
edge-densities by solving a small system of linear equations. Here we formulate a lemma,
which covers most of the cases we need. (It has a more general form as well.)

Lemma 5.2. Let A = A^^p be a symmetric (h + k) x (h + k) matrix satisfying

{ X if l<i<j<h,
cp if h<i< j <h + k,
P else.

If A is dense, its optimum vector w has coordinates

w, = Pk ~ 9{k ~ 1} (i < h)
iphk — q>h(k — 1)) — Xk(h — 1) ~

and

The density is

2phk - cph(k - 1)) -

Proof. Assume that Hn is an optimal matrix graph corresponding to A. Let the classes of
Hn be V\,..., Vh+k- Then |F;| « w,n. When counting the sizes of the classes in an optimal
matrix graph, it is enough to take into account that the degrees must be asymptotically
equal - provided that the matrix is denset (see, for example [4]).Let the first h coordinates
of the optimum vector be x, the others }>+. Now the vertices in the first h classes will have

* For dense matrices this condition is necessary and sufficient.
+ Because of the symmetry, the first h class sizes will be asymptotically the same, and the same holds for the

other k classes.
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degree (X(h — l)x + fiky)n, while in the last k classes the degrees will be (phx + (p(k — l)y)n.
Furthermore, hx + ky = 1. Solving this system of linear equations, we get (6a) and (6b).
Now, g(A) is the common degree divided by n, (the edge-density is half of this). This
proves (7)'. D

Remark 5.3. These formulas become much simpler if, for example, h = 1 or k = 1. For
k = 1, (p drops out and we get

Proof of Theorem 5.1. Let us fix an r\ as described in Lemma 4.3. Using the argument of
the proof of Theorem 2.11, we get some sets V\,...,Vt, and we define y to be an integer
for which the largest density between these classes is between (y/p)+t] and ((y + l)/p)+rj.
By (4), applied with p = 3, £ = 5, we have

if t > 3 and r\ is small enough. Therefore we may assume that r < 3.
With t — 2 the maximum density is 1/4 < 3/11. So we may suppose that t > 3, that is,

r = 3.

(i) If the classes are V\, V2, V3 and d(Vu V2) < (1/3) + r\, then the density is the maximum
if the other two densities are 1, i.e. (by (8) applied with X = 1/3 and ft = 1, h = 2) the
maximum is at most (3/11) + 0{t]) and we are home,

(ii) If, for example, d(V3, V\) > (2/3) + r], and d(V3, V2) > (2/3) + r], then we are home:
we may choose a K3 in F3 and a subset V( s V, of c\n vertices in both other classes,
completely joined to this Kj. By Lemma 4.2, we find a K5 in V{ U V'2, and we are
home again,

(iii) In the remaining case there is a class adjacent to the other 2 classes with density
< (2/3) + r\. We may assume that d(V3, V{) < (2/3) + r\, and d(V3, V2) < (2/3) + if.
By (8) (applied with h = 2, P = (2/3) + r\, X = 1) the edge-density is at most
(4/15)+ Ofo)< 3/11.

•

Theorem 5.4. S3(X9) < -jj-.

We know that 9i(Kg) > 2/7 because we may fix 3 classes V\, V2, F3 of sizes 2n/7, 2n/7,
3n/7, join V3 to V\ U V2 completely and build a graph on Vx u V2 as described in the
proof of Theorem 2.13. Put an Erdos-Rogers graph into F3. The resulting graph contains
no K9, since K3 contains no K4 and G[Vi U V2] contains no ^6.

t Of course, the proof can be given entirely in the language of Linear Algebra without mentioning graphs.



320 P. Erdds, A. Hajnal, M. Simonovits, V. T. Sos, and E. Szemeredi

Proof of Theorem 5.4. (Sketched.) Again, as above, we have to end up with at least r > 3
classes after the symmetrization, and if we have t > 5, then, by (4), the density is smaller
than 3/10. So we may assume that t < 4.

The case of 3 classes is easy. Now at least one of the 3 densities is at most (2/3) + 2r\,
otherwise we have a K9 s Gn. So the density is at most (3/10) + O(r\) (by (8), applied
with X = (2/3) + ri, ft — 1, h = 2), and we are home. Hence we may assume that t = 4.

We will distinguish 3 types of connections between F, and Vj:

— if d(Vh Vj) < (1/3) + r\, we will call (Vt, V}) a (l/3)-pair;
— if (1/3) + r, < d(ViVj) < (2/3) + ri, we will call (Vh Vj) a (2/3)-pair;
— if d(VjVj) > (2/3) +1], we will call (Vh Vj) a 1-pair.

We may assume that there is at least one 1-pair, otherwise the density could be estimated
by

3

How many 1-pairs can we have on 4 classes? If we have two adjacent 1-pairs, (Va, Vj,)
and (Va, Vc), then (Vt, Vc) must be a (l/3)-pair: otherwise - by the proof of Theorem 5.1
- we could find Kg £ Va U Vb U Vc, extendable into a K9.

This immediately implies that we may have at most 4 1-pairs. If we have exactly 4
1-pairs, they form a 4-cycle and the remaining 2 densities are 1/3. Applying Lemma
5.2 with h = k = 2, X = <p = 1/3 and /? = 1 we get that the edge-density is at most
7/24 < 3/10.

Here, unfortunately, we have to distinguish some cases.

(i) If t = 4 and there are 3 1-pairs meeting in one class, the other 3 pairs form a (1/3)-
triangle. Applying (8) with h = 3, X = (1/3) + r\, ft = 1 we get that the edge-density is
at most 9/32 < 3/10, and we are home again.

(ii) Suppose that we have on 4 classes 3 1-pairs that do not meet. Now they form a path,
say Vi V2 V-i Va,. The density is the highest when

and

An easy calculation shows that the optimal weights (for r\ = 0) are 1/6, 1/3, 1/3, 1/6,
the density is 5/18 < 3/10. (Or we can reduce this case to the case when the 1-edges
form a C4.)

(iii) We have settled the case when the number of 1-pairs is 4 or 3. The case of one 1-pair
or when we have 2 independent 1-pairs can be majorized by the case when we have
2 independent 1-pairs and all the other pairs are (2/3)-pairs. By Lemma 5.2, applied
with k = h = 2, X = q> = 1, ft = 2/3 we again get that the edge-density is smaller than
(7/24)+ Ofo)< 3/10.

(iv) The only remaining case to be settled is when we have 2 adjacent 1-pairs, say (Vi, V2)
and (Vi, V-i). Now we know that we get the maximum density if d(Vj, V3) = (1/3) + r\
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and d(Vi, F4) = (2/3) + n. One can easily check (by determining the optimum vector
of this structure) that the maximum density is (11/39) + O(n) < 3/10.

D

6. Open problems

Various open problems are stated in [12] and we have already stated the above Problem
2.12. Here we list some others. The first two of these are the simplest special cases of
Conjecture 2.9, where we got stuck.

Problem 6.1. How large is 93(Kn)?

Problem 6.2. How large is 93(Ki4)?

Conjecture 2.9 states that h(Kn) = H/32 and 93(Ki4) = 8/21.

Problem 6.3. Can one always find a matrix A such that one has a graph sequence (Sn :
n > no) obeying the partition rules of the matrix A and being asymptotically extremal for
RTp(n,L\,...,Lr,o{n)) (and not only for an infinite sequence of integers

The answer to this problem is very probably YES. (If it were not, it would probably
mean that the extremal structure sharply depends on some parameters such as, for
example, the divisibility properties of n, which are not really graph theoretic properties.)

Problem 6.4. Is there a finite algorithm to find the limit

9P(L) = lim:
_RTp(n,L,o(n))o

We have shown in our previous paper that there is a finite algorithm for finding
&i(Li,..., Lr) if the sample graphs L, are complete graphs. A paper of Brown, Erdos and
Simonovits [7] shows that for the digraph extremal problems without parallel arcs (which
seem to be very near to the Turan-Ramsey problems) there is an algorithmic solution,
though far from being trivial. What is the situation in case of 9p(Li,..., Lr) ?

Some hypergraph problems (and results) on Turan-Ramsey problems can be found in
[18, 20].

Appendix A. Are there graphs satisfying (*)?

In the above, the forbidden graphs were complete graphs, here we discuss the general
case, where L\,...,LT are arbitrary graphs.

We are interested in two strongly connected problems. Given either a family if or r
families of excluded graphs, j£fi,...,i?r and a graph sequence (Gn) with ap(Gn) = o[n).
Under what conditions on S£ or the families JS?,- can we assert that there exists a graph
sequence (Gn) such that
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(i) Gn contains an L € £C for n > no; or

(ii) there is an r-colouring of Gn so that for no colour v is there a v-coloured L € Jz?v?

The case p = 2 is easy. In both problems, if no L is a tree, such graphs exist. On the
other hand, if (in each JS?,-) some L is a tree, those graphs do not exist. Indeed, in [9]
Erdos has proved that for every £ there exist a c = cc (0 < C( < 1) and an n( such that
for every n > ng there exist graphs Sn with girth greater than £ and independence number
a(Sn) < O(nx~c). This implies that if none of the graphs L e i f is a tree or a forest,
and £ = maxj,e.s? t)(L), the above graphs Sn will contain no L's and a(Sn) < O(nx~c). This
answers (i) and (ii) also, since <x(Gn) = o(n) implies that for all r-colourings of Gn some
colours contain all the trees of at most £ vertices for n > ng. For p > 2 the situation
is similar, but somewhat more complicated. First we will solve the problem (i). We start
with some definitions.

Definition A.l. A graph T is a p-forest if

(a) it is the union of complete graphs of order p, having no common edges and
(b)for every integer t > 1, the union of any t of these Kp's has at least pt — t + 1 vertices;

or
(c) it is a subgraph of a graph described in (a) and (b).

Definition A.2. (Girth)

(1) We will say that the girth of a p-uniform hypergraph H is at least f if the union of
any t < f hyperedges has at least pt — t+l vertices.

(2) We will say that the p-girth of a graph G is at least £ if every subgraph of G of fewer
than £ vertices is a p-forest.

Clearly, the 2-forests are exactly the ordinary forests and the 2-girth of a graph is the
ordinary girth.

Erdos-Hajnal Theorem. ([10, Theorem 13.3]) For every given p, and £ and suitable
constants c\,c>Q (for n > no(p,£,c,c\)) there exist p-uniform hypergraphs Hnfor which

— any two hyperedges intersect in at most one vertex (such hypergraphs are sometimes

called linear hypergraphs,),

— any set of C\ni~c vertices contains a hyperedge, and

— the union of any t < £ hyperedges has at least pt — t + l vertices. (In other words, the
p-girth of Hn is at least {.)

The proof used random hypergraphs.
Let us call a graph Un the shadow of a p-uniform hypergraph Hn if Hn and Un have

the same vertex-sets, and (x, y) is an edge of Un iff there is a hyperedge in Hn containing
both x and y. We will call the shadow Sn of Hn of [10, Theorem 13.3] the Erdos-Hajnal
Random Graph.
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As for the shadow, one can easily see that if the girth of Hn is at least 4, (which implies
also that Hn is a 'linear hypergraph'), then Hn can easily and uniquely be reconstructed
from [/„. The following claim is an immediate consequence of Theorem 13.3 of [10].

Claim A.3. There exist a constant c = cp/ > 0 and an integer np/ such that for every
n > npj there exist graphs Sn with p-girth greater than £ and independence number ap(Sn) =

Indeed, the Erdos-Hajnal Random graph (Sn) proves Claim A.3. This implies the
following claim.

Claim A.4. If no L € JSf is a p-forest, then there exist graph sequences (Sn) with ocp(Sn) =
O(nl~c) (for some c> 0) and with L£Sn (L<E SC).

This is sharp:

Claim A.5. If (Sn) is a graph sequence with the property that ap(Sn) = o(n) and L is a
p-forest, then L £ Sn for n> no-

The case of many colours In the following, we will use the notation i?(i?i,...,J§?r) in the
obvious way. Clearly, if ap(Gn) = o(n) and n > no, then Kp £ Gn

Since <xp(Sn) = o{n) implies Kp £ Sn, if p > R{S£\, ...,<£r), then any r-colouring of Sn

has for some v an L G J£?V of colour v.
This trivial assertion is sharp for 2-connected excluded graphs.

Theorem A.6. Assume that the excluded graphs in all the £Cv's (v = l,...,r) are 2-

connected and p < R(<£\,...,<£r). Then there exist graph sequences (Gn) with ap(Gn) =

O(nx~c) (for some constant c > 0) such that the graphs Gn are r-colourable such that no

monochromatic copies of any L G £CV in the vth colour occurs (v = l,...,r).

Proof. Let

£ > max v(L).

We can take the Erdos-Hajnal Random graph Gn = Sn with p-girth larger than / ,
and edge-colour each Kp £ Sn in r colours without monochromatic L's, since p <
R(S£\,...,S£r). If L £ Sn is 2-connected, L € ifv is in a uniquely defined Kp £ Sn and
therefore cannot be monochromatic, of colour v. •

Some similar results can be formulated for the case when the 2-connectedness of the
graphs Lv is dropped. In fact, one can define a p-tree WK of size K(p,£) such that if
all the excluded graphs are of order at most (, then (*) can be satisfied iff WK can be
coloured in v colours without having L £ SCV in the vth colour. The details are easy and
omitted here.
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