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1. Introduction

The concept of uniformly distributed sequences and sets plays a fundamental role
in many branches of mathematics (measure theory, ergodic theory, diophantine
approximation, mathematical statistics, discrete geometry, numerical integration,
etc.) This chapter explores the combinatorial background of many of these
results. See also the survey article of S6s (1983b), and the monograph by Beck
and Chen (1987).

Measure theoretic discrepancy results are accumulated in two complementary
chapters of number theory, called uniform distribution and irregularities of
distribution. The object of these theories is to measure the uniformity (or
non-uniformity) of sequences and point distributions. For instance: how uniform-
ly can N points in the unit cube be distributed relative to a given family of “nice”
sets (e.g., boxes with sides parallel to the coordinate axes, rotated boxes, balls, all
convex sets, etc.). The theory was initiated by the following theorem of
Aardenne-Ehrenfest (Van der Corput’s conjecture): for every infinite sequence of
reals in [0, 1] and for every k > 0, there exists a beginning section (x,, . . ., x,) of
the sequence and a subinterval (a, 8) such that the number of elements of this
beginning section in this subinterval differs from n(8 —a) (the number one
expects) by at least k. The best possible effective result on this problem is due to
Schmidt; it is equivalent to the following basic result in the theory of uniform
distribution.

Theorem 1.1 (Schmidt 1972). Let P be an arbitrary set of N points in the unit
square [0,1)°. Then there exists a rectangle B C [0, 1)* with sides parallel to the
coordinate axes such that

|PN B|— N area(B)|>clog N
(where c is an absolute constant).

The left-hand side of this inequality measures the ‘“‘discrepancy” (deviation
from the uniform distribution) of P in B. As a fascinating fact, we mention that
balls have much greater discrepancy than boxes with sides parallel to the axes.
Now we have a good understanding of this phenomenon, as we shall see later.

The object of combinatorial discrepancy theory is to color a set with two or
more colors so that each set in a given family be colored as uniformly as possible.
As a beautiful example, we mention Roth’s theorem on long arithmetic pro-
gressions.

Theorem 1.2 (Roth 1964). For any partition of the integers 1, 2, . .., N into two

sets S, and S,, there exists an arithmetic progression P = {a,a+d,...,a+kd} C
{1,2,..., N} such that

[PNS|—|PNS,||>LN"*.
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It took more than a decade to realize the close relationship between these
areas. We can now say that they represent the continuous and the discrete aspects
of the very same coherent theory. A general form of these problems is the
following: given a measure space, approximate the measure on a subfamily of the
measurable sets by a measure where each point has measure 0 or 1. Nontrivial
“transference theorems” help to transform combinatorial and measure theoretic
results into each other.

Compare Roth’s theorem also to the following fundamental results of Ramsey
theory (see chapter 25).

Theorem 1.3 (Van der Waerden 1927). For any integers k and r there exists an
W(k, r) such that if N>W(k,r) then for every r-coloring of {1,2,...,N} there
exists a monochromatic arithmetic progression of length k.

Theorem 1.4 (Ramsey 1930). For any integers t and r there exists an R(t,r) such
that if n>R(t,r) and the edges of K, are r-colored, then there must be a
monochromatic K,.

These theorems have the same structure as Roth’s: given an underlying set S
and a family of subsets of this set, the claim is that the underlying set has no
partition which splits each set contained in the given family “reasonably well”
(only in this case any proper splitting is accepted).

Discarding the special structure of the system we can formulate the basic
problem in combinatorial discrepancy theory. Let S = {x,, ..., x,} be a finite set
and #={A,,...,A,}, afamily of subsets of S. Our goal is to find a partition
$S=8,N8§,, S, NS, =0 that splits each set in the family ¥ as equally as possible.
In other words, we want to find the least integer D for which there exists a
2-coloring of the underlying set such that in each A,, the difference between the
numbers of red and blue elements is at most D.

Often we shall describe the partition by a function f: S— {—1,1}. Then the
discrepancy of  is defined by

>

2 ftx)

P()=min max
£oasism gk,

where the minimum is taken over all functions f: S— {—1, 1}.

Best and worst families. Although the systematic investigation of combinatorial
discrepancy started just a few years ago, there is a fundamental old result which
characterizes the “best” families, those for which &(#) <1, and this is inherited
to subhypergraphs. These are the unimodular hypergraphs, whose theory was
developed for its importance in integer programming (see chapter 30).

A hypergraph ¥ is unimodular, if its incidence matrix A is totally unimodular
(i.e., every square submatrix of A has determinant 0, +1 or —1). See chapters 7
and 30 for examples of such hypergraphs; here we mention hypergraphs whose
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edges are the vertex sets of directed paths in an arborescence. For X C S, the
restriction ¥y is defined as the family {ANX|A € ¥}.

Theorem 1.5 (Ghouila-Houri 1962). # is unimodular iff @(#y)<1 for all
restrictions ¥y of ¥.

Unimodular hypergraphs have the following stronger property.

Theorem 1.6. If % = (V, E) is unimodular then for any p € [—1,1]" there exist
e € {—1,1}" such that for every AEE,

<1.

2 (&= p)
i€EA
Informally, an arbitrary weight distribution on S can be very well approximated
with 0-1 weights.
Furthermore, we have the following.

Theorem 1.7. If 3 is unimodular, then for every r > 1 there exists an r-equiparti-
tion S=8,U --- US, so that for every AEH and 1<j<r,

A A
[—J <|ANS|= [—] .
r ] r

The “worst” families from the point of view of discrepancy are the ‘“‘non-2-
colorable families”, i.e., families with chromatic number y(#) > 2. (Recall from
chapter 7 that a hypergraph is non-2-colorable iff for any partition S =S5, US,
there exists an A € ¥ so that ACS, or ACS,.) An r-uniform hypergraph is
2-colorable if and only if its discrepancy is less than r. (Note that this remark also
shows that the computation of the discrepancy of a hypergraph is NP-hard.)

One of the most extensively studied field of combinatorics is Ramsey theory,
which can be viewed as the theory of non-2-colorable families (see chapter 7).
Many of the results and problems there are relevant to our subject.

Considering the results in Ramsey theory we must realize the white spots and
gaps in discrepancy theory. A large variety of Ramsey-type results are available
not only for graphs and hypergraphs but for different structures like vector
spaces, combinatorial lines, parameter-sets, groups, euclidean spaces, topological
spaces, sets of solutions of linear systems, etc. However, an analogous dis-
crepancy theory is missing for most of these structures.

We can say that in the class of hypergraphs unimodular families are at one (at
the “good”) end and non-2-colorable families at the other (“bad”) end. We
conclude this section with an example of A.J. Hoffman showing that the union of
two unimodular (so best!) families can be non-2-colorable (so worst!).

Example 1.8 (Hoffman 1987). Let T be an arbitrary arborescence rooted at r. Let
#, consist of the arc-sets of directed paths in T from r to a leaf. Let 3, consist of
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the sets B(x), where B(x) is the set of edges with their tails at node x, for each
non-leaf node x. Obviously #, and %, are unimodular, but #, U 5, is not even
2-colorable. (Note that we can choose the tree so that #, U #, is k-uniform for a
given k.)

A very simple unimodular hypergraph is the hypergraph of all intervals in a
permutation (a totally ordered set). How large can be the discrepancy of the
union of such hypergraphs? For two permutations, the discrepancy is at most 2;
but the following problem, due to Beck, has been open for quite a while.

Problem 1.9. Is it true that the hypergraph consisting of the intervals of three
permutations of a set X has discrepancy O(1), independent of |X|?

Recently Bohus (1990) gave the upper bound O(log |X|) for this discrepancy,
not only for three, but for any constant number of permutations.

2. Bounds on (%)

Many of the results in this section have applications in different fields. In fact,
many of the problems originated in different branches of mathematics.
There is a trivial upper bound on the combinatorial discrepancy:

()< max |A] .

If % is k-uniform (i.e., |A| = k for all A € %) then equality holds iff % is a not
2-colorable.

To bound the discrepancy in terms of the number of edges m = |%#/, observe
that a pair of vertices contained in the same set of edges can be deleted without
decreasing the discrepancy. Repeating this we end up with a hypergraph in which
every edge has at most 2™ — 1 elements and hence

P(H)<2"-1.

This upper bound can be easily improved. The first result in this direction was the
theorem of Olson and Spencer (1978) where they proved the upper bound

D(H)<cm'*logm .
The best possible result is the following.
Theorem 2.1 (Spencer 1985). For every % with || =m
D(H)<6m'”.

For a proof, which is an involved application of the probabilistic method, see
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chapter 33. This result is best possible (up to a constant): if an Hadamard matrix
of order m + 1 exists, then there exists a hypergraph % with || =m such that
D(#)=1m'"? (see Corollary 2.11).

Spencer’s theorem has interesting applications in Fourier analysis to “Rudin—
Shapiro sequences” (see Spencer 1985), and to Littlewood’s problem on “flat
polynomials” (see Beck 1991b).

It is somewhat surprising that there is an upper bound on (9) depending only
on the maximum degree A(%)=max, ., |[{AE€ ¥:x € A}|.

Theorem 2.2 (Beck and Fiala 1981). Let % be a finite hypergraph. Then
D(H) <24(%) .

In fact, we have the following more general result.

Theorem 2.2'. Let us associate with every i € S a real number p, €[—1, +1]. Then
there exist ¢, € {—1, +1} (i €S) such that

max <2A(%) .

AEH

Z (& —p5)

Proof. The key idea is to consider variables ¢; (i € S) lying anywhere in [—1, +1].
Initially &, = p;; all sets then have zero “discrepancy”. At the end each &, must be
—1 or +1, providing the coloration in the theorem. We describe the procedure
that is to be iterated to go from the initial trivial “coloration’ to the final one.

Suppose we have some current assignment &,. Call i fixed if ¢, = =1 and floating
otherwise. Let A =[a;] denote the incidence matrix of the family #. Call row j
ignored if Z'aﬁSA(%) (the sum over the floating {) and active otherwise. As
each column sum is at most A(), there are fewer active rows than floating
columns. Find y,, for each floating i, with ), a;y; = 0 for each active row j. As this
system is undetermined, there is a nonzero solution. Now replace &; by ¢ + Ay,
where A is chosen so that all g remain in [—1, +1] and some floating &, becomes
+1 (i.e., fixed).

Iterate the above procedure until all ¢, = =1. To see that the values obtained
satisfy the requirement of the theorem, observe that a given row has zero
“discrepancy” (i.e., Zaﬁ(ai — p;) =0) until it becomes ignored. After that, each &,
still floating changes by at most 2 and hence the sum Z“ﬁ(b‘i — p;) changes by less
than 24(%). O

Theorem 2.2 was motivated by the following “integer making lemma’ (and in
fact is a generalization of it).

Lemma 2.3 (Baranyai 1974). Let A = (a;;) be a matrix of real elements. Then there
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exist an integer matrix A* = (a;;) such that

|a.j—a;';|<1 foralli,j,
‘Zaﬁ—Za; <1 foralj,
Zaij—Za; <1 foralli,

j j

and

<1.

=5e,-354

This lemma was the basic tool in Baranyai’s theorem on the factorization of the
complete uniform hypergraph (see chapters 7 and 14). The lemma can also be
proved using the integrality theorem of flow theory (see chapter 2).

We suspect that Theorem 2.2 can be essentially improved. The following
conjecture would also generalize Spencer’s theorem 2.1.

Conjecture 2.4 (Beck-Fiala).
D) < c(AK))'"* .

If true then it is best possible apart from the constant factor c. Corollary 2.6
below justifies the weaker conjecture (%) < (A(%))''*** when both |S| and ||
are “subexponential” functions of the maximum degree. For later application, we
state first a more general result.

Theorem 2.5 (Beck 1981b). Let  be a finite hypergraph with \J # =S. Let M
and K be natural numbers such that

A({A€e¥:|A|l=M})<K.
Then
D(H) <c(M + K -log K)''* - (log||)""* - log|S]| .
Choosing M =1 and K = A(H), we obtain the following.
Corollary 2.6. For any finite hypergraph with A= A(%), we have
D(H)<c-A"*-log|¥|-log|S| .

The following somewhat technical theorem, which is useful in applications, is a
generalization of Corollary 2.6.
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Theorem 2.7 (Beck 1988). Let ¥ be a finite hypergraph with U = S. Suppose
that there is a second family 4 of subsets of S such that

(i) A(Y)<D; and

(ii) every A € ¥ can be represented as the disjoint union of at most K elements
of §. Then

D(H)<c-((K-D-log D -log|#|)"'*-log|S]| .

Note that if ¢ = # then we obtain Corollary 2.6.

We have to remark that there are very few general lower bounds on %(). The
following one is based on linear algebra. To state it in its natural generality,
define the ¢,-discrepancy of a hypergraph # by

2\ 1/2
9,(#)= min (2 <2 si)) :
e€{-1,1}% \dex ‘iea

Clearly @(9)m™ "> < D(3) < 9,(). We denote by A
of the matrix M. We recall: |%|=m and |S|=n.

(M) the least eigenvalue

‘min

Theorem 2.8 (Lovasz—T. Sos). Let M be the incidence matrix of . Then

(i) D(%) = (1), (M M),

(ii) if for some diagonal matrix D, the matrix M"M — D is positive semidefinite,
then 9,(#) = (Tr D)"?. Note that T stands for transpose.

Proof. Let f € {—1,1}° attain the minimum in the definition of %,(%). Then

2,007 = 3 (S £) = 0ap) ) = mf

AEH YiEA

=fTA . (M"™M)=nA_, (M™M).

This proves (i); the proof of (ii) is similar. [
Corollary 2.9. If ¥ has constant pair-degree, i.e.,
[{A:i,jEAE XK} =A

for every i, jES, i #], and d,; denotes the degree of i €S, then

D(K) >n‘“2(g d, - A))U2 .

Corollary 2.10. Let # be formed by the set of lines in a finite projective plane of
order p. Then

D(H)= VP -

Corollary 2.11. Let H be an n X n Hadamard matrix, i.e., a =1 matrix whose
column vectors are mutually orthogonal and has all 1s in the first row. Let ¥ be the
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hypergraph whose incidence matrix is obtained from H by replacing the —1s by Os.
Then

i
P(9) >3-

This corollary proves that Theorem 2.1 is best possible apart from the constant
factor.

The most important application of Theorem 2.8 is Roth’s theorem (Theorem
1.2, see section 5).

3. Various concepts of discrepancy

Suppose we want to split the sets in # in ratio «, 1 — a. In other words, we want
to find a system of representatives of # so that the number of representatives in
every set A€ ¥ is as close to a|A| as possible. Then, setting A =2a — 1,

> (ei—A)\

iEA

D(H;A)= min max

s€{—1,1}5 AEX
measures the corresponding discrepancy. Obviously
D(3; 1) = D).

More generally, we may consider a weight-function p: S—[—1,1] and the
corresponding discrepancy )

P(#; p)= min max E(e,-—p,-)‘

e€(-1,1}5 AE¥ liey

(this value has come up in Theorem 2.2"). The inhomogeneous discrepancy of
is defined by

9,(%) =max D(%, p)
and measures how well an arbitrary weight distribution on S can be approximated

with 0-1 measures regarding the family 7. Considering the particular cases
p1= ‘- =p,=A we define the diagonal discrepancy by

D (%) =max D(F; M) .
The hereditary discrepancy of ¥ is defined by
Dyy(9) =sup D(%,y) .
Xcs
Ghouila-Houri’s theorem 1.5 asserts that a hypergraph is totally unimodular iff its

hereditary discrepancy is at most 1.
Observe that adding new elements to some of the sets in J appropriately we
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can achieve that this enlarged hypergraph will have discrepancy 0. This means,
that 9(%) can be small by accident, while 2,(%) and 2,(#) depend on more
intrinsic properties of . In fact, 2(3) can be much smaller then %,(%) or
PDy(#). A simple example is the following. Let S={1,...,4n} and

H={A|ACS,|AN{1,...,2n}|=|A|/2}.

Then 9(#) =0 but P(#)=n and D, (¥) = n.
We mention the trivial inequalities

D(#H) <min{D, (), Dy, (%)}
and
D(H,N) <D (H)<D(5) .
The following nontrivial inequality was first explicitly formulated in Lovasz et

al. (1986). The proof is identical with that of Lemma 3 in Beck and Spencer
(1984b).

Theorem 3.1. For every hypergraph F,
D) <2Dy () .

Proof. Let, for each i €S, a weight —1<p, <1 be given. Let o,=(1+p,)/2E
[0, 1]." Assume first that all the o, have finite binary expansion, i.e., there is a
natural number n so that 2"-«, €Z for all iES. Let n be minimal with this
property. Let X C S be the set of points i € S such that ¢; has 1 for its nth binary
digit. As D(H) < Dy(9), there exist ¢, = =1 for all i € X such that

P

IEANX

< @, (3)

for all A € #. Define approximations a(ll), ag”, - ,aj\}) by

W {a,.+e,.-2"‘ ifieXx,
o =

! a; ifieS\X.

For any A € %,
2 (@’ —a)|=| X 27"e| <27 Dyu(%).
iEA IEANX

The values ‘" have binary expansions of length at most (n —1). We repeat
this procedure (note that X will be a different set), getting a'” with

S (@ - a)| <2 Vg, 0)

iEA

for all A€ .

e
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We apply this procedure n times, finally reaching a(") with binary expansions of
length zero, i.e., ™ =0 or 1. Let g=2a" —1€{~1, +1}. Then for all A € &,

2 (&—p)|=2 2 (agn)—ai)}\

x,EA ‘ i€A

G _ oGy
n—1 ]

<22, 27" D. g (%) <29,(%)
j=0

g

Tds 'requ'rfed Finally, a compactness argument implies the truth of Theorem 3.1 for

arbrtrary Dis--->P, E[-1,+1]. O

Observe that all the upper bounds in Theorems 2.1, 2.2, 2.6, 2.7 are valid in
fact for the hereditary discrepancy.

The discrepancy of a matrix. The concept of discrepancy can be expressed in
terms of the incidence matrix M of the hypergraph #:
P(#)= min ||Me|.,
}

e€{—-1,+1}%
and

D)= max | lImce =pl.
pE[—1,+1] EE{ 1

Note that these definitions are meaningful for any matrix M. Therefore,
following Lovész et al. (1986), we can use the notation (M) and %,(M) for an
arbitrary matrix M. We can also generalize the hereditary version by letting
Py(M) be the maximum of P(M') over all submatrices M’ of M.

Almost all of the previous results, most notably Theorems 2.2 and 2.8, extend
to matrices in a natural way. The following slight generalization of Theorem 2.2
also follows by the same argument.

Theorem 3.2. Assume that every square submatrix of a matrix M has row with
l,-norm at most 1. Then (M) <2.

The above generalized versions of the notion of discrepancy may become easier
to grasp from the following nice geometric interpretation. Consider the set

U,={x€R’ | Ax|. <1},

i.e., the “unit ball” of the norm ||Ax||... So U, is a convex polyhedron centrally
symmetric with respect to the origin. For >0, consider the convex set ¢- U, and
let U,(t), U,(t), . . . be the copies of ¢- U, obtained by translating its center by all
+1-vectors. Then

® 9(A) is the least number ¢ for which some U(¢) contains the origin;

® 9,(A) is the least number ¢ for which the sets U,(t) cover the cube [—1, 1%
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® 9(A) is the least number ¢ for which the center of each face F of the cube
[—1, 1)’ is contained in at least one of the sets U,(¢) centered at the vertices of F.

Theorem 1.5 raises the question whether in general the discrepancy of a
hypergraph (or of a matrix) is related to the determinants of the submatrices of
the incidence matrix. In this direction there is a lower bound theorem from
Lovasz et al. (1986).

Theorem 3.3. For any matrix A,

9(A) =max max |det B|''* ,

where B ranges over all k X k submatrices of A.

Let us think of the rows of matrix A as ordered by importance so that we may
wish to make the discrepancy in early rows extremely small, perhaps at the
expense of the later E,. The following result states that there is an approximation
which is extremely good with respect to the early rows and is reasonably good
with respect to all.

Theorem 3.4 (Beck and Spencer 1984b, Spencer 1985). Let M = (m,;) € R™™" be

a matrix with |m,|<1. Let p,, ..., py€[—1, +1].

(i) There exist ¢,,...,¢,E{—1,+1} so that

.1/2
<ci'?,

_21 mij(pi - )
=

(ii) If the upper bound is relaxed to 2i then such g; are polynomial time
computable.

Note that (i) of Theorem 3.4 is best possible apart from constant factor (this
again follows by considering Hadamard matrices). Part (ii) follows by applying
Theorem 3.3 (whose proof, just like the proof of Theorem 2.2, can be followed by
a polynomial time algorithm) to the matrix (m,;/i).

In the particular case m,; € {0, 1} and p, =0 we obtain the following.

Corollary 3.5. Let Y,, Y,, Y,,...,Y,, be a sequence of subsets of a finite set X.
1> L2y I3 M q
(i) There exist a 2-coloring f: X— {—1, +1} so that
> f@)|<c-i'?, 1<i<M.
XEY;

(ii) One can find in polynomial time a 2-coloring f: X— {—1, +1} so that

> f)

xE€Y;

<2, 1<sisM.

Theorem 3.4 has some nice applications in a matrix balancing problem (see
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Beck and Spencer 1983, 1989). Let an arbitrary matrix A = (a;), 1<i, j<n, be
given with all a; € {—1, +1}. By a row shift we mean the act of replacing, for a
particular i, all coefficients a;; in the ith row by their negatives (—a;). The column
shift is defined similarly. A line shift means either a row or a column shift.
Consider the following solitaire game. The player applies a succession of line
shifts to the matrix A. His object is to make the absolute value of the sum of all
the coefficients of A as small as possible. Let ||A|| denote this minimum value.
Komlés and Sulyok (1970), resolving a conjecture of L. Moser, showed that if 7 is
sufficiently large then ||Al| <2 may be achieved (Al <1 if n is odd). As an
illustration, we shall derive this result from (ii) of Theorem 3.4 in the case of even
n.

Theorem 3.6. Let n =2 be an even integer. Given any n Xn matrix A = (a;) with
all a; € {—1, +1}, there exist §,, . - . s By s ww s Byl s +1} so that

n n
D d,¢,a;;
i=1j=1

Proof. It follows from (ii) of Theorem 3.4 that there exist column shifts ¢; so that
the new row sums r, satisfy |r,| <2i, 1<i=< K. For simplicity of notation let us
then apply row shifts so that all row sums are nonnegative. Since all r; are even
integers we have r, =0, and, in general, 0<r,<2i—2.

We now describe a simple technique that will give the final row shifts. Let
S,,...,Sg be nonnegative integers and let T be a positive integer such that s, <T
and for 1si<n-—1,

<2.

llAll=

Sy =5y + ev ks F T s

4

Then there exist §;,...,8,=*1, so that
6,5, + --- +8,5,|<T.

We can find such 8 by reverse induction. Set 8, = +1. Having found §,,
8, 1.0, we choose §;==*1 so as to minimize the absolute value of the
partial sum 8,5, + -+ +8,,85;1 85 We shall call this method the greedy
technique for the remainder of the proof.

We may not immediately apply the greedy technique because we may have too
many r, =0 and thereby T large. Reorder the rows in increasing order of row
sums. We then still have 0 <r,<2i — 2. Suppose the first u rows have sum zero
and the next v rows have sum two. If u =1 we may simply apply the greedy
technique so we shall assume u>1. Let r; be the new absolute value of ith row
sum after a single column is shifted. For the first u rows ri =2 regardless of which
column is shifted. For the next v rows r; =0 for (n/2) +1 of the possible column
shifts, these being the cases when an entry +1 switched to —1, and r; = 4 for the
remaining (n/2) — 1 column shifts. Thus the average value of r;, taken over all n
possible column shifts, is 2 — (4/n). Now we conclude that the average value of

rho s A, is v(2—(4/n). If v >n/2 then the greedy technique trivially

u+v
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works and hence we may assume v <n/2. Thus v(2 — (4/n)) >2v — 2. Since this is
the average, there must be one specific column change so that

() riyy+ -+ +r.,, =2v. We also have

2) ry=---=r.,=2, and

3) 0<r;<2ifori>u+v.

We observe that 7 + -+ +r,,,=2(u+v) and r| =2 for i >u + v since r, = 4.
Hence

AR AR ety B Y

for all iz u+v.
Trivially

’ ’ ’
rpt et +2=24=r,

when 1<i<u+v. Thus we may apply the greedy technique to the row sums
ris...,r, completing the proof. O

Applying the stronger relation (i) of Theorem 3.3, one can prove the following
general result (see Beck and Spencer 1989).

Theorem 3.7. There exists a constant ¢ >0 such that for every m X n matrix
A= (ay) with all |a,;| <1 there exist § €{—1,1}" and & € {—1,1}" such that

}E 2 o.5a;
i

<c.

4. Vector-sums

We have seen a geometric interpretation of discrepancy problems in the row space
of the corresponding matrix. Now we consider the space of the column vectors,
which leads to several new and interesting questions. In fact the investigation of
value-distributions of vector-sums developed earlier and independently of hy-
pergraph coloring problems or of discrepancy theory.

Let M=(v,...,v,), v, ER™ for 1<i<n. Let further ||| and ||-||" denote
two arbitrary norms in R™.

We define the discrepancy (relative to the two norms) by

z n
mlnee{—],l)"”Zizl gv;]|

DM I, 111 =— lloall’
1=<i<nllYi

and

D(NI-I1> 1-11") =max D; ||-]I, [|-]1") -



1420 J. Beck and V.T. S6s

Note that for any matrix M and norm ||-||’,
(M) = SO L, |11)- max [l

The case when ||+|| was the /, norm also came up briefly in Theorem 2.8.

Already in 1963 it was asked by Dworetzky what 9(||-[|, [|-||) equals for a given
norm. The more general question (where the two norms are not necessarily the
same) was formulated first in Barany and Grinberg (1981), who gave the
following general upper bound for Dworetzky’s problem.

Theorem 4.1 (Barany and Grinberg 1981). For an arbitrary norm ||-|| in R™,
a([I-Il -y <m- .

This is sharp when ||+|| is the /; norm.

Now let us consider the special cases when ||+|| and ||-|[* are one of the three
most important norms: the I, norm, the /, norm or the /; norm. Theorem 2.1 has
the following generalization in this setting.

Theorem 4.2 (Spencer 1985). 9(l.,[.) <6Vm.

(Observe that the upper bounds in Theorems 4.1 and 4.2 depend only on the
dimension!) Theorem 2.2 is also valid in this more general form.

Theorem 4.3 (Beck and Fiala 1981). 9(l.,[;)<2.

Grinberg observed, that for any M in R™,
9(,,L,)<Vm.

This is sharp. Indeed, consider m pairwise orthogonal unit vectors ey, . .. e,
in R™. Then ||X,_, &e]||, =m"" for any choice of & € {—1,1}".

All but one of the remaining cases are trivial or easy consequences of the above
ones. The only nontrivial case is when ||-|| =1, and ||-||" =/,. In that case nothing

nontrivial is known. The conjecture of Komlés refers to this case.

Conjecture 4.4 (Komlds). There exists an absolute constant ¢ such that
21.,L,)<c.
The Komlds conjecture implies the Beck—Fiala conjecture 2.4 for set-systems.
Partial sums. The problems we considered in the preceding paragraphs are of

static character. The dynamic version is when we color the points one by one and
we would like to have a “good” coloring at each stage. This formulation also
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allows us to study problems in which the underlying set S is infinite. The following
theorems are of this “dynamic” character.

Theorem 4.5 (Bardny and Grinberg 1981). Let v,, v,, . .., v, be n vectors in R™

with ||v,||<1, where ||| is any norm in R™. Then there exist a sequence
€5,...,8&, §E{—1, +1} 5o that

t
b £V;
i=1

It is conjectured that if ||| =1, or L, then in this theorem, 2m can be replaced
by KVm. For [, norm and if m = n, Spencer proved this conjecture.

<2m, fort=1,2,...,n.

Theorem 4.6 (Spencer 1986). For any sequence v, . . ., v, of vectors in R™ with
lvill. <1, there exists a sequence «,, .. . ,¢,, &,€{+1, —1} so that

An infinite-dimensional version of Theorem 4.5 is the following.

<KVvm fort=1,...,n.

©

Theorem 4.7 (Beck 1990). Let v, v,, v,,... be infinite-dimensional vectors
satisfying ||v;||.. <1. Then there exist ¢,, €,, €, . ..; &, €{~1, +1} so that

‘(Z 8ivi> ' $j4+°(1)
j

i=1

for all j and t. Here v; stands for the jth coordinate of the vector v.

Permutation of vectors. Instead of flipping the sign of vectors, we may achieve
that all partial sums be small just by rearranging them. In fact, the two kinds of
problems are strongly related as the following “transference lemma” of Chobayan
shows.

Theorem 4.8. Let vy, ... v, ER™ with v, +v,+ --- +v, =0, and let ||-|| be an

arbitrary norm in R™. Suppose that for every permutation m = (5055 5 a5ky) O
{1,2,...,n} there exist ¢, ¢,, ..., g, € {1, +1} (depending on ) such that

<A.

f
max |2, &;
j=1 "/

1=st=n ||;

Then there is a permutation w* = (I,,1,,...,1) of {1,2,...,n} such that

t

max <A.

1=st=<n ||;

1%
1
; J

1
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Proof. Let

7

2 v-

j=1

B= min max

a { TR i) 1<t<n

We have to show that B< A. Let #*=(l,,/,,...,l,) denote the permutation
where the minimum is attained. By the hypothesis of the theorem, there exist
€,...,€r €{—1, +1} such that

Zev,

j=1

<A foralllst<n.

Let
T={lsj<snig=+1}, M ={l1sjsng =-1}.
We have
t t
2 Z UI =2 E U,
j=1 = jEM™
Isj=t
and
t t
PR g'v, =2 >y
j=1 7 j=1 4 jem— 7
1sj=<t
Hence
A+B
2 vl- = 2 3
jeEMt .
1sj=1
and
A+B
R
jem—
1sj=t

Setting M* = {p,<p,< ---<p,} and M~ ={q,<q,< --- <gq,}, we define
the permutation

**_

(P1> Pos -5 PrsGos Gs15 -+ > 925 41) »
which we also denote by (4,, . . . , h,). It follows from the assumptionv, + v, + - -
+v, =0 that

t

> 0| <

J=1

A+B
5 -

max

1=t=<n
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Since B was the minimum, we must have B < (A + B)/2, and the desired
inequality B < A follows. [

Combining Theorems 4.5 and 4.7 with Chobanyan’s transference lemma, we
get the following result.

Corollary 4.9 (Barany and Grinberg 1981). Letv,,. .. ,v, be n vectors in R™ with
lv,|| <1 where ||-|| is any norm in R™. Assume that v, +v,+ -+ +v,=0. Then
there exists a permutation v, , v, , ... ,v; of the vectors v; such that
t

max E
Corollary 4.10. Let v,, . .. ,v, be infinite-dimensional vectors satisfying ||v;||..<1
(1<i<n) and v,+v,+ --- +v,=0. Then there exists a permutation v, ,
V- - -,V Of the vectors v, such that

t
FiER (E ) 4+0(1)

1=st<n

for all 1=1.

5. Arithmetic progressions

A structure whose discrepancy properties have been extensively investigated is
the family of arithmetic progressions. We have seen Roth’s theorem 1.2 and Van
der Waerden’s theorem 1.3, showing the two sides of (qualitatively) the same
phenomenon: If we focus on the short arithmetic progressions, we get a
monochromatic one; if we focus on longer arithmetic progressions, a weaker
preponderance phenomenon (large discrepancy) can be asserted.

Van der Waerden’s theorem and related results on arithmetic progressions are
discussed in chapter 25. Here we treat the ramifications of Roth’s theorem 1.2.
Let us reformulate it in the language introduced above. Let ¥, denote the
hypergraph formed by the arithmetic progressions in {1,...,n}. Then
/4

Theorem 5.1. %(3,) > cn'

Proof. Let k = |Vn/6). We show that the arithmetic progression can be chosen of
length k and of difference at most 6k. Let us allow, however, also “wrapped”
arithmetic progressions, i.e., subsets of {1,...,n} that arise from an arithmetic
progression of length k and difference at most 6k by reduction modulo n. By the
choice of k, every “wrapped” progression is the union of two “proper” arithmetic
progressions, and hence it suffices to prove that if  is the hypergraph formed by
“wrapped” arithmetic progressions, then # has discrepancy at least {;n % Note
that m = || = 6kn.
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Let M be the incidence matrix of #. By Theorem 2.8(i), it suffices estimate
A (MTM) from below.

Now the matrix M™M is a circulant (this is where wrapping is needed!), and
hence we know that its eigenvectors are (1, e, €. .. 3 e"_l)T, where € is an nth
root of unity. The corresponding eigenvalues are

> &l

jEA

2

Q= S

AEXH
Note that for each arithmetic progression A, there are n — 1 others (its translates)

that give the same contribution. So we may just select arithmetic progressions
starting at 0:

6k

Me)=2

d=1

k—1

Z Etd

t=0

2

By the pigeon hole principle we can find a d,, 1<d, =<k such that
—m/(3k) < arg(e’) < w/(3k) .

Then Re e'¥=1 for 1<t<k — 1, and hence

1
2

k—1

2 Eldo

t=0

2 k-1 2 g2
2<Re 2 6'd> BT.

t=0

Ae) =

Thus

i n 172 k\1/2 oo
@(%)BWQZ(%)? El\min = 24 >mh . O

Note that we have actually proved a stronger, /, norm version. This gives the
following information about the difference d of the arithmetic progressions of
large discrepancy.

Corollary 5.2 (Roth). Given any 2-coloring f:N—{—1,+1} of the natural
numbers, for infinitely many values of d, there is an arithmetic progression
P = P(d) of difference d such that

> fk)|>cVd.

kEP(d)

Roth conjectured that the exponent 4 of N in Theorem 1.2 can be improved to
1 (which corresponds to the random 2-coloring). This was disproved by Sarkozy
(1973). Beck (1981b) proved that Roths’s lower bound is nearly sharp, by a
combinatorial argument based on Theorem 2.5.
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Theorem 5.3.* 9(%,)<c-n'"*- (logn)’.

Proof. For integers satisfying i <j, let
AP(a,d,i, j)={a+k-d:isk<j},

i.c., AP(a,d, i, j) denotes the arithmetic progression with difference d, starting
from (a+i-d) and terminating at (a +j-d). We shall say that an arithmetic
progression is special if it is of the type

AP(b,d,i-2°,(i+1)-2° = 1),

where d=1, 1s<sb<d, i=0 and s=0. Let # denote the family of special
arithmetic progressions contained in {1,2,...,n}. By definition,

A({AE X |A|=M)) = max {A€%#):|A|=Mand k € A}|

<max 2, > 2 1.

Isk=n n=1  1<b<d s
1=d 25=M

e ddiieil
M—1 b=k (modd) b+(25—1)d<n

Simple calculation shows that the innermost sum is at most c - log(n/(d - M)). It
follows that

A{AE X! |Al=M}))<c-max b3 IOg(an>
1<k=n n—1 1sb=d ’
lsdsM_l b=k (mod d)

n n
e 3 o) <e g

Now we apply Theorem 2.5 to % with M = D = [(c,n)""*]. Then we obtain
D(H)<c,-n'*-(logn)*.
We claim that
D(H,)<(2log,n)-D(K)).

To see this, first observe that any arithmetic progression a, a+d,...,a+1-d in
[1, n] is representable in the form

AP(b,d,0, p,)\AP(b, d, 0, p,),

where a=b+(p,+1)d, 1<bs<d and p,=p,+1+L Moreover, both
AP(b,d,0, p;) (i=1,2) are disjoint unions of not more than log,n special

* Very recently Matousek and Spencer (1994) cancelled the factor (logz)’. The new idea is a clever
application of a lemma of Haussler. See also Matousek (1994).
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arithmetic progressions, i.e., elements of 9. Hence the “best” 2-coloring of ¥
gives a 2-coloring of %, with discrepancy at most (2log,n) times as large. [1

The following result is a sort of converse of Corollary 5.2.

Theorem 5.4 (Beck and Spencer 1984a). Let n be a positive integer. Then there
exists a 2-coloring f:N—{—1,+1} of the natural numbers such that for any
arithmetic progression P = P(d) = {a,a +d,a +2d, . . .} of difference d <n and of
arbitrary length,

>, flk)|<c-Vd-(logn)*® (1=d<n).
kEP(d)

Unfortunately, we cannot prove that Theorem 5.4 is true with the right-hand
side replaced by d//?*°")_ As an upper bound depending only on the difference
d of the progression, the weaker estimate grre immediately follows from
Theorem 4.7.

There is still no answer to the following old conjecture of P. Erd6s (worth of
= $500).

Conjecture 5.5. For any f: N— {—1, +1} and for every constant C there are a d
and n so that

if(k-d) >C.

In other words, the family of arithmetic progressions with first term 0 has
unbounded discrepancy.

6. Measure theoretic discrepancy

We find the roots of discrepancy theory in number theory, in the theory of
uniformly distributed sequences, and we give a brief introduction to this theory.
(For the general theory of uniformly distributed sequences see the book of
Kuipers and Niederreiter 1974.)

The field originated with the celebrated paper of Weyl (1916), which was
intended to furnish a deeper understanding of the results in diophantine
approximation and to generalize some basic results in this field. At the beginning
of this century, due to the work of Ostrowski, Hecke, Hardy, Littlewood, and
others, it became clear that the approximability properties of an irrational a by
rationals depends on the partial quotients (the ‘digits” a,) in its continued
fraction expansion
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It became also clear that the approximability property of a is closely related to
the distribution of the sequence ({na}) in [0,1). ({x} stands for the fractional
part of the real number x.)

For every irrational «, the sequence ({rna}) is everywhere dense in [0, 1). The
fact that it is uniformly distributed expresses a stronger property. Let us give the
definition for arbitrary dimension.

Let w = (u ), n €N be a sequence in the k-dimensional unit cube [0, 1)*. Let
B(a, b) = H, . [a;, b,) be an aligned box in [0, 1)*, and %, the family of all such
boxes. Z(B; N) will denote the number of v with u, € B, 1 <v <N. Let R([0, 1]*)
denote the set of Riemann-integrable functions on [0, 1]*.

Definition 6.1. The sequence o = (u,), n € N is said to be uniformly distributed in
[0, 1)* if for every aligned box B C [0, 1)

.1
lim  Z(B; N) = u(B)

(here p stands for the usual k-dimensional Lebesgue measure). Note that it
would suffice to consider only boxes B(b) = B(0,b), since the characteristic
function of every other box can be obtained by adding and subtracting the
characteristic functions of at most 2* of these special boxes.

Equivalent definitions are given by the following.

Theorem 6.2. For a sequence (u,) in [0, 1), the following are equivalent:
(1) (u,) is uniformly dlstrzbuted in [0, 1) .
(ii) For every f € R([0,1]"),

i3 )= [ o

(iii) (Weyl’s criterion) For every integer point z € Z*\{0},

2mizT u,
lim -5 2, €
N—x N E

Condition (ii) indicates why uniformly distributed sequences are important in
the theory of numerical integration. Observe that we obtain an equivalent
condition if we assume that (ii) holds for a dense subset of R([O 1]%), and Weyl’s
criterion is obtained by postulating (ii) for the functions gt (and consequently
for all linear combinations of these). (This also suggests how the concept of
uniformly distribution sequences can be generalized to topological groups.)

As an illustration, we derive from Weyl’s criterion the following improvement
on the classical Kronecker theorem.

Corollary 6.3 (Weyl 1916). Suppose that «,, . . . , a, are real numbers such that 1,
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@, . .., a are linearly independent over the rationals. Then the sequence
u,={nay},...,{ne}), neN

is uniformly distributed in [0, 1)*.

Proof. Let m=(m,,...,m,) € Z*\{0}. Then

N N
Z eZ’nimTun — E eZTriny ,
n=1 n=1

where y =m,a, + mya, + - -+ + m,a,. Observe that y is irrational by the hypoth-
esis, and hence ™ # 1. Therefore,

N

z eZ-niny

n=1

1, eZ'rriNy 2
1 _eZwiy < |1 _ ezniy| = 0(1) %

2miy |

Thus Weyl’s criterion is satisfied. [

It i,§ easy to see that the sequence w = (u,), n €N is uniformly distributed in
[0, 1)" iff

sup |Z(B,N)— N u(B)| = o(N).
BC[0,1)k
aligned box

But how small can o(N) be? To handle this question, put

9y(B)=Z(N;B) - N|B|,
Dy = sup |@N(B), ;

BC[0,1]*
aligned box

and

1/p
at= (], oo ax) .
(Warning: this is not the pth power of 9,,.)

Dy and D%, measure (in different norms) the discrepancy of the sequence
Uy,...,uUy, and their behavior for N— © measures the irregularity of the
distribution of the infinite sequence (uy). In the quantitative theory of uniform
distribution, a central problem is the investigation of the order of magnitude of
the discrepancy functions 9%, and 9,

The quantitative theory started with the conjecture of Van der Corput (1935a),
asserting that for an arbitrary sequence in [0, 1), sup %, = . This was proved by
Van Aardenne-Ehrenfest (1945) who showed that for an arbitrary sequence (u,,)
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for infinitely many N,
Dy > c(loglog N)(logloglog N) ™" .
Roth (1954) strengthened this result.

Theorem 6.4. (i) For an arbitrary infinite sequence (u,) in [0,1]* and for every
N>N,,
max 92>c, (logN)*'?.

1sn<sN

(i) For N arbitrary points u,, . . . ,uy in [0,1]%,
D% >c; (logN)*~ D2

(Here c,, c, are positive constants depending only on k.)

For k=2 (Davenport 1956) and for k=3 (Roth 1979, 1980) it is proved that
(apart from a multiplicative constant) these results are sharp.

The problem of finding bounds for the discrepancy in the supremum norm is
more difficult. Since 9, = D%, the preceding results give some lower bounds on
9y. For infinite sequences sharp results are known only for k=1, for finite
sequences for k =2; the latter is a reformulation of Theorem 1.1.

Theorem 6.5 (Schmidt 1972). (i) For an arbitrary infinite sequence (u,) in (0, 1)
and for every N =2,
max P, >clogN .

1sn<N
(ii) For arbitrary N points U= {u,, . ..,uy} C[0,1)%
Dy>c"logN .

(Here ¢, ¢’ are positive absolute constants.)

This result is best possible apart from the multiplicative constant. If u, = {na}
where a is an irrational number of bounded partial quotients (a, <K, k=
1,2,...), then for every N, @, <cy log N. Similarly, for the N points u, =
{na},n/N} (1sn<N)in [0, 1]?, 9, <cglogN.

There is a “transference principle” between sequences in [0,1)* and sets in
[0,1)**" (showing that parts (i) and (ii) in both Theorems 6.4 and 6.5 are
equivalent). This is given by the following construction.

(1) For a finite sequence u,, . .., u, in [0, 1)*, take the set

-1
{(u,,, nN )E[O, 1)k+1:1snsN}.

(2) Let v, €[0,1)*"", 1<n<N be N points. Write v, = («,, y,) where u, €
[0,1)* and y, €[0,1). Arrange the last coordinates y,, 1<n<N in increasing
order y; <y, <---<y, . Take the sequence u; ,...,u; in [0, 1)~
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In both cases the discrepancies are the same up to a universal constant factor.
All known proofs of the fundamental Theorem 6.5 are rather hard. We sketch
here a proof due to Halasz (1981).

Proof of Theorem 6.5. We prove (ii). Given any x = (x,, x,) € [0, 1], let
Z(x)=|UNBx),

and
D(x) =Z(x) — Nx;x, .

We shall construct an auxiliary function F(x) such that
U{O " Fx)@(x)dx|>c,logN, (6.6)
,1
and
=2. .
f[ Pl ar=2 6.7)

These yield

Py = max |D(x)| = jc, logn ,
and Theorem 6.5 follows.

Any x € [0, 1] can be written uniquely in the binary form
X = E B,‘(x)ziﬁ1 >
j=0

where B(x) =0 or 1 and the sequence B;(x) does not end with 1,1,1,.... For
m=0,1,2,... let

R,,(x) = (~1)"®

(Rademacher function). Let m = (m,, m,) be a pair of nonnegative integers. Let
|lm|| = m, + m, and writing x = (x,, x,), let

R,(x)=R,, (x;)'R,, (x;) .
By an m-box we mean a set of the form

[ny 27", (n, +1)- 27" X [ny-2772, (n, +1)2772] .
For any m-box A let

R, (), ifANU=0,
0, otherwise .

fn) = {
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Let 2N <2" <4N, n integer. Let a =27°, and write
Fx)= Il (+eaf,x)-1.
m: ||m||=n

Using the orthogonality of the modified Rademacher functions f,(x), we have

LS 1]2( [ (+af,)+1) ds

=f[01)2 [T Q+af,)dx+1=1+1=2.

llmll=n

Note that

n+l1

F(x) = aF,(x) + Z‘, @’F(x),
where

Fy= 2 L6,

lmli=n

and for j=2,...,n+1
E@= E" R ACAN O
my||=--=|lm;ll=n

my7#my if k#=1

It is not hard to prove that for every m satisfying ||m/|| = n, we have

[0,1]2 (%) de =0, (6.8)

J;() " Fu()x,x, dxy dx, = (2" = N)272" 74, (6.9)
and

fm , F(x)2(x) dx{ 2 121 274N (Il.: %) ) (6.10)

The proof of relations (6.8)—(6.10) is straightforward calculation.
Now we are able to complete the proof. By (6.10), we have

n+1 n+1n—j+1 p—

S, rwael<E 3 E e n (12
NS z()
2 212_"_1_4(1'{'(1)1

//\
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o (1+a)
sN-n-a2-2‘"-4z< 2a>
=1

<N-n-a®-27"7°.
Combining this with (6.8) and (6.9), we obtain

n+1

1A

f F(x)2(x) dx‘

[0.1)?
=a(n+1)NQR"—N)-27>*~N-n-a”>-27""
>2"".n=clogN,

UF(x)@(x) dx‘ = U F,(x)Z(x) dx, dx,

as required. [

As to the discrepancy in supremum norm, the following is a very difficult old
problem.

Conjecture 6.11. For all k=2 and for N arbitrary points in [0, 1]*,
D, > c(k)(log N)* .

This would mean that the exponent (k — 1)/2 implied by Theorem 6.4 (using
Dy=D3) is only half the truth. Note that the case k =2 is settled by Theorem
6.5. If true, Conjecture 6.6 is best possible by the Van der Corput—Halton—
Hammersley sequence, see, e.g., Beck and Chen (1987). Recently Beck (1989a)
improved on the old result of Roth by proving a 2-dimensional version of the
Aardenne-Ehrenfest theorem, but Conjecture 6.11 appears still very difficult.

Approximation of measures. One interpretation of Theorem 6.5 is that it is
impossible to approximate the Lebesgue measure on the system of rectangles ““too
well” with a measure of finite support. There is a more general phenomenon in
the background, as proved by Chen: the same is true for arbitrary measures.

Theorem 6.12 (Chen 1984). Let g be a Lebesgue-integrable function in E*, and
assume that g(x) # 0 on a subset S C E* with u(s) > 0. Then there exists a constant
c(g)>0 such that for every set U of N points in E* and for every function
A U—-R,

sup > Au)— N L(x) g(x) dy,‘ >c(g)logN .

x€E2 'ueBx)NU

Rectangles in the N X N lattice. 1t is easy to see that Schmidt’s theorem 6.5 has
the following corollary. Let the hypergraph %, be defined on the underlying set
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§={0,1,...,N}* by
Zv={SNB(a,b)|0<a<N,0<b<N}.

Obviously 9(Z,) = 1. What can be said about @,,(%y), Z,(%y) or 2,(%,)? It
follows easily from Theorem 6.5 that with a positive constant ¢ >0

Dp(Ey)>clogN .
Hence by Theorem 3.1,
Du(En) = 3D(En) = 3 Dp(Ly) >clogn.

A related problem concerning balanced 2-colorings of finite sets in the plane
was formulated by G. Tusnaddy. Let ? be an N-element point set on the plane.
Let T= T(2) be the least integer ¢ such that one can assign *1s to the points of P
so that the sum of these values in any rectangle with sides parallel to the
coordinate axes has absolute value at most 7. Now Tusnddy’s problem is to
determine

= P).
Ty =max I(?)

The following theorem gives the best known bounds; the lower bound is due to
Beck (1981a), the upper is a recent result of Bohus (1990), improving a result of
Beck.

Theorem 6.13. For N=2,
¢, logN<T,<c,(logN)’.

Proof. We give the proof of Beck’s upper bound of (log N)* as an application of
Theorem 2.2. It suffices to prove the following. Let A = (a;;), where a,;,=0 or 1,
be a matrix of size N X N. Then there exist “signs” ¢, € {—1, +1} such that

n m
D) &ijij
i=1j=1

for all 1<sn, m<N.

We now prove (6.14). Adding a few 0-rows and 0-columns if necessary, we may
assume that N=2' where [ is an integer. For every pair (p,q) of integers
satisfying 0 < p, g </, we partition A into 2”7 submatrices, splitting the horizon-
tal side of the matrix into 2” equal pieces and the vertical side of the matrix into
27 equal pieces. There are (I + 1) = (log N)’ partitions. Let us call a submatrix of
A special if it occurs in one of these partitions. Let S = {(i, j): a;; = 1}, and let us
associate with every submatrix B the subset

<c(log N)* (6.14)

Yy ={(, j): a; belongsto B,a, =1} .
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Let
# = {Yy,: B is a special submatrix of A} .

Since the maximum degree A(¥)<(/+1)°, by Theorem 2.2 there exists an
assignment of +1s so that the absolute value of the sum of the signed entries in
each of the special submatrices is less than 2A(3) <2(I + 1)>. Note, however, that
any submatrix of A containing the lower corner A is the union of at most I’
disjoint special submatrices. Thus (6.14) follows.

The proof of the lower bound depends on Theorems 3.1 and 6.5. We may
clearly assume that N =n’, n integer. We need the following reformulation of
Theorem 6.5:

Let P be an arbitrary finite set in the square |0, y):, y>1. There exists an
aligned rectangle A C|0, y)* such that

|PNA| - pn(A)|>c-logy .
We shall use that for any convex set A C [0, n)’, we have
|ANZ% =u(A)+O(n) .

Let S=[0,n)’NZ* #={SNA: AC[0, n)® aligned rectangle} and g =1-2-
n~'. Let &(s) € {—1, +1} (s €S) be fixed such that

ot ) =mpx | S e)-a).

and let S™ = {s €S: &(s) = —1}. Then we have

1
|S‘nA|—;|Anzz|

D(K; q) = Zm[.;:lx

1
=2 max |S™ N A| —;,u(A)‘ +0(1).

Apply a contraction of linear ratio n~'?:1, and apply the reformulation of

Schmidt’s theorem given above to the resulting set. We obtain that
D(H; q)=2c-log(n'’?) —O(1)=clog N .

Thus by Theorem 3.1,
Pu(H)=19,(H)=3D(; q) =c, logN .

In other words,
D(¥,)=c, log N

for some Z CS. Since |Z|<|S|=n’>= N, we have

Ty=T5=%(%#;)=c, logN . O
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Let X ={(i, j):a; =1}, # be the family of submatrices of A containing the
lower left corner of A, % be the family of special submatrices, N=2', D =(l +
1)?, K =1?. Applying Theorem 2.7, we obtain the following modest improvement
on (6.14):

n m
2 2, &
i=1j=1

forall 1sn, m<N.

In higher dimensions, however, the improvement given by Theorem 2.7
becomes significant. Repeating the proof of 6.13 in higher dimensions, we get the
following result:

Let A=, (n€{1,...,N} x---x{1,...,N}) be a k-dimensional matrix
with entries a, =0 or 1. Then there exist “signs” ¢, € {—1, +1} such that

2 €,4,

n:nsm

<c(e)- (log N)"'»*e

< c(k)- (log N)*

for all m = (m,, m,,...,m,) satisfying 1<m,,...,m, <N. Applying Theorem
2.7 we obtain, however, the following better bound:

T an

n:nsm

<c(k, €)- (log N)H(m)” .

for all m as above. We have strong indications that the true order of magnitude is
probably about (log N)*™".

In contrast to the case of Theorem 2.2, when the proof gives a polynomially
computable algorithm to construct the desired signs ¢ = +1, the proofs of
Theorems 2.5 and 2.7 imply only the existence of balanced 2-colorings.

7. Geometric structures

In this section we discuss a variety of questions where the underlying set S is
either the k-dimensional unit cube [0, 1]* or (in the discrete version) the N X N X
-+« X N lattice.

We study generalizations of the classical problem considered in Theorem 1.1.
We no longer restrict ourselves to the boxes: we allow rotation, and we also study
more general shapes. Many problems of this type originated with the paper of
Erdés (1964).

Let & be a family of simple geometric objects, as aligned or tilted rectangles,
triangles, balls, etc., in R*. Let PC [0, l]k be a set of N points. Set

Dy(4) = inf sup ||[ANP|—Nu(AN[0,1]%)].
|PI=N sc«

We consider first the case of aligned right triangles.
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Theorem 7.1 (Schmidt 1969). Let P,,..., Py be N points in the unit square
[0, 11>, Then there exists a right triangle T C [0, 1)> with two sides parallel to the
coordinate axes, and with

IPNT|—N-w(T)| >N,

Beck (1984a, 1987a) slightly improved the lower bound and also proved that
the lower bound is nearly sharp.

Theorem 7.1'. Let A be the family of right triangles in the plane with two sides
parallel to coordinate axes. Then

¢, N <3 (4)<N"*"Iog N .

This theorem exhibits a rather paradoxical phenomenon. Let T’ be a right
triangle. There is a unique right triangle 7" such that 7' UT" is an aligned
rectangle A. We know that there exist N-element sets P with

[PNA|=N-p(A)|<c-logN

for all aligned rectangles A C [0, 1)>. This set contains almost the “right”” number
of points in 7' U T" but — by Theorem 7.1 — must be quite irregularly distributed
in the two halves T’ and T".

Essentially the same proof gives the following 2-coloring result. Let f be a
2-coloring of the N X N square lattice. Then there exists an aligned right triangle
T such that the difference between the number of red points and the number of
blue points in T is at least ¢ - N''>. In other words, the corresponding hypergraph
has discrepancy at least c¢- N'/%.

(Note that the analogous question for aligned rectangles is trivial. The chess-
board type 2-coloring of N X N has deviation at most 1 for any aligned rectangle.)

Consider next the family of balls. Again we have a “large discrepancy” result

(for the pioneering result, see Schmidt 1969).

Theorem 7.2 (Beck 1987a). Let o be the family of balls contained in [0, 1)*. Then
@ (&4)>N1/2_1/2k—5
N :

The following result states, roughly speaking, that for rotation invariant
families the discrepancy is always ‘“large”.

Theorem 7.3 (Beck 1987a). Let A C[0,1)* be a k-dimensional convex body, and
let o be the family of convex sets obtained from A by a similarity transformation
(rotation, translation, and homothetic transformation). Then

@N(&g)>c(A, 8)'N1/2_1/2k_£ .

We remark that Theorems 7.2-7.3 are nearly best possible (see Beck 1984a).
The situation is more complicated if rotation is forbidden (as the difference
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between aligned right triangles and rectangles indicates). The discrepancy of the
family of homothetic copies of a given convex shape A depends mainly on the
smoothness of the boundary A. We have a fairly good understanding of this
phenomenon (for more details, see Beck 1988 and Beck and Chen 1987).

For the discrepancy of congruent sets, see Beck (1987b). For the discrepancy of
half-plances, see Beck (1983), Alexander (1990) and Matousek (1994).

It is worthwhile to mention here that all of these theorems are essentially
independent of the shape of the underlying set — instead of the unit cube one can
consider the unit ball, the regular simplex, any ‘“reasonable” convex body, the
surface of the unit sphere, etc.

An application in discrete geometry. For which set of N points on the unit sphere
is the sum of all (}) euchdean distances between these points maximal, and what
is the maximum? Let S* denote the surface of the unit sphere in R“*'. Let P be a
set of N points on S*. Let |x| denote the usual euclidean length. We define

L(N,k,P)= 2 |p_Q|

P.q€P
and

L(N,K)= max L(N, k, P),

where the maximum is taken over all PCS*, |P|=N. The determination of
L(N, k) is a long-standing open problem in discrete geometry. For k=1, the
solution is given by the regular N-gon. It is also known that for N = k + 2, the
regular simplex is optimal. For N >k + 2 and k =2, the exact value of L(N, k) is
unknown. The reason for this is that if N is sufficiently large compared to k, then
there are no “regular” configurations on the sphere, so the extremal point
system(s) is (are), as expected, quite complicated and “ad hoc”.

Since the determination of L(N, k) seems to be hopeless, it is natural to
compare the discrete sum L(N, k, P) with the following integral (the solution of
the “continuous relaxation” of the distance problem)

N 1 "
Tmfsk |p = po| do(P) = co(k) - N*

where o denotes the surface area, do(P) represents an element of the surface
area on S*, p,=(1,0,0,...,0)ER**". The constants ¢o(k) can be calculated
explicitly; e.g., ¢,(1) =2/, c0(2) =2). Stolarsky (1973) has discovered a beauti-
ful identity saying, roughly speaking, that the discrete sum L(N, k, P), plus a
measure of how far the set P deviates from uniform distribution, is constant. Thus
the sum of distance is maximized by a well-distributed set of points. Combining
Stolarsky’s identity with a result in ““irregularities of distribution”, one can obtain
some nontrivial information on the order of magnitude of L(N, k) (see Beck
1984b).
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Theorem 7.4. L(N, k) = c,(k)- N> + OWN'~""9).

Finally, we mention the famous Heilbronn’s triangle problem which is, in a
broader sense, related to our topic (see Roth 1976 and Komlds et al. 1982).

8. Uniform distribution and ergodic theory

The most important class of uniformly distribution sequences in [0, 1) is the class
of sequences ({na}) for « irrational. These are the basic sequences in the theory
of diophantine approximation. Further, these are the best “test-sequences’: very
often theorems which were found first for sequences ({na}) turned out to be true
for more general ones. Finally we mention the relation of sequences ({na}) to
topological transformations.

The discrepancy of ((na}) depends on the partial quotients a,, k=1,2, ... of
a. For every N and x €0, 1) there is an “explicit” formula for the discrepancy
PD,([0, x)) defined in section 6 (S6s 1974). This leads to the following bounds.

Theorem 8.1. Let p,/q, be the kth convergent of a: p,/q; =la,,...,a,_,]. If
q, <N<gq,,, then

k k+1
C; Eai< max P, <c, > a; .
i=1 lsnsly i=1
Consequently, if ¢,<K, i=1,...,then

Dy<c-K-logN .
Much is known about the finer properties of the distribution. Though

max sup 9,(I)>clog N,

IsasN g

there are intervals  in which the distribution is very good.

Theorem 8.2 (Hecke—Kesten). For the sequence ({na}) and for a fixed interval I,
the discrepancy 9\(I) remains bounded if and only if u(I) = {ka} for some integer
k.

The “if” part was proved by Hecke (1922) and the much deeper “only if”” part
by Kesten (1966). Very elegant proofs and generalizations of this theorem in the
framework of ergodic theory are due to Fiirstenberg et al. (1973), Halasz (1976),
Petersen (1973).

On the other hand it is remarkable that this theorem and further properties of
9, are relevant in ergodic theory (see, e.g., Herman 1976, Deligne 1975).

Schmidt investigated the analogous question for arbitrary sequences in [0, 1).
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Theorem 8.3 (Schmidt 1974). For an arbitrary sequence (u,) in [0, 1) the lengths
of all intervals I for which D\(I) remains bounded form a countable set.

The ergodic theoretical generalization shows the essence of Kesten’s theorem.

Let (2, o, u) be a probability space, T:42— Q an ergodic transformation (a
measure preserving transformation such that every T-invariant measurable set has
measure 0 or 1). For A€, x € let Z,(A;x) denote the number of points
T"'x€ A, 1<n<N. Set

D \(A;x) = |Zy(A;x) — Nu(4)| .
By Birkhoff’s ergodic theorem, for every fixed A € &, for almost all x € (2,

1
N@;(A;x)—w ifN—x,

The un1form1ty or irregularity of the distribution of the orbit is measured by the
sequence 9 4(A;x). Fiirstenberg et al. (1973), Petersen (1973), Halasz (1976)
proved the following very striking generalization of Kesten’s theorem.

Theorem 8.4. If for some A € o4, 9 }(A; x) is bounded on a set X C £ of positive
measure, then ™" is an eigenvalue of T; that is, there exists a function g#0
such that

g(Tx) =e*™*Yg(x) forxen.

Conversely, for every eigenvalue e*™* there exists an A € o such that pn(A)=pn
and D {(A; x) remains bounded as N— = for almost all x € (2.

Remark. Kesten’s theorem follows from Theorem 8.4. To see this, let 2 =R/Z.
Let R,: x—x + a (mod 1) be the rotation by 2mwa). The eigenvalues of R, are the
numbers e?"*@}. hence Kesten’s theorem follows.

We give another example of the relationship between uniform distribution and
ergodic theory, illustrating how results on distribution of the sequences ({na})
imply general results on homeomorphisms of the circle.

Denjoy (1932) proved that for every homeomorphism T: R/Z— R/Z having
no periodic point there exists an irrational a(7') € (0, 1) such that T is con]ugate
to the rotation R,. By this result, the distribution of T"x, n=1,2,,..., is
determined by the " distribution of the sequence ({na}). In particular,

(a) By Birkhoff’s ergodic theorem the discrepancy 9 .(I; x) = o(N). By Den-
joy’s theorem we know much more: @ (I;x) is the same as the corresponding
discrepancy of the sequence ({na(T)}).

(b) The order of points {na}, 1<n<N is very restricted: if 7 is the
permutation determined by {w(1)a}<---<{m(N)a}, then, for example, for
every fixed @ and N the difference (i) — (i — 1) takes at most three different
values. Now, by Denjoy’s theorem the same holds for an arbitrary homeomorph-
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ism T having no Periodic point and every point x, if we define the permutation
by T"Vx) <T@ x)<---<T"™™. (See Sés 1957, Swierczkowski 1958.)

One of the most fascinating and deepest relationships between combinatorics
and ergodic theory is given by Firstenberg. Since there is a recent expository
paper by Fiirstenberg et al. (1982), and the book of Fiirstenberg (1981), we do
not go into the discussion of this. We mention only the fascinating recent result of
Fiirstenberg and Katznelson (1989) on the density version of the Hales—Jewitt
theorem (see chapter 25).

9. More versions of discrepancy

Strong irregularity. In [0,1) the following “strong irregularity” phenomenon
holds.

Theorem 9.1. (i) For every & >0 there exists a 8 >0 (depending only on &) such
that for an arbitrary sequence (u,,) in (0,1) and for every N>0, 9, > 8 logn for
all but at most N° values of n<N.

(ii) For every K >0 there exists an M >0 (depending only on K) such that for
an arbitrary sequence (u,) in (0, 1) and for every N >0, 9,> K for all but at most
(log N) values of n<N.

(iii) For an arbitrary sequence (u,) in (0, 1) the set of values of x for which
Dy([0, x)) = o(log N) holds, has Hausdorff dimension 0.

This theorem was proved first only for ({na}) sequences (S6s 1979, 1983a),
then for arbitrary sequences and in a more general form by Haldsz (1981) and
Tijdeman and Wagner (1980).

One-sided irregularities. Measuring the irregularities with @ or @5, we do not
have any information on the sign of the discrepancy. Therefore we define

2 ([0, B)) = max{@([0, B)), 0} ,

and

@;=$p92ﬂ&ﬁ»-

P y is defined analogously.

One-sided discrepancies show some new phenomena. Again, the first results on
one-sided irregularities were found for ({na}) sequences. For example, there is
no one-sided strong irregularity phenomenon. We mention just the simplest
illustration of this. It is easy to see that

sup@ =, supPy=.
N N

But no explicit lower bound can be given: for an arbitrary sequence My— « there
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exists an a such that & y, < My, and also there exists an & such that Dy <M,, if
N is large enough.

Similarly, it is easy to see that the sequence of indices N with Py <K has
density 0. However, for an arbitrary sequence M,, = o(N), there exist an « and a
K such that 9@, <K holds for at most M n Values of n <N, if N is large enough
(Sés 1983a).

Concerning intervals of small discrepancy, first we remark that 9 ([0, B)) may
be bounded even in the case when B # {ka}, i.e. when %,([0, B)) is not.

In Dupain and S6s (1978) those intervals [0, 8) are investigated for which
P y([0, B)) is bounded. Here we mention just one of the new phenomena: there
exists an a for which the set {B: sup,? y([0, B)) <>} has the cardinality
continuum.

As an example in the opposite direction, the assertion in Theorem 8.2 remains
true if instead of the boundedness of 9, (A) we assume only one-sided bounded-
ness. Haldsz (1976) proved that if

sup 9 5 (A;x) <o
N

holds on a set X C {2 of positive measure, then ¢*™**) must be an eigenvalue of
T.

In contrast to aligned boxes, for balls even the simplest results: supy% = o,
supy9 y = are nontrivial. The proof of these, that is, a one-sided version of
Theorem 7.2, can be found in Beck (1989b).

The following problem of Erdds, which was recently solved, is essentially a
one-sided discrepancy problem.

Let &, &, &, ... be an arbitrary infinite sequence of complex numbers on the
unit circle [z| =1. For every n €N and complex z, let

P,(z) = Ijll (z-¢).

Further, let

An = A(gl’ §2’ ctto gn) zmi)l( |Pn(z)| .

ErdGs conjectured that for every fixed sequence (¢,), lim sup A, =, and
asked about the correct order of magnitude of

max A, asN—x,
l1snsN
Observe that if the points &,..., ¢, are just the nth roots of unity, then
P,(z)=2z"—1, and so A, =2. This shows that the relation lim sup A, = must
be a consequence of the impossibility of getting every segment ¢, . . . , &, close to
uniform distribution. There seems, therefore, to be an intimate connection with
the Van der Corput problem (see section 6).
By realizing this heuristics, Wagner (1980) proved the conjecture lim sup A, =
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w, He developed a variation of Schmidt’s original proof of Theorem 6.5, and
actually proved the estimate
max A, > (logN)‘.

1=sn=N

Recently, Beck (1991a) managed to prove the best possible result

max A,>N°,

1=sn<sN

by developing a version of Halasz’s proof of Theorem 6.5.

10. Epilogue

As we mentioned already in the introduction, discrepancy theory has its roots, as
well as its applications, in many different areas. Here we mention just a few
recent applications of discrepancy and uniform distribution.

Squaring the circle. Tarski raised the following question, which is sometimes
called “the problem of squaring the circle” (misusing the name of an ancient
problem): is a disc equidecomposable to a square? In other words, can a disc be
decomposed into finitely many parts, which can be arranged to obtain a partition
of a square? The answer is in the negative under various restrictions, e.g., if the
pieces are restricted to be Jordan domains.

Recently Laczkovich (1990) gave a striking and ingenious construction which
answers Tarski’s question in the affirmative. The proof is based on a sufficient
condition for the equidecomposability of two bounded measurable sets in terms of
the discrepancy of certain special sequences.

Computing the volume. Uniformly distributed sequences are used generally in
applications of Monte Carlo methods. A recent success in this area is the
computation of the volume of an n-dimensional convex body in polynomial time
by Dyer et al. (1989). The basic tool is that a uniformly distributed point in the
body can be generated efficiently (using random walk on a grid). It is a surprising
fact that in this problem deterministic uniformly distributed sequences cannot give
a good approximation in polynomial time (see Elekes 1986, Barany and Firedi
1987).

Drawing segments on screen. Luby (1986) studied the question of drawing
segments on a screen as paths in a grid. He showed that if certain natural
assumptions are made, every scheme to assign a ‘‘connecting segment” to every
pair of points will necessarily use ‘“bent”” segments. The amount of deviation from
the straight line is determined by Schmidt’s theorem 1.1.

“Gray” areas in photography. Rodl and Winkler (1990) studied the question of
representing a gray area as a combination of black and white dots. Modelling the
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“smoothness” of the resulting color as a discrepancy problem, he showed that the
measure of this “smoothness” can be estimated by the theorem of Beck and its
improvement by Bohus (Theorem 6.13).
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