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On Product Representations of Powers, I

P. ErDGs, A. SARkOzZY AND V. T. Sos

The solvability of the equation a,a, - - a, =x% a,, aa, ..., a; € o is studied for fixed k and
‘dense’ sets & of positive integers. In particular, it is shown that if k is even and k =4, and o is
of positive upper density, then this equation can be solved.
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1. INTRODUCTION

Throughout this paper, we use the following notations. N denotes the set of the
positive integers. If f(n)= O(g(n)), then we write f(n)<«<g(n). m(n) denotes the
number of primes not exceeding » so that, by the prime number theorem, we have
n(n)~n/logn. u(n) denotes the Mobius function. Some further notations will be
introduced in Sections 2 and 3. .

A problem in number theory is said to be a hybrid problem if it involves both
general sequences (characterized usually by density assumptions) and special sequences
(squares, primes, etc.) of integers. In the last 15 years many problems of this type have
been studied, and a survey of these results has been given in [11]. In particular,
Lagarias, Odlyzko and Shearer [10] have studied the following problem: What density
assumption is needed to ensure the solvability of the equation

a+a =x? a,a esA?

As the sequence & ={1,4,7,...,3k +1, ...} shows, it is not enough to assume that &
is of positive (lower) density. Examples of similar type show that it does not help to
take more summands on the left-hand side; i.e. for all k € N there is a set & of positive
density such that

a]+az+"'+ak=x2, al,az,...,ﬂkEﬂ

cannot be solved. In this paper we will study the multiplicative analogue of this
problem by studying the solvability of the equation

aa, --a,=x% ay,,a,...,a,€ A, 4, <a,<---<a, xeN (11)
It will turn out that the solvability of this equation strongly depends on the parity of k.
If k is even and k = 4 then, unlike the additive case, in order to ensure the solvability of
(1.1) it suffices to assume that & is of positive (upper) density (indeed, a much weaker
assumption is enough).
If k =2 and « is a set of positive integers such that equation (1.1) cannot be solved,
then & is said to have property P,, and I'; denotes the family of those subsets of N
which have property P,. We write

Fi(n)= g X 4] (1.2)
ey
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(In other words, t = F(n) + 1 is the smallest positive integer such that, for every set A
with & ={1,...,n}, | =¢, equation (1.1) can be solved.) Moreover, we write
Li(n)= max L
o<={1,2,..., ntgeqd
el
In this paper, our goal is to study the functions F,(n) and L,(n), while in Part II we will
study the analogous problems with higher powers instead of squares in (1.1).

It will turn out that for fixed k and n — +o we have Fy.,(n)> n for all k and, on
the other hand, Fyu(n) = o(n) for k =2. Moreover, the asymptotics for Fy(n) depends
on the parity of k.

We will prove the following theorems:

THeoreM 1. For all n e N, F(n) is equal to the number of the square-free integers
not exceeding n:

B(m)= 3 w0~ | (L3)

isn

THEOREM 2.  For € >0, n > ny(g), we have
n —n(logn)€?ee2-1*e < B(n)y<n —n(logn)™' "= (1.4)
Tueorem 3. There is a positive absolute constant c and, for all € >0, a number ny()
such that for n > ng(e) we have
(2} - e)n¥log n) i < Fy(n) — n(n) < cni(logn) L (1.5)
THEOREM 4. There is an absolute constant ¢ and, for all € >0, a number ny(g) such
that for n > ny(e) we have
(2 - e)nd(log n)t < Fy(n) — (n(n) + n(n/2)) < cn®logn. (1.6)
THEOREM 5. There is a positive absolute constant ¢ and, for all k e N, there exist
absolute constants ¢, >0 and ny(k) such that for n > ny(k) we have
cx(ni(log n) ) DT < B (n) — m(n) < cni(logn) L
THEOREM 6. There is a positive absolute constant ¢ and, for all k e N, there exist
absolute constants ¢, >0 and ny(k) such that for n > ny(k) we have
ce(nilogn) )TN < B o(n) = (me(n) + 71(n/2)) < enblog n. (1.7)

THEOREM 7. For all k e N, k <1 and £ >0, there is a number ny(k, €) such that for
n > ny(k, €) we have

(log2 — €)n < Fypi(n) <n— (1 - e)n(logn)~> (1.8)

The lower bound in (1.8) could be improved slightly (see the remark following the
proof of Theorem 7): however, this would take a lengthy computation, and since we
have not been able to decide whether F,;,,(n) ~ n, thus we have preferred to work out
the simpler version in (1.8).
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There is a considerable gap between the lower and upper bounds in (1.8) for

For+1(n) that we have not been able to eliminate for k =2. On the other hand, we will
prove much more satisfactory estimates for L,;.,(n):

THEOREM 8. If k is a fixed positive integer and n — +, then we have

Ly(n)=(1+0(1))loglogn, , 1.9)
Layes2(n)= (3 +0(1))loglogn (1.10)

and
Losi(n)=1+@G+0(1))logn. (1.11)

2. COMBINATORIAL LEMMAS

In the proofs we will use Turdn type extremal graph theorems for cycles. In the
following lemmas we give a list of these.

G:(V; E) will denote a graph with vertex set V and edge set E, [V|=n and |E|=e.
The degree of the vertex P will be denoted by d(P). G; (U, V;E) will denote a
bipartite graph with vertexset UUV (UNV =) and |U|=u, |V|=vand |[E|=e. K, ,
will denote the complete bipartite graph. C, denotes the cycle of length /, and*we also
use K, instead of Cj.

We shall need the following well-known and nearly trivial fact.

For k, n € N, let g,(n) denote the smallest positive integer g such that every graph of
n vertices and g edges contains a C,.

Lemma 1. (a) Forn e N, n— +«, we have

ga(r) = 3 +o(1))nt (2.1)
(b) There is a positive absolute constant ¢ such that, for all n e N, we have
ge(n) <cnt. (2.2)

(c) For fixed k € N, and for n e N, n — +o, we have
ga+1(n) = (& + o(1))n’. (2.3)

Proor. (a) See [3] or [8].

(b) This is a special case of a result of Bondy and Simonovits [2] (see also [12,
Corollary 6.13]).

(c) This is a special case of a result of Erdés and Simonovits [7] (see also
[12, Theorem 3.1]).

LEMMA 2. For all €>0, there is a number ny=no(€) such that if n > ny(e), then
there is a graph G}, with

e> (- e)nt

which contains no cycles C, with 3<1<6.

Proor. See [1], [13] or [12, p. 184].
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LemMMA 3. If k=3, then there is a positive constant ¢, such that, for every n =2,

there is a graph G¢, with

—-1)-?
e>cn' kD

which does not contain a cycle C, with 3<1<k.
Proor. This is Corollary 8.3 in [12].

For n € N, let r(n) denote the smallest positive integer r such that if G|, (U, V; E) is
a bipartite graph of r edges,

2 and wvsn, 2.4)
then G must contain a Cs. We conjecture that
r(n) < cnb; (2.5)

unfortunately, we have not been able to show this. We could prove only the following
weaker result:

Lemma 4. There is an absolute constant ¢ such that, for all n € N, we have
r(n)y<cn 5,

Proor. We have to show that if ¢, is large enough, G = G}, is a bipartite graph
which satisfies (2.4), and

r=|E|=cnb, (2.6)

then G;,, contains a Cs.
LetU={P,P,...,P}, V={0,, 0, ..., Q.,} By (2.6), we have

> d(P)=|E|=cnt.
i=1
It follows that

[uiv]-1 v v u
i 2 AP+ 2 d(Puey )= 3 d(PY= cin
j=0 i=1 i=1 i=1
Thus there is an integer m with 0=<m <u — v such that

c;n; >C‘ vn;
/vl +1” 2 u

gﬂm»> @7)

Let G* denote the subgraph of G induced by the 2v vertices U*=
{Prsts Pmazs ooy Poaoh, V¥={01, 05, ..., Q,}). By (2.4) and (2.7) we have

Cc vn;
e* ?—]—?ﬁvi

2 u 2 (28)

If ¢, = 8¢, where c is the constant in (2.2), then by (2.8) we have

e*>c(2v),
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and thus, by Lemma 1, G* contains a Cs. For u, v, n « N and -
uv<n, (2.9)

let s(u, v, n) denote the smallest positive integer s such that if G = G, (U V;E)isa
bipartite graph of s edges, then G must contain a Cs.

We conjecture that for

vi<u (2.10)
we have
s(u, v, n) <2u +cnd. (2.11)
(Clearly, s(u, v) >2u, as the following example shows: consider the graph obtained by
joining each of the vertices in % to two fixed vertices in ¥.)

Note that, of course, conjectures (2.5) and (2.11) can be combined: if G =
Guw(U, V; E) is a bipartite graph v <u, uv <n and :

e=2u +cnt, (2.12)

then G contains a C.
Unfortunately, we have not been able to prove (2.11). We could prove only the
following weaker result: .

LemMA 5. If u, v and n satisfy (2.9) and (2.10), then we have

S v n)<{2u +v*  forvP<8u,
» 7 8uud for v*>8u.

Proor. We have to show that if u,v and n satisfy (29) and (2.10), and
G = G,.)(U, V; E) is a bipartite graph with

. {Zu +v3 for v =<8y,

2.13
[18vs?]  for v*>8u, (213)

then G contains a C,. Clearly, it suffices to show that there is a K(@3,3)in G.
Assume that contrary to the assertion (2.13) holds; however, G does not contain a
K(3, 3). Define the integer / by

2 for v*<8u,
= 2.1
! {[vu'i] for v3>8u, (2.14)
and put
H={iilsisu dP)<l}
and
SH={i:l=sisu dP)>1}
so that
{1,2,...,u}=HU %, SNS=0. (2.15)
Let U={P,,P,,..., P}, V={01, Qs,..., Q,). By the definition of $;, we have
Y d(P)<lu (2.16)

ief
For all i € $, there are (“4?) triples Q,, Q,, Q, (1 <x <y <z <uv) such that each of
Q. 0, Q, is joined to P. On the other hand, since there is no K(3, 3) in G, thuseach
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of the (3) triples Q,, Q,, O, (1<x <y <z <wv) can be joined to at most two distinct

P/s. Thus we have
D (d(:')) < 2('3’) <b? @.17)
iesh

For i € % we have d(P,)=1+1, and thus

(d(;’i)> = d(B)I(l - 1) = bd(P)P

(since / =2). Thus it follows from (2.17) that
> d(P)y<4I2 (2.18)
iefh

We obtain from (2.15), (2.16) and (2.18) that
e(G)=2 d(P)= 2 d(R)+ X, d(P)<lu+47I"
i=1 ied ied
so that, in view of (2.14),
e(G)<2u+v* forv’=8u
and
e(G) < (vu Hu + 4 (wuY/2) 2 =17Tvud < 18w - 1 <[18wu}]  for v*>8u,

which contradicts (2.13), and thus completes the proof of the lemma.

LemMA 6. Let k, t and n be positive integers with k =3, let S ={s, s5,...,5,}, and
let 8,, S, ..., S, be distinct subsets of S. Forj=1,2,...,n, RicS,..., R, cS, write

fRy,...,R)=Hx:1=sx=<ls;eR}.

If .
t=2""1+ k-1, (2.19)

then there are subsets S;, S, ..., S, (with 1<i, <i,<:--<i,=<t) such that
Ji(Sis Sipy .., S,) iseven forj=1,2,...,n. (2.20)

Note that (2.19) is best possible for k = 3, as the following example shows: if n is odd
and S, S,,...,S5»1 are those subsets of S the cardinality of which is odd and
Syn-141 =(J, then there is no triple S;, S, S;, (with i, <i, <i;) satisfying (2.20).

For fixed k and n, let ¢,(n) denote the smallest integer ¢ for which the conclusion of
the lemma holds. Then, by (2.19) and the above example, we have

@il +1) =22 +2.

Moreover, if n e N, k is odd and S, S,, ..., S, are the subsets containing s;, then
there is no k-tuple of them satisfying (2.20), which shows that

2"V 1< @ppq(n) (27142,
If k is even, then the situation is different. We will study this case in a subsequent
paper.

Proor. Assume to the contrary that (2.19) holds; however, there are no subsets
Sip» Siys - - ., S, satisfying (2.20).
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By S-» 7 Si—1, at least one of the following statements holds:

there is a j such that 1<j<n and fi(51, S, . . . , Sk—3, Sk—2) is ogdd;

2.21
there is a j such that 1<<j<n and f(Sy, S», . . ., Sk-3, Sk-1) is odd. @21)

Without loss of generality, we may assume that (2.21) holds. Then, for each of
u=k—1,k,...,t there is a uniquely determined subset T, of S such that

fi($1, 8, ..., Sk=2,8,, T,)iseven forj=1,2,...,n. (2.22)

Then, clearly,
T,#T, fork—1su<vst (2.23)
and, by (2.21) and (2.22),
S.#T, fork—1=sust (2.24)

Let U denote the set of the integers u such that

k-1lsus<t (2.25)
and
T,#S8,..., T,# Sk . (2.26)

There are ¢ —k +2 values of u satisfying (2.25) and, in view of (2.23), with at most
k — 2 exceptions all these u’s also satisfy (2.26), so that we have

Ul=(t—k+2)—(k—2)=t-2k +4. (2.27)

By (2.24) and (2.26), for all u € U the subsets S;, S,,..., Sk—2, S, 7,, are pairwise
distinct. Thus, by our indirect assumption, (2.22) implies that T, is different from each
of 5,,8,,...,8. Then, in view of (2.23), 81, S,,...,S; and the T,;s with u € U are
pairwise distinct subsets of S. On the other hand, by (2.19) and (2.27), their total
number is

t+|U=2t-2k+4=2Q2" ' +k—-1)—-2k+4=2"+2

which is greater than the total number of the distinct subsets of S, and this
contradiction completes the proof of Lemma 6.

3. ARITHMETIC LEMMAS

LemMMA 7. Let P be a set of t prime numbers p; <p,<---<p,, and let & be a set of
positive integers all the elements a of which can be represented in the form a = p,p;, with
i #j. Define the graph G[&f] on the t vertices Py, . .., P, so that P,F; € E(G) iﬁ‘p,pi e d
Then o ¢ T, i.e. (1.1) can be solved iff the graph G[{] contains a subgraph H* of k
edges such that the degree of every vertex of it is a positive even integer.

Proor. This follows easily from the fundamental theorem of arithmetics. Assume
that a,,...,a, e &, a;<---<a, and, for i=1,2,...,k, let a,=p;p, (where p,,
p,€ P, jr#1). Then consider the subgraph H* the k edges of which are (P, P,),
(B,, Py, ...3 (P, P,) (and the vertices of which are the end vertices of these edges).
a;a,- - - a, is a square iff the degree of every vertex of H* is a positive even integer,
and this completes the proof.
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Lemma 8. Let G = G(V;E) be a graph, with V ={P,, P,, ..., P}. Assume that two
mappings f:V — N and g: E— N are given, with the following properties:
() if 1si<jst, then f(P)#*f(F);
(ii) if e € E and the end vertices of e are P; and P, then g(e) = f(P)f(B);
(ili) ifee E, ' € E and e # ', then g(e) #g(e'). '
Denote the range of E by o: d={g(e): e € E}. Then, if G contains a C;, A ¢ T;.

Proor. If G contains the cycle of length k the edges of which are ey, e, . . ., e, and
the vertices of which are F,, P, ..., P,, then

glenglea) - - - glew) = (F(PIF (P - - - F(R)™

Lemma 9. Using the same notations as in Lemma 8, assume that (i) and (ii) in
Lemma 8 hold, but replace (iii) by the following:
(iii') ifec E, e’ e E, e#¢' and e and e’ are adjacent edges, then g(e) # g(e'). Then, if
G contains a triangle, o{ ¢ T'.

Proor. If G contains a triangle the edges of which are e;, e, and e, and the vertices
of which are P, P, and P, then g(e;), g(e2) and g(es) are distinct integers. Moreover,

we have
glerg(ex)g(es) = (F(PLf (P (P,)Y-

Lemma 10. Let P={p,, pa,- .., p.} be a finite set of distinct primes, and let s be a
set of distinct integers all the elements of which are of the form p;p;, with p, € P, p; € 2,
i#j. Let G[{] denote the graph with V ={P,,..., P} and E ={(P, P): p;p; € d}.
Then:

(i) o €T iff G[A] does not contain a triangle;
(ii) o eI, iff G[A] does not contain a Cy;
(iii) if k e N, k=3, and G[] does not contain a C, with 3<l<k, then 4 eT}.

Proor. By Lemma 7, o ¢ I'; iff G[#f] contains a subgraph H* of k edges such that
the degree of every vertex of it is a positive even integer. For k =3 and 4, the only
graphs H* with these properties are K3, resp. C, which proves (i) and (ii). Moreover, if
o ¢ T, then since the degree d(P,) of every vertex P, of H* is a positive even integer,
thus d(P,) =2 for every vertex P, H* contains a C, with 3</=<k, and this completes
the proof of (iii).

The number of distinct prime factors of n will be denoted by w(n), and Q(n) will
denote the number of prime factors of n counted with multiplicity. Moreover, for 0 <x,
we write ¢(x)=1+xlogx —x.

LemMma 11. If0<y =<1 and £ >0, then for x > x,(€) we have

X

W<- |{m ms=sx, .Q(m) =y lOg logx}| <

- r
(logx)“’(’)" :
Proor. This follows from a result of Hardy and Ramanujan [9].
Lemma 12, If1<y<2and e >0, then for x > xo(g) we have

X
l{m:m <x, Q(m) =y loglog x}| < (log x)*»—¢’
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Proor. See Corollary 2 in [6].

LemMma 13. Let B denote the set of the integers b such that b<n and b can be
represented in the form .

b=w 3.1
with integers u and v such that _
ni(logn)~> <u, v <ni(logn)’. (3.2)
Then for € >0, n > ny(€), we have
|B| < n(log n)e/2oe2-1+e (3.3)

ProoF. Let @, denote the set of the integers b such that b=<n and b can be
represented in the form (3.1) with « and v such that

min(Q2(u), 2(v)) >§10g log n (3.4)

and let B, denote the set of the integers b such that b <n and b can be represented in
the form (3.1) with u and v such that (3.2) holds and

Q) sglog log . (3.5)

Then, clearly, B = %, U %,; whence
|B] < |%Bi| + B - (3.6)
If b € %4y, then, by (3.1) and (3.4), we have

Qb) = Q@) = Q) + Qv) > § log log 1. G.7)
By Lemma 12, it follows from b <n and (3.7) that

B, < = n(log n) oe2-1+e, (3.8)

_n
(log n)*e™¢
Write
U={u:u €N, n¥logn)~* <u <nllogn)%},
and for u e U let
YV, = {v: veN,vsn/u, .Q(v)siloglogn}

and

g e 1 n
viveN,vsnfu, Q) 2V ioglogn og ogu
Then, clearly, we have

1Bl< > 1% (3.9)

uelU
A simple computation shows that, for 4 € U, we have

loglogn —loglog(n/u)=1log2 +o(1)
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and thus, for n >n, (and all ¥ € U), we have
v, < vV~ (3.10)

Moreover, by Lemma 11, for all u € U and n > ny(g), we have

—¢(eld)+e/2
") (3.11)

n
< — -—
< (log ”
It follows from (3.9), (3.10) and (3.11) that, for n > ny(e), we have

n n ~d(eld)+el2
Bi< 3 %< T % (10g")

uel uelU u

1
«<n(logn) *EDrer 3 - n(log n)~*€*2 1o log n
uelU

«< n(logn)~?E"* ey (log n)e?loe2-1+¢ (3.12)

(3.3) follows from (3.6), (3.8) and (3.12), and this completes the proof of the lemma.

LeEMMA 14.  Assume that a, <- - - <a, <n is a sequence of positive integers for which
the products a,a;, with i<j, are all distinct. Then, for n=2 and for some positive
absolute constants ¢, and c,, we have

a(n) + c,n*(log n) < maxk< n(n) + czni(log n)'i.

Proor. This is a result of Erdds [5]). Note that in [5], the products a;a; with i = j are
not excluded explicitly; however, the proof also gives the result in this slightly sharper
form.

LemMa 15.  Every n e N can be written in the form
n=xy, x=y

. . . 2
where either x is a prime greater than n3 or x <n®.

Proor. This lemma is due to Erdds [4]. For the sake of completeness, we sketch the
proof. If n =1, then x =y =1 can be chosen. If n >1, then let p denote the greatest
prime factor of n, and write n = pn,. If p = n,, then we may choose x=p and y = n,. If
p=<n;and n; sng, then x =n, and y = p can be chosen. Finally, if p <n, and n, >n5,
then we have p =n/n, <n'?. Letn, =p;p, - - - p,, where p,, p,, ..., pi are primes and
n>p=p,=p,>---=p, Defineibyp,p, - p;<n®<p,p,--pi.,. Then

. n
y =mln(p1pz- Py —)

b1, P2, " *Di

n
e pip2" pi

can be chosen.

Lemma 16.  For every positive integer k =2, we have

Fi+a(n) < max(F(n) + 4, Fy(n)). (3.13)

ProOF. Assume that
|| > Fy(n) (3.14)
and
jof] > F.(n) + 4. (3.15)
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Then, by (3.14), there are integers a,, a,, a1, a, and x such that
a10,83a,=x%,  ay,05,83,a,€ A, a;<a,<a;<a,.
Write o* = of\{a,, a,, a3, a4} so that, by (3.15),
|Z*| = || — 4> F(n).
Thus, by the definition of Fi(n), there are integers as, . .., a,+4 and y such that
As* @ra=Y%,  Gs,..., G A*C A, as<-+ <a,,.
Then we have

a- - apea=(xy)% ay,...,4+s€4, a;#a; forlsi<jsk+4,
so that
ATy,

for all & satisfying (3.14) and (3.15), which implies (3.13).

LemMma 17. For n— +, we have

> 200 = ( + o(1)>n logn.

isn

Proor. Clearly, we have

S20=3 3 1= 3 31- 3 [5]

isn isn  d|i d<n [<n d<n d
lu(d)i=1 led)I=1 d|i l(dn=1

=n 3 Z+0m=n3 (3 uem)i+om
St

—n S E 5 1 om

m1<n m i<n/im? i

=n( i plm )+o(1)> logn + O(n)

=nlogn]] (1—;’13>+o(n log n)

P

= ( o) + o(l))n logn = (:2 + 0(1))’1 log n.

4. PROOFS OF THE THEOREMS

Proor oF THEOREM 1. The set & of the square-free integers not exceeding n has
property P, whence it follows that

E(n)= o) = 2 p*(). 4.1)
Now assume that B<{1,2,...,n} and

B> 2 u2(i).

isn
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Then there are distinct integers b; € B and b, € B the square-free parts of which are
the same:
by=r%  by=s% |u(@)|=1
Then we have
byby = (rst)’,
so that @ does not have property P,. It follows that
Fy(m)< 2 w(). (42)

(1.3) follows from (4.1) and (4.2), and this completes the proof of Theorem 1.

ProoF oF THEOREM 2. First we will prove the lower bound in (1.4).

Let &, denote the set of the integers a such that:
(i) n(logn) '<a=<n;
(i) there is no positive integer b such that b >logn and b* | a;
(iil) a cannot be represented in the form

a=uv
with integers « and v such that
nt(log n) ™3 <u, v < ni(logn)’.

First, we will give a lower bound for |&,|. For n =3, the number of the integers a
satisfying (i) and (ii) is

={a:a e N, n(logn)™' <a=n}|

-~ > Ha:aeN,b?|a,n(logn)<asn)

logn<b=n

=n—n(logn)™' — >

B2
log n<b b

n

>n-n(logn)™' —n =n—n(logn)™' —nflogn]™’

logn<b (b - 1)b
>n - 3n(logn)™".

By Lemma 13, for n > ng(e) all but n(log n)'? 982712 of these integers a also satisfy
(iii). Thus, for large n, we have

|sf,| >n = 3n(logn)~' — n(log n)¢?"0e2-1*e2 > p — p(log n)@D0e2-1%c (4.3)

Next we will show that & e I';. Assume to the contrary that there are a,, a;, a; € &,
x € N such that a, <a, <a; and

a,a,a; = x> (4.4)

Write a,, a, and a3 as the product of a square and a square-free number:
a,=blq,, a,=b3q,, as=b3g; (q., g, and q; are square-free).  (4.5)
By (ii), here we have
by, b,, by <logn. (4.6)
By (4.4) and (4.5) we have

a,a;a3 = (blbzba)ZQJqua =x2 4.7)
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It follows that g,q,q; is a square: \
9:929:=y* (4.8)

Since q,, 92 and g3 are square-free, this implies that any prime factor of é,q2q3 divides
exactly two of the numbers q,, g, and g;. Thus, writing (q,, 9,) = ds, (g1, g3) = d> and
(42, 43) = d,, we have

g1 =dd;, g2=d,d; and g3 =d,d,. (4.9)
It follows from (i), (4.5) and (4.6) that
_ d,d,d; — (‘h‘h‘h)&

d, =
' d,ds 9
— (ala2a3(blb2b3)—2)§> (n*(log n)(log n)"*)* =} -3
a,bi? B n-1 n(logn)
and
di = (alaza3(blb2b3)_2)§< (n*- 1)i
! a,b;? n(logn)~'(logn)~2
= ni(logn)?,
and, in the same way, we have
nY(log n)t<d,, d; <n'(logn)®. (4.10)
Write u;, = b,d, and v, = b,ds. Then, by (4.5) and (4.9), we have
uyvy = (by1dy)(brd3) = b%‘]l =a,. ' (4.11)
Moreover, by (4.6) and (4.10), we have
u, = byd,=d, = ni(logn)} (4.12)
and
u, = b,d, < (log n)n}(log n)* = ni(log n)*, (4.13)
and, in the same way,
nt(log n) "< v, < ni(logn)-. (4.14)

By (iii) in the definition of «,, it follows from (4.11), (4.12), (4.13) and (4.14) that
a, € 4, cannot hold, and this contradiction proves that indeed we have

A, eTs. (4.15)
It follows from (4.3) and (4.15) that
Fy(n)>n — (logn)€@9e2-1*¢  (for n > ny(e)).

Now we will prove the upper bound in (1.4). Assume that £ ={1,2,...,n}, el
Let 9={d,,d,,...,d} denote the set of the integers d such that d<n! and
€(d)<3}loglogn. Then, by Lemma 11, for large n we have

t = |D| > n(log n)~*D ), (4.16)

Define the graph G on the ¢ vertices Py, P, ..., P, so that P; and F, (i #J) are joined iff
dd; e 4. Let M denote the set of the integers m such that m=<n and m has a
representation in the form

m=dd; with lsi<j<t ddi¢gd 4.17)
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Then m € M implies that m ¢ &, so that
|l <n—|M. (4.18)
For fixed m, let h(m) denote the number of pairs d,, d; satisfying (4.17), and write

H = max h(m).
meM

If m =ptipk:- - - p¥ e M, then by (4.17) and the definition of P we have

Q(m) = Q(d;) + Q(d;) <loglogn
so tha, clearly,

h(m)<t(m) =[] (k; + 1) <[] 2% =22 < (log n)'"*#>
i=1 i=1

and thus
H < (logn)"&2, (4.19)

By Lemma 9, it follows from & e I'; that the graph G does not contain a triangle.
Thus, by (2.3) in Lemma 1, for n >ny(¢) there are at least (1 — €)(+*/4) pairs i, j (with
1=i<j=t)such that P, and P, are not joined in G. For all these pairs i, j, the number
m defined by (4.17) belongs to M. Each of these numbers m can be represented at most
H times in form (4.17), so that by (4.16) and (4.19) for large n we have

t2
= (1~ )7 H™' > n(log n) 26®70¢27¢ = n(log n) ™'~
and, by (4.18), this proves the upper bound in (1.4).

Proor oF THEOREM 3. First we will prove the lower bound in (1.5). Let ?=
{P1, P2, ..., p} denote the set of the primes not exceeding nt so that, by the prime
number theorem,

_nt

t=nm(nH)~2 (4.20)

logn’
By (2.1) in Lemma 1, for £>0, n > ny(¢) there is a graph G, on ¢ vertices P,,.. , P,
such that
1 ¢
G)> (—— -) i :
e(G) 575 t 4.21)

and it does not contain a C,. Let 3 denote the set of all the integers of the form p; Dj»
where p;, pj e #, 1<i<j=<t, and P, and F, are joined in G,. Then, by Lemma 9(ii), we
have

BeT, (4.22)
Let ¢ denote the set of primes with nt <p <n, so that
1A = n(n) — m(n?) = m(n) — ¢, (4.23)
and write
A=0UR. (4.24)
Then, .

| = |4 +|B| = (n(n) — 1) + e(G,) > n(n) + (% - 45):! > n(n) + 2 - e)ni(log n) 2

(4.25)
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Now assume that ay, a,, a3, a; € o and a; #a; for i # { If one of ay, a5, a; and a,, say
a;, belongs to O, then a; is a prime greater, than n?, and none of a,, a; and a, is
divisible by this prime, so that the product a,a,a;a, cannot be a square. If none of a,,
a,, a; and a, belongs to O, then each of them belongs to 9; thus, by (4.22), again their
product cannot be a square. Thus we have

Lel, (4.26)

The lower bound in (1.5) follows from (4.25) and (4.26).
To prove the upper bound in (1.5), assume that & ={1,2,..., n} and
|| > n(n) + czni(log n)'i,
where ¢, is the constant defined in Lemma 14. Then, by Lemma 14, there are four
distinct integers a,, a,, a;, a4 € & such that
a,0; = axa,,
so that their product
414,434 = (alaz)2

and thus & ¢ I'y. This implies the upper bound in (1.5).

Proor oF THEOREM 4. First we will prove the lower bounds in (1.6) in Theorem 4 and
in (1.7) in Theorem 6 simultaneously. Let

D ={p:nt<p=<n,pprime}U {2p: ni<p <n/2, p prime}.
Then, by the prime number theorem, for n > ny(e) we have
D] = w(n) + m(n/2) — O(nt(logn) ™). (4.27)

Let Z={p, pa, - - -, p:} denote the set of the primes p with 2<p <n?, so that by the
prime number theorem t~2n¥(logn)~'. Let G, denote a graph on the t vertices
P, P, ..., P, with the maximal number of edges, so that it does not contain a cycle of
length [ with 3<!=<4k + 2. Then let &€ denote the set the elements of which are of the
form p;p; (1<i<j=<t), and p;p; € € (where 1 <i<j=<1) iff the vertices F, and P, are
joined in G,. By Lemmas 2 and 3 we have

2~ g)> (2 toeny
SR LI 3 =
ti>(2 1 for k=1, > X
19 = e(G (s, k)) > (2 8 o) (logm) or n>no€) 428
Carsat! TH VT > el (nd(log n) )R for k> 1.
Thus, writing & = @ U &, it follows from (4.27) and (4.28) that
|| = 2| + |8 > n(n) + n(n/2)
(2t -e)ndlogn)?  fork=1, n>nye),
) ~1\1+(4k+1)"! (4.29)
ci(n¥(log n) ") T@k+D for k>1.
Now we will prove that
/AN PS (4.30)
Assume that, contrary to (4.30), we have
ay:-- a4k+2=x2; ay, ..., 0428, a;<-: <y (4.31)

Assume that g, is a prime, with g, >n? and ¢, | x% This implies that g% |x% By the
construction of the set &, it follows that one of the numbers ay, ..., @42 is equal to
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q1, and another one is equal to 2g,. In this way, we obtain that the left-hand side of
(4.31) is of the form
4k+2-2 24k+2-2

) 1
a,: - Age+2= (H] qi- 2‘]:‘) 1—! €= 21(1—[1 Qi) Hx €js (4.32)
= 1= 1= =
where the g,’s are distinct primes greater than n}, the e;’s are distinct elements of & so
that if p is a prime with p | [I}¥{>~?¢;, then 2 <p <n?, and it may occur that /=0 or
I =2k +1 (so that there are no g,’s or ¢;s). Thus it follows from (4.31) and (4.32) that
both 2 and [Ij412"%¢; are squares:
ak+2-21

2=y? 1-! e (4.33, 4.34)
=

By Lemma 10(iii), it follows from the construction of the set € that (4.34) cannot hold
unless the product on the left-hand side is empty, i.e. [ =2k + 1. But then, by (4.33), we

have
22k+1

2
=Yy
and this is impossible. This contradiction completes the proof of (4.30). °
The lower bound in both (1.6) and (1.7) follows from (4.29) and (4.30).
To prove the upper bound in (1.6), we have to show that, assuming & ={1,2,...,n}
and

A el (4.35)
we have
|| < 7(n) + n(n/2) + nblog n. (4.36)
Let & denote the set of the numbers a € o that are of the form
a=py, p >nt 4.37)
and let
E=4\9
so that we have
|4 <12 +19. (4.38)

Define the integer k, by

—(ko+1 —k,
n2~ kot < pi< p2 ko

K _[yogn]
° {3log2]

Fork=0,1,2,..., ko, let &, denote the set of the numbers a € P for which in (4.37)
we have

so that

n/2¥*' < p <n/2, (4.39)
so that
ko
P= kL—JO . (4.40)

It follows from a <n, (4.37) and (4.39) that
y < 2k*1, (4.41)
Thus, for k =0 we have y =1, so that a = p, whence

|20l < Kp:n/2<p=<n, p prime}| = n(n) — n(n/2). (4.42)
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Now assume that 1<k =< k,. Denote the primes p satisfying (4.39) by p1, p2, . .., Py,
so that

u = n(n/2¥) — m(n/2¢*7)
and, by the prime number theorem,

n___g "
2¥lognt " logn’
Define the bipartite graph G[k]=G(U, V) on the vertices U={P,P,,...,P,},
V={0, Qs ..., Qu~} so that the vertices P, and Q, are joined iff p;p; € & By

Lemma 8, it follows from (4.35) and & < & that G[k] cannot contain a Cs. Thus we
have

2k+luk < 2k+17l'(n/2k) < 2k+1 .2

(4.43)

1By| = e(G[K]) < sy, 25*7, 240, ) E'S, (4.44)

(where s(u, v, n) is the function defined in Section 2).
Let

H={k: 1<k <k, 2°*<u,},
9{2 = {k 1<k Sko’ 22(k+1)<uk <23k}’
W =1{k: 1<k <kg, u, <22k},

Then, by (4.40), (4.42) and (4.44), and by using Lemmas 4 and 5, we have
kg ko
191 =196l + 2. 19l < (a(n) = 2(n/2)) + 2, S
=1 =

=(m(n) =22+ X S+ X St 2 S

ke kel kel
ko
<(n(n)—w(n/2)+2 D u+ >, 22k*V 118 > 2k,
k=1 ke ke
+ D (2 )b (4.45)

kel

Here we have
ko
(m(n) — m(n/2)) +2 Z Uy
= (n(n) — n(n/2))+2 § (n(n/2%) = m(n/2¥*Y)) < m(n) + n(n/2). (4.46)

Moreover, in view of (4.43), we obtain by a simple computation that, writing
max, . x, k = K; and max, s, k = K, we have

S 23k+D « 235 < ni(log n) 7, (4.47)
kel
S 2 uf« D 2KP(2ku, )
ke, keX
«< ni(log n) 125 « n¥(log n) “in¥(log n)
= n¥(logn)~* (4.48)
and
S (2% )b « ndlog n)~? |9 « nb(log n) ¥ log log n. (4.49)

ke
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It follows from (4.45), (4.46), (4.47), (4.48) and (4.49) that
19| < x(n) + m(n/2) + n¥(log n) *log log n. (4.50)

It remains to estimate |€). If @ € &, then a € &, a ¢ D, so that, by Lemma 15, a can
be written in the form '
a=xy, x=snd, ys=x (4.51)

To each a e &, assign a unique pair x =x(a) and y = y(a) satisfying (4.51) (e.g.
consider that pair x, y for which (4.51) holds and x is maximal). Define the integer k,
by

niz’(kl+l)<n&sn§2_k1 (4-52)

so that k; =[(logn)/(6log2)]. For k=0,1,...,k,—1, let &, denote the set of the
numbers a € € such that

n2-**D < x(g)sn¥27, (4.53)
and let &,, denote the set of the numbers @ € € such that
x(a)sn¥2 k.
Clearly, we have
8= &,
k=1
It follows from (4.51) and (4.53) that for a € 0,, we have
y(a) s$< 2k+1p}
and, in view of (4.51) and (4.53), for a € &, we have
y(@) < x(a) snf27% = (i~ kT D). gkiv2pd < gkir2,d
Now assume that 1< k <k;. Write u, =[ n%27%] and v, = [2¢*n}] so that
usvi ws<S5uy and wu,<dn (4.54)

Define the bipartite graph G[k] on the vertices U={P,P,..., P V=
{Q1, @2, ..., Q.,} so that the vertices P and Q; are joined iff there is an a € &, such
that x(a) =i and y(a) =j. By Lemma 8, it follows from (4.35) and %, < « that Glk]
cannot contain a Cs. Thus, by Lemma 4, we have

1% = e(G[k]) < r(4n) < cn?

for some positive constant ¢ (where r(n) is the function defined in Section 2). It follows
that

L3
1€ = > %] < knb<ntlogn. (4.55)
k=1

(4.36) follows from (4.38), (4.50) and (4.55), and this completes the proof of
Theorem 4.

ProOF OF THEOREM 5. The lower bound can be proved in the same way as the lower
bound in Theorem 3, except that (2.1) in Lemma 1 has to be replaced by Lemma 3 and

Lemma 10(iii). The upper bound follows from Lemma 16 and the upper bound in
Theorem 3.
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ProoF oF THEOREM 6. The lower bound was proved in the proof of Theorem 4. The.
upper bound follows from Lemma 16 and the upper bound in Theorem 4.

Proor oF THEOREM 7. Let & denote the set of the integers a such that e <n and a
has a prime factor greater than n!. Then, by

1
> ;=log logx +c +o(1),

p<x
we have
)= > [E] =nlog2+o(n),
n§<p<n
so that
| > (log2 — €)n for n > ngy(e). (4.56)
Moreover, if ay,. .., x4+ € &, then each of the g; s has exactly one prime factor

greater than n. It follows that there is a prime p > n! such that defining r = r(p) by
p’ |a1 “au+1, P’V 4 ay - - ayesq, ris 0dd. Thus a; - - - gy, cannot be a square, so
that

Ae er+1. (457)

The lower bound in (1.8) follows from (4.56) and (4.57).

Erove the upper bound, assume that o <{1,2,...,n}, & ey, Write
t-n:(n (2+0(1))ni(logn)~". Let B denote the set of the integers b such that
b e & and b can be represented in the form b = p; p; with 1 <i <j=<1. Define the graph
G[B] on the t vertices Py, P,, ..., P, so that P, and P, (i #j) are joined iff p;p; € #.
Since Bc A € Iy, the graph G[%] cannot contain a C,, ;. Thus, by Lemma 1(c),

com=(L

Thus the number of pairs of vertices not joined in G[%)], i.e. the number of integers
pip; (<n) missing from &, in at least

()~ (&)= - omaogm

which completes the proof of the theorem.

ReEMARK. The constant factor log2 in (1.8) could be improved slightly. In fact, if
is a fixed real number with 0 <u <1, then let &, denote the set of integers a such that
a <n and the number of the primes p with n* <p <n, p | ais odd. Let c(u) denote the
greatest positive number such that for all £>0, n > ny(e) we have

|| > (c(u) — &)n.

Then, clearly, &, € [y 41, S0 that (c(u) — e)n < Foi4y(n) for all 0<u <1.

It could be shown that there is a number 0 < uy < 1/2 such that c(u) is increasing on
the left of ug and it is decreasing in [ug, 1/2]. Then the best lower bound obtained in
this way is

(o) = €)1 < Feszlm).

However, it would need a lengthy computation to compute or just to estimate these
numbers uy and c(uy).
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Proor oF THEOREM 8. (1.9) follows from {p:p prime, p <n} eIy and the upper
bound in Theorem 5.

(1.10) follows from ({p: p prime, 2<p <n}U{2p: p prime, 4<2p <n}) e I'y., and
the upper bound in Theorem 6.

To give a lower bound for L.,.,(n), consider the set & ={a:a<n, Q(a) is odd}.
Then, clearly, & € I';,;. Moreover, it is well known that the prime number theorem
implies

2 Alm)=o(x),
where A(n) = (—1)?" is the Liouville function. It follows by partial summation that for
£>0, n >ny(e) we have

1
> ->(¢—¢)logn,

aedd
whence

Lyir(n)>(3—€)logn (for n > ny(e)).
It remains to show that for € >0, n > n (g, k) we have

Ly i(n)<(3+€)logn (for n>n (g, k)).

In other words, we have to show that if e >0, n >n (¢, k), £ <{1,2,...,n} and
1
> == +¢)logn, (4.58)
aesx @
then
A ¢ Ty (4.59)

To show this, write every a € & as the product of a square and a square-free number:

a=(u(a))v(a), where |u(v(a)) =1
Then we have

21=2_1_=2l2 1

dewld  Gew(u(@)v(a) JS2,u? /o v(a)

ua)=u
31 1
=< [ max = max — 4.60
ulsn ,,gd U(a) ,,21 u2 ulsn ,,;_qg (a) ( )
u(a)=u u(a)=u

It follows from (4.58) and (4.60) that

1 6
E —=—((+e¢€)l .
S ua) (2 +e)logn (4.61)
u(a)=u

Assume that here the maximum is attained for, say, u = u,, and let ¥ denote the set of
the integers v such that there is an a € o with u(a) = u, and v(a) = v. Then

v=n and v is square-free for all v e ¥, (4.62)

and, by (4.61), we have

1+¢)logn. (4.63)
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For a positive integer i, let dy(i) denote the number of integers v with v | i, v € ¥. By
(4.62), do(i) does not exceed the number of the square-free divisors of i, so that
dy (i) <2°© for all i. (4.64)
By (4.63), for sufficiently large n we have

2dl)=2 21

i<n i<n v|i

-3 2-2[]]

v|x

>n2——|°l/'|> 1+e)nlogn—n

ney?V
=(3+3)
>— 4.
23t log n. (4.65)
Now we will show that there is an integer j such that j<n,
N E
o) >— .
2 0 logn (4.66)
and
> @i, 4.
4> (3+5) “.6)
In fact, assume that, contrary to this statement, for all i <n either
oD g2 4.
2 10 logn (4.68)
or
d ( )2“‘(" 4.69
)< (3+15 (469)

holds. Let & denote the set of the integers i satisfying i <n and (4.68). Then, by (4.64)
and Lemma 17, for sufficiently large n we have

D dy< 3 2°O 4 3 dyli)
is<n ieN i<n
ieN

logn21+z

10 ieN isn (2 10

1 s) w(i)
+
10"1°g” (2 10 2.2

i=<n

£1n+( >6nlon
<jotleentiztg)Eniee

<6(1 )nlon
AU Y

which contradicts (4.65), and this proves the existence of a j satisfying (4.66) and (4.67).
Write S = {p: p prime, p | j} so that

151 = w(j), (4.70)

)zw(l)
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and let vy, ..., v, (with v; <- - - <v,) denote the elements of ¥ that divide j so that, by
(4.67) and (4.70),

1 ¢ . 1 ¢ .
S+ 2e0 = (—+—)2's i’ 4.7
2 10) 2 2 10 . (4.71)
Fori=1,2,...,t write S;={p:p prime, p Iv,}. By (4.62), the sets 53, S, ..., S5, are
distinct subsets of S, and their number, ¢, satisfies (4.71) which, by (4.66) and (4.70); for
sufficiently large n implies that

t=dy(j)> (

t>25"1 4 2k,

so that (2.19) in Lemma 6 holds with 2k +1 in place of &, and thus the lemma can be
applied (with 2k +1 in place of k). We obtain that there are subsets S;, S,, ..., S,.,
such that each p € § is contained in an even number of these subsets. Then all the
prime factors of the product v, v;,- « - v;,, ., belong to S, and this product is divisible by
an even power of each of these primes. Thus this product is a square: v, v, * - - v,,, =
x% Then ufv;, udv, ..., udy,,,, are distinct elements of &, and their product is a

square:
(ugvy)(ubvs) - - - (ubvi,.,) = (8" 'x)’,

so that (4.59) holds, which completes the proof of the theorem.
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