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On Product Representations of Powers, I 

P. ERD6S, A. S,A, RKOZY AND V. T. SOS 

The solvability of the equation a l a  2 • • • a k = x 2, a l ,  a 2 . . . . .  a k e ~ is studied for fixed k and 
'dense' sets M of positive integers. In particular, it is shown that if k is even and k I> 4, and M is 
of positive upper density, then this equation can be solved. 

~) 1995 Academic Press Limited 

1. INTRODUCTION 

Throughout this paper, we use the following notations, t~ denotes the set of the 
positive integers. If f (n )  = O(g(n)), then we write f(n)<<g(n), re(n) denotes the 
number of primes not exceeding n so that, by the prime number theorem, we have 
z ( n ) - n / l o g n .  ~(n) denotes the M6bius function. Some further notations will be 
introduced in Sections 2 and 3. 

A problem in number theory is said to be a hybrid problem if it involves both 
general sequences (characterized usually by density assumptions) and special sequences 
(squares, primes, etc.) of integers. In the last 15 years many problems of this type have 
been studied, and a survey of these results has been given in [11]. In particular, 
Lagarias, Odlyzko and Shearer [10] have studied the following problem: What density 
assumption is needed to ensure the solvability of the equation 

a + a '  = x  2, a, a'  e M? 

As the sequence M = {1, 4, 7 . . . .  ,3k + 1 . . . .  } shows, it is not enough to assume that ~t 
is of positive (lower) density. Examples of similar type show that it does not help to 
take more summands on the left-hand side; i.e. for all k ~ I~ there is a set M of positive 
density such that 

a l  + a 2  + " " " + a k  = x 2,  a l ,  a 2 ,  . . . , a k  E s ~  

cannot be solved. In this paper we will study the multiplicative analogue of this 
problem by studying the solvability of the equation 

a l a 2 ' ' ' a k  : X  2 ,  a l ,  a 2 , . . . ,  ak ~,~, a l < a 2 < ' ' ' < a k ,  x E N. (1.1) 

It will turn out that the solvability of this equation strongly depends on the parity of k. 
If k is even and k ~> 4 then, unlike the additive case, in order to ensure the solvability of 
(1.1) it suffices to assume that M is of positive (upper) density (indeed, a much weaker 
assumption is enough). 

If k ~> 2 and M is a set of positive integers such that equation (1.1) cannot be solved, 
then M is said to have property Pk, and Fk denotes the family of those subsets of 
which have property Pk. We write 

Fk(n) = max I~¢1. (1.2) 
..~{ i, 2 . . . . .  n} 
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(In other words, t = Fk(n) + 1 is the smallest positive integer such that, for every set ,ff 
with M c { 1 , . . . ,  n}, I~tl = t, equation (1.1) can be solved.) Moreover, we write 

1 
Lk(n ) = max Y~ - .  

.~={1, 2 . . . . .  n} a e . ~ t a  
~ F k  

In this paper, our goal is to study the functions Fk(n) and Lk(n),  while in Part II we will 
study the analogous problems with higher powers instead of squares in (1.1). 

It will turn out that for fixed k and n---~ +oo we have F2k+~(n)>>n for all k and, on 
the other hand, F2k(n) = o(n) for k >/2. Moreover, the asymptotics for F2k(n) depends 
on the parity of k. 

We will prove the following theorems: 

THEOREM 1. For all n ~ ~4, F2(n)/s equal to the number o f  the square-free integers 
not exceeding n: 

6 
- - -  (1.3) F2(n) = ~ fz2(i) tr 2 n. 

i ~ n  

THEOREM 2. For e > 0, n > no(e), we have 

n - n ( l o g  n )(e/2) ,og 2 -1  + ~ < F3 ( n )  < n - n ( l o g  n ) - l -  2. (1.4) 

THEOREM 3. There is a positive absolute constant c and, for  all e > O, a number  no(e) 
such that for n > no(e) we have 

(2½ - e)na(log n)-]  < F4(n) - ~r(n) < cnt(log n) -~. (1.5) 

THEOREM 4. There is an absolute constant c and, for  all e > O, a number  no(e) such 
that for  n > no(e) we have 

(2 i - e)nt(log n) -~ < F6(n) - (x(n) + zr(n/2)) < cn ~ log n. (1.6) 

THEOREM 5. There is a positive absolute constant c and, for  all k e N, there exist 
absolute constants Ck > 0 and no(k) such that for  n > no(k) we have 

ck(n½(log n)-1)1 +(4k+1)-~ < F4k(n) -- if(n) < crib(log n) -]. 

THEOREM 6. There is a positive absolute constant c and, for  all k e •, there exist 
absolute constants Ck > 0 and no(k) such that for  n > no(k) we have 

Ck(n~(log n)- l )  l+(4k+l)-' < F4k+z(n) -- (;r(n) + ~r(n/2)) < cn ~ log n. (1.7) 

THEOREM 7. For all k E N, k < 1 and e > O, there is a number no(k, e) such that for  
n > no(k, e) we have 

(log 2 - e)n < Fzk+l(n) < n -- (1 -- e)n (log n) -2. (1.8) 

The lower bound in (1.8) could be improved slightly (see the remark following the 
proof of Theorem 7): however, this would take a lengthy computation, and since we 
have not been able to decide whether F2k+l(n) ~ n, thus we have preferred to work out 
the simpler version in (1.8). 
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There is a considerable gap between the lower and upper  bounds in (1.8) for 
F2k+l(n) that we have not been  able to eliminate for k ~>2. On the other hand, we will 
prove much more satisfactory estimates for L~,+l(n): 

THEOREM 8. I l k  is a fixed positive integer and n---~ +~,  then we have 

L4k(n) = (1 + o(1)) log  log n, (1.9) 

L4k+2(n) = (2 ~ + O(1)) log log n (1.10) 

and 

L2k+l(n) = 1 + (½ + O(1))logn. (1.11) 

2. COMBINATORIAL LEMMAS 

In the proofs we will use Tur in  type extremal graph theorems for cycles. In the 
following lemmas we give a list of these. 

G~(V; E)  will denote a graph with vertex set V and edge set E, IVI -- n and IEI = e. 
The degree  of the vertex P will be denoted by d(P). G~.v(U, V; E) will denote a 
bipartite graph with vertex set U U V (U N V = O) and IUI = u, IVI = v and IEI = e. g . ,v  
will denote the complete bipartite graph. Ct denotes the cycle of length/ ,  and 'we also 
use Ka instead of C3. 

We shall need the following well-known and nearly trivial fact. 
For k, n E N, let q~,(n) denote  the smallest positive integer q such that every graph of 

n vertices and q edges contains a Ck. 

LEMMA 1. (a) For n ~ •, n --* +0% we have 

q4(n) = (½ + o(1))n i. (2.1) 

(b) There is a positive absolute constant c such that, for all n E N, we have 

q6(n) < cn ~. (2.2) 

(c) For fuced k ~ N, and for  n E N, n---> +o% we have 

q2k÷l(n) = (¼ + o(1))n 2. (2.3) 

PROOF. (a) See [3] or [8]. 
(b) This is a special case of  a result of Bondy and Simonovits [2] (see also [12, 

Corollary 6.13]). 
(c) This is a special case of  a result of Erd6s and Simonovits [7] (see also 

[12, Theorem 3.1]). 

LEMMA 2. For all e > O, there is a number no = no(e) such that i f  n > no(e), then 
there is a graph Ge,, with 

e > (½ - e )n~ 

which contains no cycles Ct with 3 <- l <~ 6. 

PROOF. See [1], [13] or [12, p. 184]. 
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LEMMA 3. I f  k >1 3, then there is a positive constant Ck such that, for every n ~ 2, 
there is a graph G~ with 

e ~ Ckn l+(k-1)-a 

which does not contain a cycle Ct with 3 ~ l <~ k. 

PaOOF. This is Corol lary  8.3 in [12]. 

For  n e N, let r(n) deno te  the smallest positive in teger  r such that  if G~,~(U, V; E) is 
a biparti te graph of  r edges, 

v ~< u ~< v 2 and uv <~ n, (2.4) 

then G must contain a (76. We conjecture  that 

r(n ) < cn]; (2.5) 

unfortunately,  we have not  been able to show this. We could prove  only the  following 
weaker  result: 

LEMMA 4. There is an absolute constant c such that, for all n ~ N, we have 

r(n ) < cn ~. 

PROOF. We have to show that if cl is large enough,  G = G~,,~ is a b ipar t i te  graph 
which satisfies (2.4), and 

r = ]El >>-c~n~, (2.6) 

then Gr.~ contains a C6. 
Let  U - {P~, P2 . . . .  , Pu}, V = {Qa, Q2 . . . .  , Q~}. By  (2.6), we have 

d (P3  = IEI/> cln ~. 
i=1 

It follows that 

1,,~-1 ~ d(Pj,,+,)+ ~ d(Pu-o+,)~ ~ d(Pi)>~ cln ~. 
] = 0  i=1 i=1 i=1 

Thus there  is an in teger  m with 0 ~< m ~< u - v such that  

c l n._____~ ~ on  ~ Cl 
~, d(Pm+j) >~ >>- . (2.7) 
t=l [u/v] + l 2 u 

Let  G* denote  the subgraph of  G induced by the 2v ver t ices  
{Pro+l, P,,,÷2, . . . .  P,,,.o}, V* = {01, 02  . . . . .  Qo}. By  (2.4) and (2.7) we have  

U *  ~-- 

t'b ~lrel~ 
e* ~> ~ v , ,  ~> cl v~. (2.8) 

2 u 2 

If cl = 8c, where  c is the constant  in (2.2), then by (2.8) we have 

e* > c(2v)~, 
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and thus, by Lemma 1, G *  contains a C6. For  u, v, n e IN and 

uv <~ n, (2.9) 

let s(u, v, n) denote the smallest positive integer s such that if G = G~,~(U, V; E)  is' a 
bipartite graph of s edges, then G must contain a C@ 

We conjecture that for 

v 2 < u (2.10) 
we have 

s(u, v, n) < 2u + cn}. (2.11) 

(Clearly, s(u, v) > 2u, as the following example shows: consider the graph obtained by 
joining each of the vertices in q / t o  two fixed vertices in F.)  

Note that, of course, conjectures (2.5) and (2.11) can be combined: if G - -  
G(',.v)(U, V; E) is a bipartite graph v <~ u, uv <~ n and 

e ~ 2u + cn ~, (2.12) 

then G contains a (26. 
Unfortunately, we have not been able to prove (2.11). We could prove only the 

following weaker result: 

LEMMA 5. f l u ,  v and n satisfy (2.9) and (2.10), then we have 

• f 2 u + v  3 f o r v  3<-8u, 
s(u, v, n) ~ ~18vut for v 3 > 8u. 

PROOF. We have to show that if u, v and n satisfy (2.9) and (2.10), and 
G = G~,..v)(U, V; E)  is a bipartite graph with 

f2u  + v  ~ for va<~8u, (2.13) 
e I> ~[lavu~] for v 3 > 8u, 

then G contains a C6. Clearly, it suffices to show that there is a K(3, 3) in G. 
Assume that contrary to the assertion (2.13) holds; however, G does not contain a 

K(3, 3). Define the integer l by 

2 for v 3 ~ 8u, 
l = [vu_~] for v 3 > 8u, (2.14) 

and put 

and 

so that 

J~l = {i: 1 ~< i <~ u, d(P/) ~< l} 

o#2 ={i: 1 ~ i  ~< u, d(P~) > 1} 

{i, 2,..., u}= O#I U J~, O#I n O#2 = O. (2.15) 

Let U = {PI, P2,..., Pu}, V = {QI, Q2,.. •, Qv}. By the definition of O#I, we have 

tu. (2.16) 
ieJ~ 

For all i • O#=, there are ("%P,)) triples Qx, Qy, Qz ( l~<x <y <z ~<v) such that each of 
Qx, Qy, Qz is joined to P~. On the other hand, since there is no K(3, 3) in G, thus each 
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of the (~) triples Qx, Qy,  Qz  (1 ~<x < y  < z  ~<v) can be joined to at most two distinct 
/~'/s. Thus we have 

E ( d ~ J ) ) ~ 2 ( ; )  ~ ½ v3" (2.17) 

For i e :2 we have d(Pt)  >~ l + 1, and thus 

( d ( ~ ) ) > ~ d ( P i ) l ( l - 1 )  ~> ~d(P~.)l 2 

(since l 1> 2). Thus it follows from (2.17) that 

E d(et) < 4v3l -2. (2.18) 

We obtain from (2.15), (2.16) and (2.18) that 

e ( G )  = ~ d(Pt)  = ~ d(Pi)  + ~ d(Pi)  < lu + 4v3l -2 
t=l i ~.f'l i e,.#2 

so that, in view of (2.14), 

e ( G )  < 2u + v 3 for v 3 ~< 8u 

and 
e ( G )  <~ ( vu -~ )u  + 4 v 3 ( v u - ~ / 2 )  -2 = 17vu ~ <- 18vu ~ - 1 < [18vu ]] for v 3 > 8u, 

which contradicts (2.13), and thus completes the proof of the lemma. 

LEMMA 6. L e t  k ,  t a n d  n be  pos i t i v e  integers with k >~ 3, let  S = {sl, s2, . . . , s ,} ,  a n d  
let $1, $2 . . . .  , St be  dis t inct  subse ts  o r S .  F o r  j = 1, 2 . . . .  , n, R1 c S, . . . .  Rt  c S, wri te  

~ ( R 1 , . . . ,  Rt) = I{x: 1 ~<x ~< l, sj E Rx}l. 

if 
t~>2 "-~ + k  - 1, (2.19) 

then there  are subse ts  Sty, S~, . . . , St~ (wi th  1 <~ il < i2 < "  • • < ik <~ t) such  that  

f](St~, St~ . . . . .  St,) is even  f o r  j = 1, 2 . . . . .  n. (2.20) 

Note that (2.19) is best possible for k -- 3, as the following example shows: if n is odd 
and S~, $2 . . . .  , $2.-~ are those subsets of S the cardinality of which is odd and 
$2,-,+1 = O, then there is no triple S~, Sty, St, (with il < i2 < i3) satisfying (2.20). 

For fixed k and n, let tPk(n) denote the smallest integer t for which the conclusion of 
the lemma holds. Then, by (2.19) and the above example, we have 

tP3(21 + 1) = 22~ + 2. 

Moreover, if n ~ [~, k is odd and S~, $ 2 , . . . ,  $2.-~ are the subsets containing sl, then 
there is no k-tuple of them satisfying (2.20), which shows that 

2 n-1 + 1 ~< tP21+1(n) (~<2 n-I + 21). 

If k is even, then the situation is different. We will study this case in a subsequent 
paper. 

PROOF. Assume to the contrary that (2.19) holds; however, there are no subsets 
St,, S~2 . . . . .  Sik satisfying (2.20). 
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By Sk-2 # Sk-1, at least one of the following statements holds: 

there is a j such that 1 <~j <~ n and fj(S1, $ 2 , . . . ,  Sk-3, S , -2)  is odd; 

there is a j such that 1 ~<] ~< n and f/(S1, $2 . . . .  , Sk-3, Sk-1) is odd. (2.21) 

Without loss of generality, we may assume that (2.21) holds. Then, for each of 
u = k - 1, k . . . . .  t, there is a uniquely determined subset T, of S such that 

fi(S1, $ 2 , . . . ,  Sk-2, S,,, T,) is even for j = 1, 2 . . . .  , n. (2.22) 

Then, clearly, 

and, by (2.21) and (2.22), 

T~#T~  f o r k - l < ~ u < v < ~ t  (2.23) 

S, # T,. for k - 1 ~< u ~< t. (2.24) 

Let U denote the set of the integers u such that 

k - 1 ~< u ~< t (2.25) 

and 

7", # $1, . . . , 7", # Sk-2. . (2.26) 

There are t - k + 2 values of u satisfying (2.25) and, in view of (2.23), with at most 
k - 2  exceptions all these u's also satisfy (2.26), so that we have 

I UI ~ (t - k + 2) - (k - 2) = t - 2k + 4. (2.27) 

By (2.24) and (2.26), for all u ~ U the subsets $1, $2 . . . .  , Sk-2, Su, 7", are pairwise 
distinct. Thus, by our indirect assumption, (2.22) implies that T, is different from each 
of S~, $ 2 , . . . ,  St. Then, in view of (2.23), S~, $2 . . . . .  St and the T'~s with u E U are 
pairwise distinct subsets of S. On the other hand, by (2.19) and (2.27), their total 
number is 

t + lUl ~ 2 t  - 2k + 41>2(2 "-~ + k - 1) - 2 k  + 4  =2"  + 2 

which is greater than the total number of the distinct subsets of S, and this 
contradiction completes the proof of Lemma 6. 

3. AmTnMETIC LEMMAS 

LEMMA 7. L e t ~ b e a s e t o f t p r i m e n u m b e r s p ~ < p 2 < . . . < p , , a n d l e t M b e a s e t o f  
positive integers all the elements a o f  which can be represented in the fo rm a = PiPj, with 
i # j .  Define the graph G[s~] on the t vertices t>1 . . . .  , Pt so that PIPj ~ E ( G )  iffp~pl ~ ~ .  
Then ~ ¢ Fk, i.e. (1.1) can be solved if f  the graph G[s~] contains a subgraph H"  o f  k 
edges such that the degree o f  every vertex o f  it is a positive even integer. 

PROOF. This follows easily from the fundamental theorem of arithmetics. Assume 
that al . . . .  , ak E M, al <"  • • <ak ,  and, for i = 1, 2 , . . . ,  k, let ai =Pj, Pt, (where pj,, 
P~, ~ ~, j r #  ll). Then consider the subgraph H k the k edges of which are (P/,, Ptl), 
(PJ,, Ph) . . . .  • (PJk, Ptk) (and the vertices of which are the end vertices of these edges). 
ala2" • • ak is a square iff the degree of every vertex of H t' is a positive even integer, 
and this completes the proof. 
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LEMMA 8. Let G = G(V; E) be a graph, with V = {P1, P2 . . . . .  It}. Assume that two 
mappings f: V ---) ~ and g: E---> P~ are given, with the following properties: 
(i) i f  1 <- i < j  <~ t, then f(Pi) ~f(Pj ) ;  
(ii) ire E E and the end vertices ore  are P,. and Pj, then g(e) =f(Pi)f(Pj) ;  
(iii) ire ~ E, e' ~ E and e ~ e ' ,  then g ( e ) ~ g ( e ' ) .  
Denote the range o r e  by s~: ~ = {g(e): e ~ E}. Then, i f  G contains a Ck, ~ ~t Fk. 

PROOF. If G contains the cycle of length k the edges of which are e~, e2,. • • ,  ek and 
the vertices of which are P~, P~, , . . . ,  Pt,, then 

g(el)g(e2) " " g(ek) = (f(Pi,)f(P,',) " " " f(p~,))2. 

LEMMA 9. Using the same notations as in Lemma 8, assume that (i) and (ii) in 
Lemma 8 hold, but replace (iii) by the following: 
(iii') ( e ~ E, e' ~ E, e ~ e' and e and e' are adjacent edges, then g(e) ~ g(e'). Then, i f  
G contains a triangle, s~t ~ F3. 

PROOF. If G contains a triangle the edges of which are el, e2 and e3, and the vertices 
of which are P,.,, P~2 and P~,, then g(el), g(e2) and g(e3) are distinct integers. Moreover,  
we have 

g(eOg(e2)g(e3) = (f(Pl)f(P~)f(P~,)) 2. 

LEMMA 10. Let ~)= {Pz ,  P2, . . . ,  P,} be a finite set o f  distinct primes, and let ~ be a 
set of  distinct integers all the elements o f  which are o f  the form PiPI, with p i ~  ~), pj ~ ~, 
i ~ j .  Let G[s~] denote the graph with V = {Pz . . . . .  P~} and E = {(P~, Pj):p~pj ~ .~g}. 
Then: 
(i) ~t ~ F3 iff G [ ~ ]  does not contain a triangle; 
(ii) .~/~ F4 iff G[s~] does not contain a C4; 
(iii) i l k  ~ ~, k >1 3, and G[,d] does not contain a Ct with 3 <- l ~ k, then s~ ~ Fk. 

PROOF. By Lemma 7, ~t ~ Fk iff G[s~] contains a subgraph H k of k edges such that 
the degree of every vertex of it is a positive even integer. For k = 3 and 4, the only 
graphs H k with these properties a r e  g 3 ,  resp. C4 which proves (i) and (ii). Moreover,  if 
• ~ ~ Fk, then since the degree d(P,.) of every vertex P~ of H k is a positive even integer, 
thus d(P~)>/2 for every vertex P~. H k contains a Cl with 3 ~< l ~< k, and this completes 
the proof of (iii). 

The number of distinct prime factors of n will be denoted by to(n), and l-2(n) will 
denote the number of prime factors of n counted with multiplicity. Moreover,  for 0 < x, 
we write ~b(x) = 1 + x  logx - x .  

LEMMA 11. I fO<y<~ l and e>O, then for x>xo(e )  we have 

x X 

(log x) ~(y)+; < I{m: m ~< x, l2(m) ~< y log log x}l < (log x) ~(y)-~" 

PROOF. This follows from a result of Hardy and Ramanujan [9]. 

LEMMA 12. I f  1 < y < 2 and e > O, then for x > xo(e) we have 

X 
I{m: m ~< x, I2(m)/> y log log x}l < 

(logx)~<y)-," 
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PROOF. See Corollary 2 in [6]. 

LEMMA 13. Let  ~ denote the set o f  the integers b such that b ~ n and b can be 
represented in the form 

b = uv (3.1) 

with integers u and v such that 

n½(log n) -s < u, v < n½(log n) s. (3.2) 

Then for  e > O, n > no(e), we have 

I~l < n(log n) (er2) Jog2-1+,. (3.3) 

PROOF. Let ~1 denote the set of the integers b such that b ~<n and b can be 
represented in the form (3.1) with u and v such that 

min(12(u), I2(v)) > e log log n (3.4) 
4 

and let B2 denote the set of the integers b such that b ~< n and b can be represented in 
the form (3.1) with u and v such that (3.2) holds and 

e 
.O(v) ~ ~ log log n. (3.5) 

Then, clearly, ~ c ~1 O ~2; whence 

[~l <~ I~al + I ~ l .  (3.6) 

If b • ~ ,  then, by (3.1) and (3.4), we have 

I2(b) = 12(uv) = .f2(u) + 12(v) > 2 log log n. (3.7) 

By Lemma 12, it follows from b <~ n and (3.7) that 

n 
I~11 < (log n) ~('r2)-~ = n(log n) re/2) log 2-1+e. (3.8) 

Write 

and for u • U let 

o//., ---- IV . 

and 

Then, clearly, we have 

U = {u: u • N, n½(log n) -5 < u < n½(log n)5}, 

( e 1 = v: v • •, v <~n/u, £2(v) ~<~loglogn 

v • l ~ , v < ~ n / u , ~ ( v ) ~ <  + l o g l o g n  loglog . 

I 1. 
UE/.] 

A simple computation shows that, for u • U, we have 

log log n - log log(n/u)  = log 2 + o(1) 

(3.9) 
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and thus, for  n > no (and all u ~ U), we have  

~ ,  _c */g,,. (3.10) 

Moreove r ,  by L e m m a  11, for  all u • U and n > n o ( e ) ,  we have  

l~/,~, l < n (log nl - ~(~/4)+~r2 u /  " (3.11) 

It  follows f rom (3.9), (3.10) and (3.11) that,  for  n > no(e), we have  

n [ n\ -~(e/4)+ea 

Y. In)<   Ogu) 
u e U  u e U  u 

1 " "el4" + e l2  <<n(logn) -'~(~/4)+~ ~ -<<n(logn) -~ ) loglogn 
u ~ U  u 

<< n (log n ) -  ~(~/4)+~n (log n)~r2 tog 2-1 + ~. (3.12) 

(3.3) follows f rom (3.6), (3.8) and (3.12), and this comple tes  the  p r o o f  of  the  l emma.  

LEMMA 14. A s s u m e  that al <"  • • < ak <~ n is a sequence  o f  posit ive iniegers f o r  which 
the products  a~aj, with i <],  are all distinct. Then, f o r  n >-2 and fo r  s o m e  posit ive 
absolute constants c~ and c2, we have 

zr(n) + cln~(log n)  - i  < max  k < 7r(n) + c2n~(log n ) - ] .  

PROOF. This is a result  o f  Erdbs  [5]. No te  that  in [5], the p roduc t s  a~aj with i = j are  
not  excluded explicitly; however ,  the p r o o f  also gives the result  in this slightly sha rpe r  
form.  

LEMMA 15. Every  n • N can be written in the f o r m  

n = x y ,  x>~y  

where either x is a pr ime  greater than n] or x <~ n ~. 

PROOF. This l e m m a  is due to Erdbs  [4]. Fo r  the sake  of comple teness ,  we  sketch  the 
proof .  If  n = 1, then x = y = 1 can be chosen.  If  n > 1, then  let p deno te  the  grea tes t  
p r ime  factor  of  n, and wri te  n = pn~. I f  p ~> n a, then we m a y  choose  x = p  and  y = n~. I f  
p ~< n ~ and n~ ~< n ], then  x = n~ and y = p can be chosen.  Finally, if p < nl  and  n~ > n ], 
then  we have p = n/n~ < n m .  Le t  nl = P l P 2  • • "P,,  where  p~, P2, • • •, Pk are  p r imes  and 
n~ > P  ~>Pl ~ P 2  1>" " " ~>P,. Def ine  i by PIP2" " "Pi <<- n t <P~P2"  " "Pi+~. q'~nen 

( o )  ( n )  
. ~ =  

x - - m a x  p l P 2 . . . p i ,  p l p 2 . . . p ~  y rain P~P2" " P ~ ' P l , P 2 , ' "  "P 

can be  chosen.  

LEMMA 16. For every posit ive integer k >- 2, we have 

Fk +4(n ) <~ max(  Fk(n ) + 4, F4(n ) ). (3.13) 

PROOF. 

and 

Assume  tha t  

I~1 > F4(n) (3.14) 

I~¢1 > F,(n) + 4. (3.15) 
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Then, by (3.14), there are integers al, a2, a3, a4 and x such that 

a l a 2 a 3 a 4  = x 2, a l ,  a2 ,  a 3 ,  a4  ~ ~ ,  a l  < a 2  < a 3  < a4 .  

Write M* = ~ { a l ,  a2, a3, a4} so that, by (3.15), 

I~*1 = I~1 - 4 >  Fk(n). 
Thus, by the definition of Fk(n), there are integers as . . . .  , ak+4 and y such that 

a5  . . . a k + 4  = y 2 ,  

Then we have 

a l " "  "a,+4 = (xy) 2, 

so that 

a 5 ,  . . . , a k +  4 E ,r~* C ,.~, 

al , . . . ,a ,+4eM,  ai#aj 

, ~  ~ r k + 4  

for all M satisfying (3.14) and (3.15), which implies (3.13). 

LEMMA 17. For n---, +~, we have 

PROOF. Clearly, we have 

a 5 < • . .  < a k +  4. 

for 1 <~i<j<~k +4,  

i ~ n  i ~ n  d [ i d ~ n  i ~ n  d ~ n  
I/,L(d)lffil I/z(d)l=l d I i I/~(d)l=l 

=n d,n ~ d + O(n)=n a,n ~ (m~21dl~(m))1+ O(n) 
b~(d)l = 1 

=n ~ ~(') ~ l+o(n) 
mZ~n m 2 i~n lm 2 i 

~ n _1 m 2  

=nlogn N (1-~)+o(nlogn) 

= +o(1)  n l o g n =  ~+o(1) n l o g n .  
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4. PROOFS OF THE THEOREMS 

PROOF OF THEOREM 1. The set dd of the square-free integers not exceeding n has 
property P2, whence it follows that 

F2(n) i> l~[ = ~/~2(i). (4.1) 

Now assume that ~ c {i, 2 .... , n} and 

I~1 > Y ~ / z 2 ( i )  • 



578 P. Erd6s, et al. 

Then there are distinct integers bx ~ ~ and b2 E ~ the square-flee parts of which are 

the same: 
bl = r2t, b2 = s2t, I/z(t)l = 1. 

Then we have 
b l b2 = (rst) 2, 

so that ~ does not have property/)2. It follows that 

Fz(n) <~ ~ p2(i). (4.2) 

(1.3) follows from (4.1) and (4.2), and this completes the proof  of Theorem 1. 

PROOF OF THEOREM 2. First we will prove the lower bound in (1.4). 
Let M, denote the set of the integers a such that: 

(i) n( logn) - l  <a<~n; 
(ii) there is no positive integer b such that b > log n and b 2 [ a; 
(iii) a cannot be represented in the form 

a = u l i  

with integers u and v such that 

n~(log n) -5 < u, v < n~(log n) 5. 

First, we will give a lower bound for IMnl. For n I>3, the number  of the integers a 
satisfying (i) and (ii) is 

~> I{a: a ~ N, n( logn)  -1 < a  ~<n}l 

- ~ l{a: a E N, b 2 ] a, n( log  n)  -1 < a ~< n}l 
log n < b  ~ n  

n 
~ > n -  n(log n) - l -  

I o g n <  b 

1 
> n - n ( l ° g n ) - l - n  ~ (b 1)----~b = n - n ( l ° g n ) - l - n [ l ° g n ] - I  

I o g n < b  - -  

> n  - 3n(log n) -1. 

By Lemma 13, for n > no(e) all but n (log n) t'/2) log 2-1 +~:2 of these integers a also satisfy 
(iii). Thus, for large n, we have 

I~¢,1 > n - 3 n ( l o g  n) -1 -n(logn)(et2)l°g2-1+~t2>n - n ( l o g n )  terz)t°g2-1+e. (4.3) 

Next we will show that ~t e 1" 3. Assume to the contrary that there are al,  a2, a3 ~ .~, 
x ~ 1~ such that al < a2 < a3 and 

ala2a3 = x  2. (4.4) 

Write al ,  a2 and a3 as the product of a square and a square-free number: 

al = b2ql, az = b2q2, 

By (ii), here we have 

By (4.4) and (4.5) we have 

a3 = b2q3 (ql, q2 and q3 are square-free). (4.5) 

bl, b2, b 3 ~ l o g n .  (4.6) 

ala243 = (blb2b3)2qlq2q3 = x  2. (4.7) 
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It follows that q~ q2q3 is a square: 
qlq2q3 = y2. (4.8) 

Since ql, q2 and q3 are square-free, this implies that any prime factor of qlq2q3 divides 
exactly two of the numbers ql, q2 and qa. Thus, writing (ql, q2) = d3, (q~, q3) = d2 and 
(q2, q3) = d:, we have 

ql = d2d3, q 2 = d l d 3  and q3 = d:d2. (&9) 

It follows from (i), (4.5) and (4.6) that 

and 

d: = dld2d3 = (qlq2q3) ~ 

d2d3 ql 

_ (ala2a3(bl b2b3)-2) ½ ~> (n3(log n)-3(log n)-6) ~ = ni(log n)_ 1 
a l b 7  2 n • 1 

dl = (a la2a3 (b :b2b3) -2 )~  (n3" 1)t 
a:b7  2 n(log n)- l ( log n) -2 

= n~(log n) 3, 

and, in the same way, we have 

n~(log n) ~ ~< d2, d3 ~< n ~(log n) 3. 

Write u: = bid2 and vl  = bxd3. Then, by (4.5) and (4.9), we have 

ul vl  = (bld2)(bld3)  = b2ql = al. 

Moreover, by (4.6) and (4.10), we have 

u: = bid2 >~ d2 >- n½(log n) -~ 
and 

and, in the same way, 

ul = bid2 ~ (log n)n~(log n) 3 = n½(log n) 4, 

(4.10) 

(4.11) 

(4.12) 

(4.13) 

n½(log n) -I ~< vl ~ n½(log n) 4. (4.14) 

By (iii) in the definition of ~f~, it follows from (4.11), (4.12), (4.13) and (4.14) that 
al e ~t, cannot hold, and this contradiction proves that indeed we have 

M, ~ F3. (4.15) 

It follows from (4.3) and (4.15) that 

F3(n) > n - (log n) (':2) Iog2-1+e (for n > no(e)). 

Now we will prove the upper bound in (1.4). Assume that ~f = {1, 2 , . . . ,  n}, af ~ F3. 
Let ~ = { d l ,  d 2 , . . . , d t }  denote the set of the integers d such that d < - n  ~ and 
l~(d) ~< ½ log log n. Then, by Lemma 11, for large n we have 

t = I~1 > nt(log n) -*(~)-(~n). (4.16) 

Define the graph G on the t vertices P1, P2, • • •, P, so that P~ and Pj (i # j )  are joined iff 
didj E ~.  Let ,ff denote the set of the integers m such that m ~ n  and m has a 
representation in the form 

m = d i d j  with l < ~ i < j < - t  dtdj~ts~. (4.17) 
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Then m E M implies that m e M, so that 

Is~l ~<n -1-/~1 • (4.18) 

For fixed m, let h(m)  denote the number of pairs d ,  dj satisfying (4.17), and write 

H = max h (m). 
m E M  

If m =pka'pk''' "p~'e  ~t, then by (4.17) and the definition of ~ we have 

£2(m) = 12(d,) + £2(dj) <~ log log n 

so tha, clearly, 

and thus 

- l S I  " h (m) <~ "c(m) - (ki + 1) ~< 1-I 2k' = 2a(") -< (log n) '°g 2 
i=1 /=1 

H ~< (log n) '°~2. (4.19) 

By Lemma 9, it follows from ~ /~  F3 that the graph G does not contain a triangle. 
Thus, by (2.3) in Lemma 1, for n > no(e) there are at least (1 - e)(t2/4) pairs i, j (with 
1 <~ i < j  ~< t) such that Pt and P/are not joined in G. For all these pairs i, j, the number 
m defined by (4.17) belongs to M. Each of these numbers m can be represented at most 
H times in form (4.17), so that by (4.16) and (4.19) for large n we have 

Idtl ~> (1 - e) ~ H -1 > n(log n) -24'(½)-I°g 2-E = n(log n) -x-~ 

and, by (4.18), this proves the upper bound in (1.4). 

PROOF OF THEOREM 3. First we will prove the lower bound in (1.5). Let ~ =  
{ P l ,  P 2  . . . .  , p,} denote the set of the primes not exceeding n ½ so that, by the prime 
number theorem, 

By (2.1) in Lemma 1, for e > 0, 
such that 

n½ 
- - °  t = x(n ½) ~ 2 log n (4.20) 

n > no(e) there is a graph G, on t vertices Px,. .  , P~ 

1 e 
e ( G , ) > ( ~ - ~ ) t  ~ (4.21) 

and it does not contain a (?4. Let 
where p,., pj ~ ~, l ~ i < j ~ t ,  and 
have 

E 1" 4. 

Let (7 denote the set of primes with n t < p  ~< n, so that 

lift = x(n) - 7r(n i) = 7r(n) - t, 
and write 

T h e n ,  

!~ denote the set of all the integers of the form PiPj, 
P~ and Pj are joined in G,  Then, by Lemma 9(ii), we 

(4.22) 

(4.23) 

(4.24) 

(1 e) 
I~1 = 101 + I~1 = ( ~ ( n )  - t) + e (G , )  > ~r(n) + ~ - ~ tt > ~ ( n )  + (2~ - e)nt(logn) -t. 

(4.25) 
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Now assume that al, a2, aa, a4 E ~ and a~ # a j  for i ~ j .  If one of al, a2, a3 and a4, say, 
al, belongs to Q, then a~ is a prime greater, than ni, and none of a2, a3 and a4 is 
divisible by this prime, so that the product a~a2a3a4 cannot be a square, i f  none of a~, 
a2, a 3 and a4 belongs to Q, then each of them belongs to ~ ;  thus, by (4.22), again their 
product cannot be a square. Thus we have 

~t ~ F4. (4.26) 

The lower bound in (1.5) follows from (4.25) and (4.26). 
To prove the upper bound in (1.5), assume that ~t,-- {1, 2 , . . . ,  n} and 

I~1 > ~r(n) + c2nt(log n) -~, 

where c2 is the constant defined in Lemma 14. Then, by Lemma 14, there are four 
distinct integers a~, a2, a3, a4 ~ ..~ such that 

ala  2 = a3a4, 

so that their product 

ala2aaa4 = (ala2) 2 

and thus ~ ~ F4. This implies the upper bound in (1.5). 

PROOF OF THEOREM 4. First we will prove the lower bounds in (1.6) in Theorem 4 and 
in (1.7) in Theorem 6 simultaneously. Let 

= {p: n i < p ~< n, p prime) U {2p: ni < p ~< n/2, p prime}. 

Then, by the prime number theorem, for n > no(e) we have 

I~l = 7r(n) + tr(n/2) - O(n~(log n)-l) .  (4.27) 

Let ~ = {Pl, P2 . . . .  , Pt} denote the set of the primes p with 2 < p  ~< n ½, so that by the 
prime number theorem t ~ 2 n ~ ( l o g n )  -1. Let G, denote a graph on the t vertices 
P1, P2, . . . ,  P, with the maximal number of edges, so that it does not contain a cycle of 
length I with 3 ~< l ~< 4k + 2. Then let ~ denote the set the elements of which are of the 
form PiPj ( 1  ~ i < j  ~< t), and PiPj ~ ~g (where 1 ~< i < j  ~< t) iff the vertices P/and Pj are 
joined in G,. By Lemmas 2 and 3 we have 

lC4k+2 tl+(4k+l)-~ > c~(n½(logn)-l) 1+(4k+I)- for k > 1. 

Thus, writing ~ = ~ t3 ~, it follows from (4.27) and (4.28) that 

I~l = I~l + 19 > ~r(n) + ~r(n/2) 

,[(2 ~ -  e)n~(log n) -~ for k = 1, n > no(e), (4.29) 
+ [c~(n½(log n) - l )  1+(4k+1)-' for k > 1. 

Now we will prove that 

~t ~ r4k+2. (4.30.) 

Assume that, contrary to (4.30), we have 

a l  • • • a 4 k + 2  = X 2, a l  . . . . .  a 4 k + 2  E ~ ,  a I < -  • • < a 4 k + 2 .  (4.31) 

Assume that ql is a prime, with qx > n ~ and ql ] x 2. This implies that q21 x2. By the 
construction of the set ~ ,  it follows that one of the numbers a~ . . . . .  a4k+2 is equal to 
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ql,  and another one is equal to 2ql. In this way, we obtain that the left-hand side of 
(4.31) is of the form 

(/i~ 1 )4k+2-2J / l \ 2 4 k + 2 - 2 . 1  

a l ' ' ' a 4 k + 2  = q i ' 2 q ,  I-I e j = 2 t { I - I q i )  ~ ej, (4.32) 
"= j=l \i=1 j=* 

where the qi's are distinct primes greater than n½, the e/s  are distinct elements of g' so 
that if p is a prime with p I n4k+2-2~ - **j=~ ej, then 2 < p  ~< n i, and it may occur that 1 = 0 or 
l = 2k + 1 (so that there are no qi's or ej's). Thus it follows from (4.31) and (4.32) that 
both 2 t and 1-I~k?2-Uej are squares: 

4k+2--2/ 
2 t = y2, 1-[ ej -~" Z 2. (4.33, 4.34) 

j=l 

By Lemma 10(iii), it follows from the construction of the set ~' that (4.34) cannot hold 
unless the product on the left-hand side is empty, i.e. l = 2k + 1. But then, by (4.33), we 
have 

22k+1 =y2  

and this is impossible. This contradiction completes the proof  of (4.30). " 
The lower bound in both (1.6) and (1.7) follows from (4.29) and (4.30). 
To prove the upper bound in (1.6), we have to show that, assuming ~ c {1, 2 . . . .  , n} 

and 

• ~ ~ F6, 
we have 

1~1 < ~r(n) + zr(n/2) + n g log n. 

Let N denote the set of the numbers a e ~ / tha t  are of the form 

a =py ,  p > n  t 

and let 

so that we have 

I~tl ~< I~1 + I~]. 

n2-(k0 +1) < n ~ <. n2-ko, 

=[llogn 1 
ko L3 log 2.1" 

Define the integer ko by 

so that 

(4.35) 

(4.36) 

(4.37) 

(4.38) 

For  k = O, 1, 2 . . . .  , ko, let Nk denote the set of the numbers a e ~ for which in (4.37) 
we have 

so that 

n / 2 k + l < p < ~ n / 2  k, (4.39) 

k=0 

It follows from a ~< n, (4.37) and (4.39) that 

y < 2 k+l. 

Thus, for k = 0 we have y = 1, so that a = p ,  whence 

I~01 ~< I{P: n /2  < p  <~ n, p prime}l = n(n) - It(n/2). 

(4.40) 

(4.41) 

(4.42) 
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Now assume that 1 ~< k ~< ko. Denote  the primes p satisfying (4.39) by Pl, P2,. • •, P,,, 
so that 

Uk = n'(n/2 k) -- zr(n/2 k+l) 

and, by the prime number theorem, 

n n 
2k+luk ~ 2k+llr(n/2 k) < 2 k+l • 2 2k log n - - - - - 7  = 8 ~og n" (4.43) 

Define the bipartite graph G[k] = G(U, V) on the vertices U={P], P2 . . . . .  P J ,  
V = {Q1, Q2 . . . .  , Q2*+,} so that the vertices P,. and Qj are joined iff PiPj E @k. By 
Lemma 8, it follows from (4.35) and ~ c ~t that G[k] cannot contain a C6. Thus we 
have 

I~kl = e( G[k ]) < S(Uk, 2 k+l, 2k+luk) ~fSk (4.44) 

(where s(u, v, n) is the function defined in Section 2). 
Let 

= {k: 1 ~< k ~< ko, 23k ~< Uk}, 

= {k: 1 ~< k ~< ko, 22(k+~) < Uk < 23k}, 

5~3 = {k: 1 <~ k <- ko, Uk <<- 22(k+])}. 

Then, by (4.40), (4.42) and (4.44), and by using Lemmas 4 and 5, we have 
ko ko 

I~1 -- I~bl + ~ I~kl < (~r(n) - 7r(n/2)) + ~ Sk 
k=l k=l 

= ( T r ( n ) - z r ( n / 2 ) ) +  ~ Sk+ ~ Sk+ ~ Sk 
k E ~  k~.% k e ~  

ko 
< (Tr(n) - 7r(n/2)) + 2 ~ Uk + ~, 23(k+1) + 18 ~ 2k+~u~ 

k=l kE.~l k ~ .9~'2 

+ ~ C(2k+]Uk) ~. (4.45) 
k e ~  

Here we have 

ko 

(zr(n) - 7r(n/2)) + 2 ~ uk 
k=l 

ko 
-- (zr(n) - zr(n/2)) + 2 ~ (Tr(n/2 k) - 7r(n/2k+l)) < 7r(n) + ~r(n/2). (4.46) 

k=l 

Moreover, in view of (4.43), we obtain by a simple computation that, writing 
maxk~C~ k = K~ and m a x k ~  k = K 2, we have 

E 23(k+1) << 23K1 << nl(l°g n) -~, (4.47) 
k ~.9C~ 

E 2k÷~u~ << E 2kO(2kUk) i 
k E ~  kE~2 

<< n](log n)-~2 xa3 << n](log n)-]n~(log n) -~ 

= n](log n)-~ (4.48) 

and 

(2k+luk) ~ << hi(log n) -] I~l << n](log n) -~ log log n. (4.49) 
k e ~  
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It follows from (4.45), (4.46), (4.47), (4.48) and (4.49) that 

191 < #(n) + tr(n/2) + n~(log n) -~ log log n. (4.50) 

It remains to estimate 19- If a E ~, then a e M, a ~ 9,  so that, by Lemma 15, a can 
be written in the form 

a = x y ,  x<~n t, y<~x. (4.51) 

To each a E ~¢, assign a unique pair x = x ( a )  and y = y ( a )  satisfying (4.51) (e.g. 
consider that pair x, y for which (4.51) holds and x is maximal). Define the integer k~ 
by 

n~2 -(to'+1) < n i <~ n~ 2 -k~ (4.52) 

so that k~ = [(logn)/(61og2)]. For k = 0 ,  1 . . . . .  k ~ - 1 ,  let ~k denote the set of the 
numbers a E ~ such that 

n~2 -(k+l) < x(a ) <~ n~2 -k, (4.53) 

and let ~k, denote the set of the numbers a E ~ such that 

x(a)  ~ n~2 -k'. 
Clearly, we have 

kl 
t~= U ~. 

k = ]  

It follows from (4.51) and (4.53) that for a E ¢7k, we have 

n 

and, in view of (4.51) and (4.53), for a E ~k, we have 

y(a) ~ x(a) ~< n~2 -k' = (n~2-(k'+l)) 2- 2k~+2n ~ < 2k'+2n -~. 

NOW assume that 1 <~ k ~< kl. Write Uk = [ hi2 -k] and vk = [2k+2n ~] SO that 

Uk <<- V2k, Vk ~ 5Uk and Ukl) k ~ 4n. (4.54) 

Define the bipartite graph G[k] on the vertices U={P1, P2 . . . . .  P J ;  V =  
{Q1, Q2 . . . . .  Qo~} so that the vertices P~ and Qj are joined iff there is an a e ~k such 
that x(a)  = i and y(a) =j. By Lemma 8, it follows from (4.35) and ~k = ~ / tha t  G[k] 
cannot contain a C6. Thus, by Lemma 4, we have 

I~kl = e(G[k]) < r(4n) < cn ~ 

for some positive constant c (where r(n) is the function defined in Section 2). It follows 
that 

kl 

19 = ~ I~kl << kin ~ << n ] log n. (4.55) 
k = l  

(4.36) follows from (4.38), (4.50) and (4.55), and this completes the proof of 
Theorem 4. 

PROOF OF THEOREM 5. The lower bound can be proved in the same way as the lower 
bound in Theorem 3, except that (2.1) in Lemma 1 has to be replaced by Lemma 3 and 
Lemma 10(iii). The upper bound follows from I.emma 16 and the upper bound in 
Theorem 3. 
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PROOF OF THEOREM 6. The  lower bound was proved in the proof  of Theorem 4. T h e  
upper bound follows from Lemma 16 and the upper  bound in Theorem 4. 

PROOF or  THEOREM 7. Let  M denote  the set of the integers a such that a ~< n and a 
has a prime factor greater than ni. Then, by 

we have 

so that 

1__ = log logx + c + o(1), 
t,<xp 

IMI = ~<~p,,~ [p] = n l°g2 + °(n), 

I~tl > (log 2 - e)n for  n > no(e). (4.56) 

Moreover,  if aa, . . . ,  a2k+a E ~, then each of the ai's has exactly one prime factor 
greater than n [  It follows that there is a prime p > n  ½ such that defining r = r(p) by 
pr I al • • • a2k+l, pr+l Af al • • • a2k+l, r is odd. Thus aa • • • a2k+l cannot be a square, so 
that 

E F~,+1. (4.57) 

The lower bound in (1.8) follows from (4.56) and (4.57). 
To prove the upper bound, assume that ~ c { 1 , 2  . . . . .  n}, ~eF2k+~.  Write 

t = T r ( n t ) =  (2+o(1))ni(logn) -~. Let ~ denote the set of the integers b such that 
b e M and b can be represented in the form b = p~pj with 1 <~ i < j  ~< t. Def ine  the graph 
G[B] on the t vertices /'1, P2 . . . . .  P, so that Pt and Pj (i # j )  are joined iff PiPj ~ ~3. 
Since ~ c  M ~ Fzk+l, the graph G[~]  cannot contain a C2k+~. Thus, by Lemma l(c),  

Thus the number of pairs of vertices not joined in G[N], i.e. the number of integers 
pipj (~n) missing from M, in at least 

( 2 ) - ( ~ + ~ ) t 2 > ( 1 - e ) n ( l o g n )  -2, 

which completes the proof  of  the theorem. 

REMARK. The constant factor log 2 in (1.8) could be improved slightly. In fact, if u 
is a fixed real number with 0 < u < 1, then let Mu denote  the set of integers a such that 
a ~ n  and the number of the primes p with n" < p  ~<n, p [a is odd. Let c(u) denote the 
greatest positive number such that for all e > 0, n > n0(e) we have 

I~t.I > ( c ( u )  - e )n .  

Then, clearly, Mu e F2k+l, so that (c(u) - e)n < Fa,+l(n) for all 0 < u < 1. 
It could be shown that there is a number 0 < Uo < 1/2 such that c(u) is increasing on  

the left of Uo and it is decreasing in [uo, 1/2]. Then the best lower bound obtained in 
this way is 

( C(Uo) - e )n < Fk+2(n). 

However,  it would need a lengthy computation to compute or just to estimate these 
numbers u0 and C(Uo). 
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PROOF OF THEOREM 8. (1.9) follows from {p:p prime, p<-n}e  F4k and the upper 
bound in Theorem 5. 

(1.10) follows from ({p: p prime, 2 < p ~< n } O {2p: p prime, 4 < 2p ~< n }) • Fak +2 and 
the upper bound in Theorem 6. 

To give a lower bound for L2k+~(n), consider the set ~l={a:a<~n, l-2(a) is odd}. 
Then, clearly, M • F2k+ 1. Moreover, it is well known that the prime number  theorem 
implies 

,x(n) = o (x) ,  
t l  ~ X 

where A(n) = ( - 1 )  aC") is the Liouville function. It follows by partial summation that for 
e > O, n > no(e) we have 

E 1 - > (½ - e )  l o g  n, 
aes~a 

whence 

L2k+l(n)>(½-e) logn (forn>no(e)). 

It remains to show that for e>O,  n >nl(e, k) we have 

L2k÷l(n)<(½+e)logn ( forn>nl(e ,k ) ) .  

In other words, we have to show that if e > O, n > n~(e, k), ~ c {1, 2 . . . .  , n} and 

~] 1 ~> (½ + e) log n, (4.58) 
ae.~a 

then 

M ~ F2k+v (4.59) 

To show this, write every a • M as the product of a square and a square-free number: 

a = (u(a))2v(a), where ]p.(v(a))] = 1. 

Then w e  have 

~ 1  1 1 1 

u(a)=u 

.-77 = - -  max (4.60) max.2~. .~2  v(a) = u 6 .2~. v(a)" 
u(a)=u u(a)=u 

It follows from (4.58) and (4.60) that 

1 6 
. ~  >- - -  (½ + e )  l o g  n. ( 4 . 6 1 )  max v()-a- u2~n 

u(a)=u 

Assume that here the maximum is attained for, say, u -- Uo, and let ~ denote the set of 
the integers v such that there is an a • ..~ with u(a) = uo and v(a) = v. Then 

v <~ n and v is square-flee for all v • 'F, (4.62) 

and, by (4.61), we have 

~, 1>~ ~ (½ + e) log  n. (4.63) 
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For a positive integer i, let d~(i) denote the number of integers v with v [ i, v ~ ~ By 
(4.62), dT.(i) does not exceed the number of the square-free divisors of i, so that 

d~i)  <~ 2 "(i) for all i. (4.64) 

By (4.63), for sufficiently large n we have 

I ~ n  i ~ n  v I i 
v e T .  

v e T "  i<n  v e T "  
v i i  

>>-n ~ 1 -1~q~- -~(½+e)n logn-n  
n e T " l )  

6 1 e 
> ~  (4.65) 

Now we will show that there is an integer j such that j ~ n, 

and 

2 *'(j) > (4.66) ~60 1og n 

10/ " 

In fact, assume that, contra~ T to this statement, for all i <~ n either 

t o  " 2 (J) ~ i-d log n 

o r  

(4.67) 

(4.68) 

d~(i) ~< (~ + ~0)2~'(° (4.69) 

holds. Let N denote the set of the integers i satisfying i ~< n and (4.68). Then, by (4.64) 
and Lemma 17, for sufficiently large n we have 

dT.~< ~ 2 °'(') + ~ '  dr(i) 
i ~ n i ~ .hf" i ~ n 

l vt,ff 

+ -  ~ 2 to(i) 
~<~'~nlogn+ ~ 10 i.~. 

<T~n logn + + n l o g n  

6 1 e 
< ~  ( ~ + ~ ) n  logn, 

which contradicts (4.65), and this proves the existence of a ] satisfying (4.66) and (4.67). 
Write S = {p: p prime, p [ j} so that 

ISI = co(j), (4.70) 
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and let vl . . . . .  v t  (with vl <" • • < vt) denote the elements of ~ that divide j so that, by 
(4.67) and (4.70), 

(1 +---e '~2'~°)= ( 1 - - - e  ~2's" (4.71) 
t = d ~ ( j ) >  ~ 10/ 2 + 1 0 /  " 

For i = 1 , 2 , . . . ,  t, write S ~ = { p : p  prime, p Ivy}. By (4.62), the sets St, $2 , . . . ,  St are 
distinct subsets of S, and their number, t, satisfies (4.71) which, by (4.66) and (4.70), for 
sufficiently large n implies that 

t > 2 ~-1 + 2k, 

so that (2.19) in Lemma 6 holds with 2k + 1 in place of k, and thus the lemma can be 
applied (with 2k + 1 in place of k). We obtain that there are subsets St,, S~2,..., Sj~+, 
such that each p s S is contained in an even number of these subsets. Then all the 
prime factors of the product v~,v~, .  • • v~=+, belong to S, and this product is divisible by 
an even power of each of these primes. Thus this product is a square: v~,v~2. • • v ~ + ,  = 
x 2. Then u ~ v i , ,  u2vi~,  2 . . . ,  UoV~a+ , are distinct elements of ~t, and their product is a 
square: 

(U~V, , ) (U2V,2)  " ' "  (Ut~V,~+,) = (u~k+lx) 2, 

so that (4.59) holds, which completes the proof of the theorem. 

ACKNOWLEDGEMENTS 

T h e  resea rch  of  A .  SArk0zy a n d  V,  T .  S6s was pa r t i a l l y  s u p p o r t e d  by  H u n g a r i a n  
N a t i o n a l  F o u n d a t i o n  for  Scient i f ic  R e s e a r c h ,  u n d e r  G r a n t  No .  1901. 

REFERENCES 

1. C. T. Benson, Minimal regular graphs of girths eight an.d twelve, Can. J. Math. 18 (1966), 1091-1094. 
2. J. A. Bandy and M. Simonovits, Cycles of even length in graphs, J. Combin. Theory, Ser. B, 16 (1974), 

97-105. 
3. W. G. Brown, On graphs that do not contain a Thomsen graph, Can. Math. Bull. 9 (1966), 281-285. 
4. P. Erd6s, On sequences of integers no one of which divides the product of two others and on some 

related problems. Tomsk. Gos. Univ. Ucen Zap., 2 (1938), 74-82. 
5. P. ErdSs, On some applications of graph theory to number theoretic problems, Publ. Ramanujan Inst., 1 

(1969), 131-136. 
6. P. ErdSs and A. S~rk0zy, On the number of prime factors of integers, Acta Sci. Math. Szeged, 42 (1980), 

237-246. 
7. P. Erd6s and M. Simonovits, A limit theorem in graph theory, Stud. Sci. Math. Hung., 1 (1966), 51-57. 
8. P. ErdSs, A R(~nyi and V. T. S6s, On a problem of graph theory, Stud. ScL Math. Hung., 1 (1966), 

215-235. 
9. G. H. Hardy and S. Ramanujan, The normal number of prime factors of a number n, Q. J. Math. 48 

(1920), 76-92. 
10. J. C. Lagarias, A. M. Odlyzko and J. B. Shearer, On the density of sequences of integers the sum of no 

two of which is a square, I and II, J. Combin. Theory, 33 (1982), 167-185; 34 (1983), 123-139. 
11. A. S~irk0zy, Hybrid problems in number theory, in: Number Theory, New York 1985-88, Lecture Notes 

in Mathematics 1383, Springer-Verlag, Berlin, 1989, pp. 146-169. 
12. M. Simonovits, Extremal graph theory, in: Selected Topics in Graph Theory 2, L. W. Beineke and R. J. 

Wilson (eds), Academic Press, London, 1983, pp. 161-200. 
13. R. R. Singleton, On minimal graphs of maximum even girth, Z Combin. Theory, 1 (1966), 306-332. 

Received 9 September 1993 and accepted 25 July 1994 

P. ERD6S, A. SARKOZY AND V. T. $6s 
Mathematical Institute of the Hungarian Academy of Sciences, 

H-1053 Budapest, Railtanoda u. 13-15, Hungary 


