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Abstract: We explicitly construct four infinite families of irreducible triple
systems with Ramsey-Turán density less than the Turán density. Two of
our families generalize isolated examples of Sidorenko [14], and the first
author and Rödl [12]. Our constructions also yield two infinite families
of irreducible triple systems whose Ramsey-Turán densities are exactly
determined. © 2006 Wiley Periodicals, Inc. J Graph Theory 52: 211–216, 2006
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For anr-graphF, the Tuŕan number ex(n,F) is the maximum number of edges
in an n vertex r-graph containing no copy ofF. It is well known thatπ(F) =
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limn→∞ ex(n,F)/(n

r
) exists, but these numbers are very hard to determine when

r ≥ 3. For example, until very recently [10] no nontrivial infinite family{Fi} of
triple systems has been constructed for whichπ(Fi) is known (by “nontrivial” we
mean that for everyFi, there are no two verticesx, y of Fi for which (1) no edge
contains bothx andy, and (2)xuv is an edge iffyuv is an edge). Two examples that
are known, and used in this note, areπ(F5) = 2/9, andπ(F (3, 2)) = 4/9, where
F5 = {123, 124, 345} andF (3, 2) = {123, 124, 125, 345}.

Many of the (conjectured) extremal examples for (hyper)graph Turán problems
have large independent sets. Motivated by this observation, Erdős and Śos imposed
a restriction on the underlyingr graphs in this problem, namely that they should
not have large independent sets. This new class of problems has become known as
the Ramsey–Turán problems. More precisely, for 0< δ ≤ 1,

ex(n,F, δ) = max{|G| : G is anr-graph withF �⊆ G andα(G) < δn},

or zero if no such hypergraph exists. The Ramsey–Turán numberρ(F) is defined
as

sup
δ(n)

{
lim sup

n→∞
ex(n,F, δ(n))

(n

r
)

: δ(n) → 0 asn → ∞
}

.

Since obviouslyρ(F) ≤ π(F) for everyF, a fundamental question is whether equal-
ity holds. A sequence of papers [1,3,16] showed that in the case thatF is a complete
(2-uniform) graph,ρ(F) < π(F). It was therefore a surprise when Erdős and Śos
[4] proved that forr graphs whenr ≥ 3, this does not hold. Call anr-graphH locally
dense if for every edgeE ∈ H, there is another edgeE′ ∈ H with |E ∩ E′| ≥ 2.

Theorem 1 (Erdős-Śos [4]). Let r ≥ 3 and H be a locally dense r-graph. Then
ρ(H) = π(H).

On the other hand, it is proved in [4] thatr graphsF exist (r ≥ 3) for which
0 = ρ(F) < π(F). Motivated by these examples, Erdős and Śos asked whether
there existr graphs (r > 2) with

0 < ρ(F) < π(F). (1)

This was answered positively by Frankl and Rödl [8] for everyr > 2, who showed
that there exist infinitely manyr graphs for which (1) holds however, they did not
obtain a single explicit example. Subsequently, Sidorenko [14], using ideas from
[8] proved that for the 3-graphF7 = {123, 145, 167, 245, 267, 345, 367, 467, 567},
inequality (1) holds. Recently, the first author and Rödl [12] proved thatF (3, 3) =
{124, 125, 126, 134, 135, 136, 234, 235, 236, 456} is another example.

Call anr-graphH reducible if

(1) it is disconnected, or
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(2) its vertex set can be partitioned intoX ∪ Y , such that no edges ofH are
contained inY, and all edgesE ofH with E ∩ X andE ∩ Y both nonempty
have the form{x, y1, . . . , yr−1}, wherex ∈ X is fixed,{y1, . . . , yr} ⊂ Y , and
{{y1, . . . , yr−1} : {x, y1, . . . , yr−1} ∈ H} is (r − 1)-partite.

If H is not reducible, thenH is irreducible. It follows [13] from the defini-
tion of ρ that for every reducibleH, there is an irreducibleH′ ⊂ H for which
ρ(H′) = ρ(H) (in Case 1,H′ is an appropriately chosen component, and in Case 2,
H′ = H− Y ). Therefore, it makes sense to ask forρ(H) only whenH is irre-
ducible.

In this note, we use essentially the same ideas from [8] to explicitly construct
four infinite families of irreducible triple systems for which 0< ρ < π. Our con-
structions are in the spirit of [14], but we obtain more variety (in particular, infinite
families) with no extra effort. Although the underlying principle behind our con-
struction is a rather general phenomenon (see (3)), our lack of understanding ofπ

limits our approach.
One of our families (see Example 1) containsF (3, 3), and another (see

Example 3) containsF7. Thus our contribution can be viewed as a generalization of
results in [12,14]. Our constructions also yield two infinite families of irreducible
triple systemsFi for which ρ(Fi) is determined. The values in the two cases are
2/9 and 4/9 (see Examples 2 and 3). Thus in this sense, our understanding ofρ for
hypergraphs is greater than that forπ (we can think of the notion ofirreducible for
ρ as analogous to the notion ofnontrivial for π).

Given anr-graphH, let H∗ be anr-graph obtained fromH by replacing a
vertexv with r verticesv1, . . . , vr, replacing each edgeE containingv with r edges
E1, . . . , Er, whereEi = E − v ∪ {vi}, and adding the edge{v1, . . . , vr}.

The main tool for the constructions is the following theorem. Although we
proved it independently, later we noticed that the main part of it is proved in ([8]
Lemma 2.3).

Theorem 2. Let H be an r-graph, and H∗ be obtained from H by replacing any
vertex v. Then ρ(H∗) ≤ π(H). If, in addition, H is locally dense, then ρ(H∗) =
π(H).

Proof. The first part is proved in [8]. For the last statement, Theorem 1 yields
ρ(H∗) ≤ π(H) = ρ(H). SinceH ⊂ H∗, the result follows. �

A vertex multiplication in a hypergraphH is the replacement of a vertexv inHby
a finite set of vertices{v1, . . . , vk}, and the replacement of every edgeE containing
v by thek edgesE − v ∪ {vi}. If H′ is obtained fromH by a finite sequence of
vertex multiplications, then we say thatH′ is a blowup of H. It is easy to see
that ifH is locally dense, thenH′ is locally dense as well. Also, it is well known
(see, e.g. [15]) that

π(H) = π(H′). (2)
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Note that ifF∗ is obtained fromF by replacing a nonisolated vertex ofF, then
F∗ contains the hypergraphF (3, 2) = {567, 467, 367, 345}, and it is known [11]
thatπ(F (3, 2)) ≥ 4/9. Thereforeπ(F∗) ≥ 4/9.

Our constructions below yield infinite families of irreducible 3 graphs, since in
each case (except Example 2) we begin with an arbitrary blowupF of an irreducible
3-graphH (with π(H) > 0). After this we formF∗ by replacing any vertex from
F, except in Example 3, where we are more specific. UsuallyH is locally dense,
and henceF is also locally dense. Consequently, Theorems 1, 2 and (2) yield

0 < π(H) = ρ(H) ≤ ρ(F∗) = π(F) ≤ π(F∗). (3)

One only needs to verify thatπ(F) < π(F∗) to obtain 0< ρ(F∗) < π(F∗). Al-
though this may be true in general, we are only able to show it for the few examples
below.

Example 1. LetH(4, 3) be the (unique) four vertex triple system with three edges,
and letF be a blowup ofH(4, 3). Then Theorem 2 implies thatρ(F∗) = π(F).
We also haveπ(F) = π(H(4, 3)), and 2/7 ≤ π(H(4, 3)) < 1/3 − 10−6 (see [6,9]).
Therefore

2/7 ≤ ρ(F∗) < 1/3 − 10−6 < 4/9 ≤ π(F∗).

Note that in the caseF = H(4, 3), and the vertex used to formF∗ is the unique vertex
of degree three inH(4, 3), we obtainF∗ = F (3, 3), thus retrieving the example of
[12].

Example 2. Let F5 be the five vertex triple system with edges 123, 124, 345. Let
F be a blowup ofF5, where the vertex labeled 5 is replaced by at least two vertices.
Then Theorem 2 implies thatρ(F∗) = π(F). We also haveπ(F) = π(F5) = 2/9
[5]. Therefore

2/9 = ρ(F∗) < 4/9 ≤ π(F∗).

Example 3. Recall thatF (3, 2) = {567, 467, 367, 345}. Let F be a blowup
of F (3, 2). Let F∗ be obtained fromF by replacing one of the vertices play-
ing the role of a vertex in{3, 4, 5} (say 3), and then adding an edge among
the three new vertices. Note that in the caseF = F (3, 2), we haveF∗ =
{567, 467, 367, 345, 267, 167, 245, 145, 123}, where 1 and 2 are the two new ver-
tices, thusF∗ = F7. Now Theorem 2 implies thatρ(F∗) ≤ π(F). The last part of
Theorem 2 implies thatρ(F∗) = π(F) except possibly in the case thatF was ob-
tained fromF (3, 2) without blowing up any of the vertices 3, 4, 5 (this includes the
caseF∗ = F7).

In this case, letF− be obtained fromF∗ by deleting the edge (in the label-
ing above) 123. ThenF− is locally dense and soρ(F−) = π(F−) by Theorem 1.
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Consequently,

4/9 ≤ π(F (3, 2)) = π(F−) = ρ(F−) ≤ ρ(F∗) ≤ π(F) = π(F (3, 2)) ≤ 4/9,

where the first inequality is from [11], the first and last equalities are from (2), and
the last inequality was recently proved by Füredi, Pikhurko, and Simonovits [7].
Thus even in this case,ρ(F∗) = π(F) = 4/9.

On the other hand, a short case analysis shows thatF∗ is absent in the hypergraph
G with vertex partitionA1 ∪ A2 ∪ A3 (‖Ai| − |Aj‖ ≤ 1 for i �= j), and all edges of
the formabc, wherea, b ∈ Ai, c ∈ Ai+1 (indices modulo 3), ora ∈ A1, b ∈ A2, c ∈
A3. SinceG has density 5/9, π(F∗) ≥ 5/9. Therefore,

4/9 = ρ(F∗) < 5/9 ≤ π(F∗).

Example 4. Let K3
4 be the complete triple system on four points, and letF be a

blowup ofK3
4. Then Theorem 2 implies thatρ(F∗) = π(F). We also haveπ(F) =

π(K3
4), and from [2,17], 5/9 ≤ π(K3

4) < 0.592. It is easy to see thatF∗ is not
2-colorable, thereforeπ(F∗) ≥ 3/4. Consequently,

5/9 ≤ ρ(F∗) < 0.592< 3/4 ≤ π(F∗).

We end by remarking that our examples are nontrivial not only in the sense that
the hypergraphs produced are irreducible, but also because one notes thatρ is not
preserved in general under the blowup operation (asπ is). Consequently, one cannot
hope to just take blowups and produce an infinite family from a single 3-graph
satisfying (1). One well-known problem in this regard is to determineρ(K2,2,2),
whereK2,2,2 is the complete 3-partite graph with two vertices in each part. It is
trivial thatρ(K3) = 0, but it is unknown whetherρ(K2,2,2) > 0.
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March 2003. He thanks the Rényi institute for its support. He also thanks Vojta
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Combinatorica 3(3–4) (1983), 341–349.

[6] P. Frankl and Z. F̈uredi, An exact result for 3-graphs, Discrete Math 50(2–3)
(1984), 323–328.
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