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This paper is an extended version of the lecture given by the second author delivered at the

conference ‘Combinatorics: Walter Deuber Memorial Meeting’ held on 7–8 October 2002

at Humboldt-Universität zu Berlin. Regretfully, this topic was to be the last that fascinated

Walter Deuber’s mind. We wrote this article in remembrance of that.

1. Introduction

1.1. Measurability and paradoxical decompositions in R
n

The theory of paradoxical decompositions arose in connection with the existence of non-

Lebesgue measurable sets. Vitali [63] used a decomposition of the unit circle S1 = {x ∈
R

2, |x| = 1} to prove that there is no nontrivial isometry-invariant and σ-additive measure

defined on all subsets of the unit circle S1. Motivated by this, Hausdorff asked: What

is the situation if one requires the measure to be only finitely additive? The answer was

that there exists a finitely additive isometry-invariant measure on S1, but there is no such

measure on the two-sphere S2 = {x ∈ R
3, |x| = 1}. Hausdorff [34] also proved this by

means of some sort of paradoxical decomposition of S2. However, Banach proved in [2]

the existence of isometry-invariant finitely additive measures in R
1 and R

2.

The non-existence of isometry-invariant finitely additive measures in R
3 was proved by

Banach and Tarski [4], also by means of paradoxical decomposition. They proved that

it is possible to partition the unit ball in R
3 into finitely many pieces and to rearrange

them by rigid motions (using isometric transformations) to form two unit balls. This

‘duplication’, this ‘paradoxical decomposition’ of the ball, at first seems to be impossible.

We will discuss it below in more detail.
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82 G. Elek and V. T. Sós

The analysis of this surprising phenomenon led to the concept of amenable groups,

introduced and first studied by von Neumann [49]. Since that time the subject has

developed into a field that has importance besides analysis, group theory and geometry

in discrete mathematics and computer science (e.g., in the theory of random walks,

percolation, and expanders).

The objective of the present paper is to give some illustrations and indications of the

wide range of topics that have developed from the subject mentioned above, providing

some motivation for the particular problem considered in the paper [17] and some of its

consequences. We emphasize that this is not a survey of any part of these topics.

For detailed information and references about the extremely wide area the reader

is referred to the excellent books of Gromov [30], de la Harpe [33], Lubotzky [45],

Paterson [51], Wagon [64] and Woess [68], and the many survey papers on these subjects,

e.g., by Ceccherini-Silberstein, Grigorchuk and de la Harpe [12], Laczkovich [42, 44],

Thomassen and Woess [59] and Woess [67].

2. Invariant measure and paradoxicity

2.1. Banach–Tarski paradox

The ‘duplication’ of the ball in R
3 means the following.

Definition 2.1. A,B ⊆ R
3 are piecewise congruent if there exist decompositions

A =

k
·⋃
i=1

Ai, B =

k
·⋃
i=1

Bi,

such that Ai is congruent to Bi for 1 � i � k.

(Here ‘congruent’ means that there is an isometric transformation t : Bi → Ai such that

Ai = t(Bi).)

Theorem 2.2. ([4]) The unit ball B ⊆ R
3 is paradoxical in the following sense: there exists

a decomposition of B,

B = B1

⋃
B2,

such that

B, B1, B2

are pairwise piecewise congruent.

2.2. Amenability and paradoxicity

As we mentioned in the Introduction, the Hausdorff–Banach–Tarski paradoxical decom-

positions of the ball (or of the sphere) in R
d exist for d = 3 (and also for d > 3), but do

not exist for d = 1 and d = 2.

It was von Neumann [49] who discovered that these different phenomena are due to

the difference between the isometry groups of R
1,R2 and R

3; the latter is more‘rich’.
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Paradoxical Decompositions and Growth Conditions 83

He considered a general setting where the basic notions are the finitely additive group-

invariant measure (or invariant mean) and the paradoxical groups (or amenable groups =

non-paradoxical groups).

Here we give a very short introduction to the definitions and properties which are the

most relevant, from our point of view.

Throughout this paper all graphs and all groups are infinite.

Definition 2.3. Let Γ be a group acting on a set X as bijections. The subsets A,B ⊂ X

are Γ-equidecomposable if there exist partitions

A =

k⋃
i=1

Ai, B =

k⋃
i=1

Bi

and elements gi ∈ Γ such that

giAi = Bi for any 1 � i � k.

We denote this by A
Γ∼ B.

Definition 2.4. The set A ⊂ X is called Γ-paradoxical if there exists a decomposition

A = A1 ∪ A2, A1 ∩ A2 = ∅

such that

A
Γ∼ A1

Γ∼ A2.

Definition 2.5. Let Γ be a group acting on the set X as bijections. A finitely additive

Γ-invariant (probability) measure on the set X is a function µ : P (X) → [0, 1] such that

(i) µ(X) = 1,

(ii) µ(A ∪ B) = µ(A) + µ(B) if A ∩ B = ∅,

(iii) µ(A) = µ(gA) for all g ∈ Γ, A ⊆ X.

Let E ⊆ X. If µ : P (X) → [0,∞] satisfies (ii), (iii) and µ(E) = 1 then it is called a Γ-

invariant measure normalized on E.

Here P (X) denotes the power set of X.

Every group acts naturally on itself by left multiplication: if X = Γ, we identify every

element g ∈ Γ with the map x → g x (x ∈ Γ). So we identify Γ with this transformation

group acting on the set Γ. According to this we have the following.

Definition 2.6. A,B ⊆ Γ are equidecomposable if there are partitions

A =

k⋃
i=1

Ai, B =

k⋃
i=1

Bi

and elements gi ∈ Γ such that

giAi = Bi for i = 1, . . . , k.

We denote this by A ∼ B.
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84 G. Elek and V. T. Sós

Definition 2.7. The set A ⊆ Γ is paradoxical if there exists a decomposition

A = A1 ∪ A2, A1 ∩ A2 = ∅

such that

A ∼ A1 ∼ A2.

Definition 2.8. A group Γ is called amenable if there is a finitely additive Γ-invariant

probability measure µ : P (Γ) → [0, 1].

A group is called supramenable if, for any ∅ �= A ⊆ X, there is a finitely additive

Γ-invariant measure which is normalized on A, whenever Γ acts on X.

(The word amenable was introduced only later, by M. M. Day in 1950.)

Remark 2.9. Obviously, if X is paradoxical then there is no finitely additive Γ-invariant

measure on X. In other words, suppose

X = A ∪ B, A ∩ B = ∅

and

X
Γ∼ A

Γ∼ B.

Then

1 = µ(X) = µ(A ∪ B) = µ(A) + µ(B) = 2,

a contradiction.

Tarski proved the basic result that the converse of the above remark is also true.

Theorem 2.10. ([57]) Let Γ be a group acting on a set X. Then there is a Γ-invariant

finitely additive measure µ normalized on A ⊂ X if and only if A is not Γ-paradoxical.

Corollary 2.11. Every group Γ is either amenable or paradoxical.

The most important example of an amenable group is the group of integers Z. Let us

recall a direct proof of this fact.

Proposition 2.12. Z is amenable.

Pick a set A ⊂ Z. The frequency of A in {−n,−(n− 1), . . . , n} is defined by

fn(A) =
|A ∩ {−n,−(n− 1), . . . , n}|

2n+ 1
.

The density of A, if it exists, would be the limit of the fns. Unfortunately, this limit

in general does not exist. However, it is always true that fn(A) is a bounded sequence,

and if A ∩ B = ∅ then fn(A ∪ B) = fn(A) + fn(B). By the Hahn–Banach theorem, there
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Paradoxical Decompositions and Growth Conditions 85

exists a continuous linear functional BLim on the space of bounded real sequences l∞

that coincides with the limit on the space of convergent sequences c ⊂ l∞. So we can

define µ(A) as BLim{fn(A)}n�1. By linearity, µ(A ∪ B) = µ(A) + µ(B) if A ∩ B = ∅. Also,

µ(Z) = 1. Note that, for any natural number k, limn→∞(fn(A+ k) − fn(A)) = 0. Hence

BLim{fn(A+ k) − fn(A)}n�1=0. Thus µ is a finitely additive measure which is invariant

with respect to the Z-action.

Von Neumann [49] gave the simplest and most important example for paradoxical

group: he proved the following.

Proposition 2.13. F2, the free group generated by (a, b), is paradoxical.

Below, ‘r.w.s.w.’ means ‘reduced words starting with’. Consider

A = {r.w.s.w. a}
A− = {r.w.s.w. a−1}

B = {1, b−1, b−2, . . . }
⋃

{r.w.s.w. b}

B− = {r.w.s.w. b−1} but not in {b−1, b−2, . . . }.

Using these sets we get the following decomposition:

F2 = A ∪ A− ∪ B ∪ B− = A ∪ (a A−) = B ∪ (b B−).

Hence F2 is paradoxical and consequently non-amenable.

Here we list some important results about amenable groups.

Proposition 2.14. All elementary groups, in particular all Abelian groups, all nilpotent

groups, all solvable groups are amenable, or non-paradoxical:

• a subgroup of an amenable group is amenable,

• a group Γ is amenable if and only if every finitely generated subgroup of Γ is amenable,

• as we mentioned, F2 (or Fk) is paradoxical,

• if F2 is a subgroup of Γ, then Γ is paradoxical.

It was conjectured for more than 40 years that the converse of the last statement is

also true. However Ol’shanskii [50] constructed a paradoxical group that has no elements

of infinite order and consequently has no free subgroup of any rank.

Under certain restriction (e.g., linear groups) on Γ it is true that Γ is paradoxical if and

only if F2 is a subgroup of Γ. For references see [64].

Remark 2.15. It is not always simple to decide whether a group is amenable or not

amenable. There are some famous examples for which it is still undecided whether the

group is amenable or not, such as the Thompson group.
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86 G. Elek and V. T. Sós

2.3. Paradoxicity of X and Γ

(1) If X is Γ-paradoxical, then Γ is paradoxical as well.

Consequently:

(2) if an amenable group Γ acts on X as bijections, then there exists a finitely additive,

Γ-invariant measure on X.

The converse is not true. However,

(3) if Γ acts on X without nontrivial fixed points, then X is Γ-paradoxical if and only if

Γ is paradoxical.

More generally, the following theorem was proved by Rosenblatt.

Theorem 2.16. ([52]) Let Γx denote the group {g ∈ Γ : g(x) = x}. Suppose Γx is amenable

for every x ∈ Γ. Then Γ is amenable if and only if X is not Γ-paradoxical.

2.4. Back to R
d

Let Γd be the group of isometries of R
d and let SOd be the group of rotations of the

sphere Sd−1 = {x ∈ R
d, |x| = 1} (or of the ball Bd).

Then, for d � 3:

(i) F2 is a subgroup of SOd,

(ii) SOd, Γd are paradoxical and non-amenable,

(iii) the ball Bd and the sphere Sd−1 are SOd, Γd-paradoxical.

For d = 1, 2:

(iv) F2 is not a subgroup of SOd,

(v) SOd, Γd are amenable and not paradoxical (i.e., they are solvable),

(vi) Bd, Sd−1 are not SOd, Γd-paradoxical.

Remark 2.17. Since isometries of R
d can have many fixed points, the Banach–Tarski

paradox for (iii) is not just a consequence of (ii).

In fact, Banach and Tarski proved the following stronger version of Theorem 2.2.

Theorem 2.18. ([4]) Let A,B ⊂ R
3 be bounded sets with nonempty interiors. Then A

Γ3∼ B.

Consequently, every bounded subset of R
3 with nonempty interior is paradoxical.

2.5. Growth conditions and amenability

Above we gave a very short outline of the start of the theory of amenable groups,

finitely additive, invariant measures, and paradoxicity. The properties described above are

strongly related to certain growth properties and this indicates already the importance of

all these in the theory of random walks, percolation and expanders. (Below we restrict

our considerations to random walks.)

The first explicit growth condition which gives an important and useful characterization

of amenability was formulated by Følner.
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Paradoxical Decompositions and Growth Conditions 87

Theorem 2.19. ([23]) A group Γ is amenable if and only if, for every finite subset K ⊂ Γ

and every ε > 0, there is another finite set F ⊂ Γ such that, for any g ∈ K ,

|gF�F |
|F | < ε.

Remark 2.20. There are different variations of the Følner condition, e.g., when, instead

of the symmetric difference, only the difference is considered, or when the ‘test’ sets Fn
form a nested sequence as εn → 0.

Adel’son-Vel’skii and Sreider [1] defined a growth function providing a sufficient

condition for amenability.

Definition 2.21. Let S be a finite subset of the group Γ (not necessarily a generating set!)

and let

γ∗
S (n) =: {g1 . . . gn : gi ∈ S ∪ S−1 for 1 � i � n}.

Here |γ∗
S (n)| is the number of elements of Γ obtainable as a reduced word of length at

most n using elements of S ∪ S−1 as letters.

Let γ∗(Γ) = supS lim |γ∗
S (n)|1/n where the supremum is taken over all finite sets S ⊂ Γ.

It is easy to see that either γ∗(Γ) = 1 or γ∗(Γ) = ∞.

The group Γ is called exponentially bounded if limn→∞ |γ∗
S (n)|1/n = 1 for every finite

S ⊂ Γ.

Theorem 2.22. ([1]) If Γ is exponentially bounded, then Γ is amenable (even supramenable).

If Γ is exponentially bounded, Γ acts on X and φ �= A ⊂ X, then A is not Γ-paradoxical.

The converse of this theorem is not true.

Remark 2.23. |γ∗
S (n)| measures in some way the noncommutativity of Γ, the system of

relations in Γ.

If Γ is an Abelian group, then many words give the same group element, and γ∗
S (n)

is polynomially bounded. If S = (a1, . . . , ak) then γ∗
S (n) � n(2n+ 1)k . Hence the theorem

above gives a simple proof that Abelian groups are amenable (even supramenable).

On the other hand, for the free group Fk with free generators S = (a1, . . . , ak), γ
∗
S (n) =

(k(2k − 1)n − 1)/k − 1, and hence Fk is not exponentially bounded.

In Section 4 we will discuss some further results on growth functions and their relations

to each other and to random walks.

The so-called cogrowth function of a group Γ introduced by Grigorchuk [27] provides

a characterization of amenability – a necessary and sufficient condition in terms of

the number of words of length at most n that vanish when interpreted in Γ. See also

Cohen [13].
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2.6. Squaring the disc

Since finitely additive isometry-invariant measure (Banach measure) µ exists in R
2, two

sets A,B ⊂ R
2 can be equidecomposable only if µ(A) = µ(B).

In 1925 Tarski asked whether a disc and a square of the same measure are equidecom-

posable.

Tarski’s question was answered affirmatively only after more than 60 years by Lacz-

kovich [39], who proved the following.

Theorem 2.24. ([39]) The disc is Γ2-equidecomposable to a square of the same area.

Moreover, it is true using translations only.

Generalizations in several directions are given in [40, 41]. In the paper [39], Laczkovich

introduced the notion of uniformly spread sets. This was a basic tool to prove the above

theorem; he established the connection between uniformly spread sets, discrepancies and

measure theory.

Definition 2.25. X ⊆ R
d is uniformly spread if there is an f : X → Z

d such that

sup
x∈X

d(x, f(x)) < ∞.

This provided the motivation for considering transformations with this property in

general. We shall discuss this in the next section.

3. Paradoxicity of metric spaces

To speak about the paradoxicity of a space X one has to specify a group Γ which acts

on X. In the classical theory outlined above in the case X = R
d, the group was Γ = Γd,

the group of isometries of R
d or some subgroup of it.

The paradoxicity with respect to the group of isometries can be considered for more

general metric spaces, e.g., for hyperbolic spaces.

3.1. Wobbling paradoxicity

In the paper of Deuber, Simonovits and Sós [17] – generalizing the above-mentioned

concept introduced by Laczkovich – the concept of wobbling transformations (called more

recently bounded perturbation of the identity) for an arbitrary metric space is introduced.

Definition 3.1. Let (X, d) be a metric space, A,B ⊆ X. A bijection f : A → B is called a

wobbling bijection if

sup
x∈A

d(x, f(x)) < ∞.

A, B ⊆ X are called wobbling-equivalent if there is a wobbling bijection f : A → B.
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Paradoxical Decompositions and Growth Conditions 89

Definition 3.2. The set A ⊆ X is called wobbling-paradoxical if there is a decomposition

A = A1 ∪ A2, A1 ∩ A2 = ∅

such that A,A1, A2 are pairwise wobbling-equivalent.

Let Γw = Γw(X) denote the group of wobbling bijections f : X → X.

Apparently wobbling equivalence is a stronger requirement than Γw-equidecompos-

ability. However, Laczkovich proved that the two properties are equivalent.

Proposition 3.3. ([43]) The sets A,B ⊆ X are wobbling-equivalent if and only if A
Γw∼ B.

Consequently, a set A ⊆ X is wobbling-paradoxical if and only if it is Γw-paradoxical.

In the paper [17], wobbling paradoxicity is characterized by the following growth

condition. For A ⊂ X, k > 0, let Nk(A) denote the k-neighbourhood of A:

Nk(A) = {x ∈ X : d(x, A) � k}.

Definition 3.4. The metric space (X, d) is doubling if there is a k > 0 such that

|Nk(A)| � 2|A| for every finite A ⊂ X.

Theorem 3.5. ([17]) Let (X, d) be a discrete and countable metric space. (X, d) is wobbling-

paradoxical if and only if it is doubling.

Proof. Let Gk(X,X) denote the bipartite k-distance graph of (X, d), that is, for x, y ∈ X,

(x, y) is an edge in Gk(X,X) if and only if d(x, y) � k.

If (X, d) is a discrete and countable metric space, then Gk(X,X) is a countable, locally

finite bipartite graph.

(X, d) is wobbling-paradoxical if and only if, for some k > 0, Gk(X,X) contains a perfect

(2, 1) matching. According to the generalized Hall–Rado theorem, the doubling property

of (X, d) implies that Gk(X,X) has a (2, 1) matching, hence (X, d) is wobbling-paradoxical.

The converse statement, that wobbling paradoxicity implies doubling, is obvious.

Remark 3.6. The doubling property is strongly related to the so-called Gromov condition

(see [32] and [12]).

Laczkovich proved that an analogous result is true in more general (so-called bounded)

spaces. As a special case he obtained the following generalization of Theorem 3.5.

Theorem 3.7. ([43]) An arbitrary metric space (X, d) is Γw-paradoxical if and only if it is

doubling.
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90 G. Elek and V. T. Sós

Example 3.8. (1) Let X = {log n; n ∈ N+} and d be the usual metric in R. Then the

decomposition with

X1 = {log(2n+ 1)}, X2 = {log 2n}

shows that X is wobbling-paradoxical.

(2) R
2 is wobbling-paradoxical. Take a checkerboard tiling of the plane. A translation

moves the black tiles into the white ones. Moreover, any single square is equivalent to a

domino. This shows that R
2 and the set of black tiles are equivalent.

Observe that these two metric spaces are not isometry (Γ1 resp. Γ2)-paradoxical. Note

also that the lattices Zd are not wobbling-paradoxical.

3.2. Wobbling paradoxicity of graphs

As an interesting and important special case of a metric space we consider graphs.

Let G(V ;E) be an infinite, locally finite, connected graph.

(V , d) is a discrete, countable metric space where, for x, y ∈ V , d(x, y) is the length of the

shortest path in G between x and y. For short, we call G paradoxical, resp. non-paradoxical,

depending on whether (V , d) is wobbling-paradoxical, resp. non-wobbling-paradoxical.

An interesting question to ask is which graph properties, besides the doubling property,

are relevant in the paradoxicity.

For trees there is a simple characterization. A path Pk ⊆ G is a hanging chain if all its

inner vertices have degree 2.

Theorem 3.9. ([17]) A locally finite, infinite tree T without end-vertices is wobbling-

paradoxical if and only if the length of hanging chains in T is bounded.

Corollary 3.10. An infinite tree T is wobbling-paradoxical if its minimum degree � 3.

For further reference on paradoxicity of graphs see Fon-der-Flaass [24], Carstens,

Deuber, Thumser and Koppenrade [9], and Deuber and Kostochka [16]. See also the

expository paper of Walter Deuber, ‘Paradoxe Zerlegung Euklidischer Räume’ [15], where

Theorem 3.5 [17] is already quoted, even with a proof; however, because of some technical

reasons the paper [17] did not appear until 1995.

4. Growth in groups and on graphs

Different variations of growth properties, expanding properties are the most determinant

in the theory of random walks. Hence it is not surprising that there is a strong connection

between the properties of random walks and amenability. There are different definitions

and concepts to measure these properties.
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4.1. Isoperimetric constant

Let (X, d) be a discrete, countable metric space. For a finite A ⊂ X let ∂(A) := N1(A) \ A.

The (vertex )-isoperimetric constant of (X, d) is defined by

i(X) = inf
A⊂X

|A|<∞

|∂(A)|
|A| .

Evidently there is a connection between the isoperimetric constant and the doubling

property, though at the isoperimetric constant we consider only 1-neighbourhoods,

whereas at the doubling property k-neighbourhoods for k > 1 are also considered.

Obviously i(X) > 0 implies that X is doubling. The converse is not always true. i(X)

can be zero for (X, d) spaces which are doubling.

Example 4.1. Let G(V , E) be the following infinite graph: take the disjoint union of the

complete graphs K2n and connect K2n and K2n+1 by a single edge for every n ∈ N.

G is doubling (hence paradoxical); however, i(G) = 0. Nevertheless, for graphs of

bounded degree we have the following.

Proposition 4.2. If the infinite, connected graph G is of bounded degree, then i(G) > 0 if

and only if G is doubling, or equivalently wobbling-paradoxical.

Define the k-isoperimetric constant:

ik(G) = inf
A⊂V (G)
|A|<∞

|Nk(A) \ A|
|A| .

In the general case the following proposition holds.

Proposition 4.3. Let G be an infinite, connected, locally finite graph. G is doubling, or

equivalently wobbling-paradoxical, if and only if ik(G) > 0 for at least one positive integer k.

Question 4.4. Note that wobbling paradoxicity of a graph G does not change, whether

we add or delete finitely many edges, or substitute some edges with hanging chains of

bounded length, as long as we keep connectedness. An infinite tree without end-vertices

and with minimal degree three is in some sense ‘irreducible’ (or minimal) wobbling-

paradoxical. Which are the ‘irreducible’ wobbling-paradoxical graphs? What are the basic

or characteristic properties?

The next problem is in this direction.

In [17] the following problem was formulated.

Problem 4.5. Is it true that if an infinite graph is paradoxical, then there is an infinite

spanning tree T ⊆ G which is paradoxical?
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Example 4.1 shows that this is not always true.

It is interesting that, independently from Deuber, Simonovits and Sós, and led by

different motivation, Benjamini and Schramm considered a similar problem. They proved

the following.

Theorem 4.6. ([6]) Let G be an infinite, locally finite graph. If i(G) > 0 then G contains a

tree T with i(T ) > 0.

Moreover, if i(G) � 1 then G contains a spanning tree T with i(T ) � 1.

Corollary 4.7. By Proposition 4.2, if G is of bounded degree and wobbling-paradoxical, then

it contains a wobbling-paradoxical tree.

The following problem is still open.

Problem 4.8. Suppose that an infinite, connected, locally finite (or of bounded degree)

graph G is wobbling-paradoxical and 1 > i(G) > 0. Does it imply that it contains a

wobbling-paradoxical spanning tree? Example 4.1 shows that one should consider the

case i(G) = 0 separately.

Now we have some reason to think that for this question the answer is ‘no’.

Some more results about the existence of transient subtrees in transient graphs will be

mentioned in Section 5 (Theorem 5.10).

Motivated by Følner’s condition, a graph G is called amenable if i(G) = 0.

4.2. Groups as metric spaces, Cayley graphs

The representation of groups by graphs was introduced by Cayley at the end of the 19th

century. This representation provides a way to consider groups as metric spaces.

For detailed reference on geometric group theory see the monographs [32] and [33].

Here we give a very brief introduction, simply to indicate the relevance of the topic to the

present subject.

In this section let Γ be a finitely generated group, and let S be a symmetric set of

generators: S = S ∪ S−1 and 1 �∈ S .

Definition 4.9. (Cayley graph) The Cayley graph of Γ with respect to S has vertex set

V (G) = Γ and (x, y) ∈ E(G) if and only if xy−1 ∈ S .

Denote by dS the resulting (shortest path) graph metric on G.

Example 4.10. (1) The lattice Zd is a Cayley graph of the free Abelian group of rank d.

(2) The regular tree Td of degree d+ 1 is the Cayley graph of the free group with (d+ 1)/2

generators if d+ 1 is even. If d+ 1 is odd, then Td is the Cayley graph of the group with

d/2 free generators and one which is identical to its inverse.

Note that the lattice Zd is not wobbling-paradoxical, but Td is wobbling-paradoxical.
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Remark 4.11. Every Cayley graph is connected and regular, and hence of bounded

degree.

Every Cayley graph is vertex-transitive. The converse is not true. See the paper of

Diestel and Leader [18]. The Cayley graph does not determine Γ: there are different

groups with the same Cayley graph.

It is important to see that most of the properties of the Cayley graphs which will be

considered here are independent of the choice of the generating set.

One of the reasons is the connection between the metrics belonging to different

generating sets.

Definition 4.12. Let (X1, d1) and (X2, d2) be two metric spaces. The two spaces are called

Lipschitz-equivalent if there is a bijection ϕ : X1 → X2 and constants C1, C2 > 0 such

that, for any x, y ∈ X1,

C1d1(x, y) � d2 (ϕ(x), ϕ(y)) � C2 d1(x, y).

Proposition 4.13. Let GS1
and GS2

be two Cayley graphs of the same finitely generated

group Γ. Then the two metric spaces, the two metrics dS1
and dS2

are Lipschitz-eqivalent.

Let GS1
and GS2

be two Cayley graphs of the same finitely generated group Γ. Then

the isoperimetric constant i(GS1
) > 0 if and only if i(GS2

) > 0.

The next result is a consequence of Følner’s Theorem 2.19 and of Proposition 4.2.

Proposition 4.14. A finitely generated group Γ is amenable if and only if some Cayley graph

GS of Γ has isoperimetric constant i(GS ) = 0 or equivalently is not wobbling-paradoxical.

More generally, the results above imply the following result.

Proposition 4.15. The group Γ is amenable if and only if all Cayley graphs belonging to

finitely generated subgroups of Γ are not wobbling-paradoxical.

Clearly, for a finitely generated group there is a direct way (without considering the

Cayley graph) to define the metric.

Definition 4.16. The word length lS (g) of g ∈ Γ is defined as min{n : g ∈ Sn}. The left,

resp. right, word metric with respect to S in Γ is defined by

dL(x, y) = lS (x
−1y), resp. dR(x, y) = lS (xy

−1).

Obviously dS is the same as the dL word metric on Γ belonging to S .

Remark 4.17. The group action on the group itself is defined by left multiplication,

g → gx; hence the two metrics in general have different features from certain points of

view, as we will see below. Obviously, if Γ is Abelian then dL = dR .
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Definition 4.18. Let A,B ⊂ Γ. f : A → B is a piecewise left, resp. right, multiplication, if

there are partitions

A =

k⋃
i=1

Ai, B =

k⋃
i=1

Bi

and elements gi ∈ Γ such that giAi = Bi, resp. Aigi = Bi, for 1 � i � k.

Proposition 4.19. ([12]) Any piecewise left, resp. right, multiplication in Γ is a piecewise

isometry of (Γ, dL), resp. of (Γ, dR). This follows from

dL(gx, gy) = dL(x, y), and dR(xg, yg) = dR(x, y).

It is easy to see that the converse is not true. However, we do have the following result.

Proposition 4.20. ([12]) Let A,B ⊂ Γ. A bijection f : A → B is a wobbling bijection on

(Γ, dR), resp. on (Γ, dL), if and only if f is a piecewise left, resp. right, multiplication on A.

The ‘if ’ part follows simply by

dR(x, gx) = lS (g), dL(x, xg) = lS (g).

Remark 4.21. In the above-quoted paper of Ceccherini-Silberstein, Grigorchuk and de la

Harpe [12], different aspects of amenability, resp. paradoxicity of groups and pseudogroups

of transformation of a set X are considered. An important particular pseudogroup of

transformations is the set of wobbling transformations which have the property formulated

in Proposition 3.3. This pseudogroup plays an specific role in the discussions. The

propositions above provide a possibility of using wobbling paradoxicity of a metric

space in the study of different questions of amenability and paradoxicity of pseudogroups,

and as a special case, of groups. As a side result in [12] there is a simple proof of Tarski’s

theorem (Theorem 2.10) using the theorem of [17]. For an elegant exposition of this proof

see Ceccherini-Silberstein [10].

5. Random walks on graphs and on groups

In order to illustrate the relation of paradoxicity of a graph to random walks, we recall

some definitions.

Definition 5.1. Let G be an infinite, locally finite, connected graph. The simple random

walk on G is given by the transition probabilities

p(x, y) =

{
1/d(x) if (x, y) ∈ E(G),

0 otherwise,

where d(x) is the degree of the vertex x ∈ V .
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For the matrix P = (p(x, y)) let Pn = (pn(x, y)), where pn(x, y) is the probability that a

random walk starting in x will be at y after n steps. The spectral radius of G belonging

to P is defined by

ρ(G) := lim sup
n→∞

(pn(x, y))
1/n.

It is easy to see that ρ(G) does not depend on x and y.

Definition 5.2. The random walk (G, P ) is called recurrent if

∞∑
n=1

pn(x, y) = ∞

for some (and hence for all) (x, y) ∈ V . If this does not hold, then (G, P ) is called transient .

Note that in the recurrent case, with probability 1 the random walk starting at x returns

to x infinitely often; in the transient case, this event has probability 0.

The following theorem of Dodziuk gives a basic relation between the isoperimetric

constant and the spectral radius.

Theorem 5.3. ([19]) Let G be an infinite, connected graph of bounded degree. Then

ρ(G) < 1 if and only if i(G) > 0.

Obviously, if ρ(G) < 1 then (G, P ) is transient. Consequently we have the following

result.

Corollary 5.4. Let G be an infinite graph of bounded degree. By Proposition 4.2, if it is

wobbling-paradoxical, then the simple random walk on G is transient.

The converse is not true. As has already been proved by Polya, the simple random walk

on the d-dimensional lattice is transient for d � 3 (and recurrent for d = 1, d = 2). It is

easy to see that at the same time i(G) = 0 (and it is not doubling).

Note that the groups Z and Z
2 are amenable. The Cayley graphs – the lattices Z and

Z2 – are not wobbling-paradoxical.

For locally finite graphs which are not necessarily of bounded degree, Kaimanovich [35]

proved an analogue of Theorem 5.3 which gives the connection between the spectral radius

and a properly modified version of the isoperimetric constant.

Definition 5.5. Let

∂eA = {(x, y) ∈ E(G), x ∈ A, y ∈ V \ A}

and Vol(A) :=
∑

v∈A d(v). Then the strong isoperimetric constant is defined by

i∗(G) := inf
|A|<∞
A⊂V

|∂eA|
Vol(A)

.
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Theorem 5.6. ([35]) Let G be an infinite, connected, locally finite graph. Then ρ(G) < 1 if

and only if i∗(G) > 0. Hence i∗(G) > 0 implies transience.

Remark 5.7. Note that the two theorems above show that, for locally finite graphs,

the condition on the strong isoperimetric constant can have the same implication as

the corresponding condition on the vertex-isoperimetric constant for graphs of bounded

degree. See the same phenomena, e.g., in Theorem 5.9, Theorem 5.10 and Remark 5.25.

Now we consider the critical case when i(G) = 0.

Varopoulos [60] proved that any graph of bounded degree that ‘grows’ just slightly

stronger than the 2-dimensional lattice is transient.

Theorem 5.8. ([60]) Let G be an infinite, connected graph of bounded degree. If, for some

fixed ε > 0,

|∂A| > |A|1/2+ε

for every finite A ⊂ V (G), then the G is transient.

Thomassen [58] proved a stronger version of this theorem.

Let

∂−A = {x ∈ A such that ∃y /∈ A : (x, y) ∈ E(G)}

denote the inner boundary of G. Let f be a nondecreasing positive real function defined

on the natural numbers. G satisfies a (rooted connected) f-isoperimetric inequality, if there

is a constant c > 0 such that, for each finite A ⊂ V (which contains a fixed vertex v and

induces connected subgraphs in G),

|∂−A| > cf(|A|).

Theorem 5.9. ([58]) Each connected graph of bounded degree satisfying the rooted connec-

ted f-isoperimetric inequality with f(k) = k1/2+ε for some ε > 0 is transient.

In order to formulate the more general theorem for locally finite graphs, let ∂eA

and Vol(A) be as in Definition 5.5. G satisfies a rooted, connected f-isoperimetric edge-

inequality if there is a vertex v ∈ V (G) and a positive constant c > 0 such that, for each

finite A ⊂ V containing v and inducing a connected graph in G, we have

|∂eA| > cf(Vol(A)).

Theorem 5.10. ([58]) Let G be a connected, locally finite connected graph satisfying a

rooted, connected f-isoperimetric edge-inequality. If

∞∑
k=1

f−2(k) < ∞,

then G is transient.
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Moreover, the condition above implies that G contains a transient subtree with maximum

degree three.

Remark 5.11. As noted in the paper [58], not every transient graph contains a transient

tree [46].

Question 5.12. By Theorem 4.3, if G is of bounded degree, then we know that a graph G

is amenable (i(G) = 0) if and only if on V (G) there is a finitely additive, wobbling-invariant

measure µ. Does this measure have any relation to the simple random walk on G?

5.1. The growth function belonging to balls

Definition 5.13. Let

B(x, n) = {y ∈ V (G) : d(x, y) � n}.

G has exponential growth if

lim inf
n→∞

|B(x, n)|1/n > 1

and subexponential growth if

lim sup
n→∞

|B(x, n)|1/n = 1;

G has polynomial growth with degree at most k � 1 if

lim sup
n→∞

|B(x, n)|
nk

< ∞;

G has intermediate growth if it has subexponential growth but it is not of polynomial

growth.

The property of having exponential growth, subexponential growth or polynomial

growth is independent of the choice of x.

For quasi-transitive graphs (when the automorphism group of G acts on G with finitely

many orbits) the growth function characterizes the simple random walk on G.

Theorem 5.14. ([62]) Let G be an infinite, connected quasi-transitive graph. The simple

random walk on G is recurrent if and only if it has polynomial growth with degree at most 2.

Remark 5.15. In the definition of the growth function of a graph G, the neighbourhoods

of points x ∈ V ,

B(x, n) = {y ∈ V (G) : d(x, y) � n},

are considered, while at the isoperimetric constants and also at the doubling condition,

the neighbourhoods of arbitrary finite subsets A ⊂ V (G),

N1(A) = {y ∈ V (G) : d(y, A) � 1},
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or more generally,

Nk(A) = {y ∈ V (G) : d(y, A) � k}

(or different variations of these) are considered. There are some results on the connection

of the growth of |B(x, n)| and the growth of |N1(A)|. See, e.g., [33] or the very recent [7].

Remark 5.16. Clearly, if G has the doubling property, then it has exponential growth.

The converse is not true. Take, for example, the binary tree T3 and for any k insert a path

of length k instead of one edge on the k level.

In the paper [17] we (Deuber, Simonovits and T. Sós) used the expression ‘exponential

growth’ differently to how it is used above (and in the literature). For a finite set A ⊂ V

the growth of |Nr(A)|/|A| (which determines the wobbling paradoxicity) was considered.

This leads to some misunderstandings. Since the doubling property is stronger than

the exponential growth property, one could call it (and it is sometimes called) ‘strict

exponential growth’.

5.2. Random walks on groups

Random walks on groups were initiated in the seminal paper of Kesten [38]. He considered

the important special case of random walks on graphs when the graph GS is a Cayley

graph of a finitely generated group. A basic result is that a finitely generated group Γ is

amenable if and only if ρ(GS (Γ)) = 1 for all S .

Let S be a generating set of Γ.

Definition 5.17. The growth function γS (n) = |{g : lS (g) � n}| belonging to the generating

set S is the number of elements of Γ obtainable as a reduced word of length at most n

using elements of S ∪ S−1 as letters.

γS (n) is the same as |B(g, n)| in the Cayley graph GS , which – since GS is vertex-

transitive – is independent of g ∈ Γ.

For a Cayley graph GS being of exponential growth, intermediate growth or polynomial

growth depends only on the group Γ and is independent of the choice of the generating

set S . (See also Proposition 4.13.)

We mention just one important result on the rate of growth of groups proved by

Gromov.

Theorem 5.18. ([29]) A group has polynomial growth rate if and only if it is virtually

nilpotent, i.e., it has a nilpotent subgroup of finite index.

For previous results see, e.g., [48] and [69].

The results above on graphs imply the following.

Corollary 5.19. Let Γ be a finitely generated group. The following are equivalent:

• Γ is non-amenable,

• for some Cayley graph GS (for all Cayley graphs) i(GS ) > 0,

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0963548304006728
Downloaded from https://www.cambridge.org/core. MTA Renyi Alfred Mathematikai Kutatointezet, on 29 Jun 2020 at 09:40:36, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0963548304006728
https://www.cambridge.org/core


Paradoxical Decompositions and Growth Conditions 99

• for some Cayley graph GS (for all Cayley graphs) ρ(GS ) < 1,

• a Cayley graph (all Cayley graphs) are wobbling-paradoxical.

Furthermore:

• if Γ is non-amenable, then all its Cayley graphs have exponential growth.

Remark 5.20. The converse of this last statement is not true. There are amenable groups

of exponential growth, like the so-called Lamplighter group. (See [33].)

Corollary 5.21. By Theorem 5.14, if Γ is amenable, the random walk on GS is recurrent if

and only if it has polynomial growth of degree at most 2.

Moreover, it is an important consequence of Theorem 5.14 that the only recurrent groups

are the finite extensions of 0, Z and Z
2.

Remark 5.22. Suppose now that the Cayley graph GS of Γ is transient. If GS has

subexponential growth, then Γ is amenable. If GS has exponential growth, then it can be

amenable or non-amenable.

Remark 5.23. Let Γ be a finitely generated group, and let GS be a Cayley graph of Γ.

An interesting question is: Which functions can be growth functions of finitely generated

groups?

Answering a question of Milnor [48], Grigorchuk [28] proved that there are finitely

generated groups of intermediate growth.

It is easy to see that

1 � lim inf
n→∞

|γS (n)|1/n � (2|S | − 1),

and the type of the growth rate is independent of S . Further, lim infn→∞ |γS (n)|1/n =

(2|S | − 1) if and only if Γ is the free group of rank |S |.
In the monograph of de la Harpe [33] a large variety of problems on the growth

function can be found. Here we quote just one: Is there a c(|S |) ∈ (1, 2|S | − 1) such that

G is non-amenable if lim infn→∞ |γS (n)|1/n > c(|S |)?
Considering the other extreme, a negative answer was proved recently by Wilson [66],

answering a question of Gromov.

Theorem 5.24. There is group Γ which has non-Abelian free subgroups and which has a

sequence Sn of generating sets such that:

lim inf
n→∞

(
lim
k→∞

|γSn(k)|
1
k

)
= 1.

5.3. Quasi-isometry

Remark 5.25. Here we considered the following classes of infinite connected graphs:

locally finite graphs, graphs of bounded degree, quasi-transitive graphs (the automorphism

group has finitely many orbits), transitive graphs, Cayley graphs. Obviously each class is

a proper subset of the previous one. The theorems refer to one or another class. In some
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cases the theorem was originally formulated for groups or in a different setting for Cayley

graphs, and was then generalized to some of the larger classes, while in other cases it was

formulated for one of the classes of graphs above, which applied to Cayley graphs and

led to results for groups.

One of the properties that helps in this transference is quasi-isometry (which is a weaker

property than Lipschitz equivalence).

Definition 5.26. Two metric spaces (X1, d1) and (X2, d2) are quasi-isometric if there exist

l � 1, c � 0 and mapping f : X1 → X2 such that, for all x, y ∈ X1,

l−1d1(x, y) − c � d2(f(x), f(y)) � ld1(x, y) + c

and

d2(x, f(X1)) � c,

for all x ∈ X2.

The map f : X1 → X2 that satisfies the above conditions is called quasi-isometry.

We illustrate the consequence of quasi-isometry by the following theorems.

Theorem 5.27. ([37, 47]) Let G1 and G2 be two quasi-isometric graphs with bounded vertex

degree. Then G1 is transient if and only if G2 is transient.

Proposition 5.28. Every quasi-transitive graph is quasi-isometric with a transitive graph.

Proposition 5.29. Let G1 and G2 be two quasi-isometric graphs of bounded degree (with

the shortest path metric). Then G1 is wobbling-paradoxical if and only if G2 is wobbling-

paradoxical.

6. Some further applications of doubling

In this section we show some applications of the Theorem 3.5 [17]. We will call a

graph G(V , E) nice if it is infinite, connected and has bounded vertex degrees. Instead

of ‘wobbling-paradoxical’ or ‘doubling property’ we also use the term ‘strict exponential

growth’.

6.1. Quasi-isometries and bi-Lipschitz maps

Let G1(V1, E1) and G2(V2, E2) be nice graphs with path-metrics d1 and d2. If ϕ1 and ϕ2

are maps from V1 to V2, then their distance is defined by

dist(ϕ1, ϕ2) = sup
x∈V1

d2

(
ϕ1(x), ϕ2(x)

)
.

Let ϕ1 be a bi-Lipschitz map and suppose that dist(ϕ1, ϕ2) < ∞. What can be said

about ϕ2? Such a map ϕ2 does not need to be either one-to-one or onto; however, it must

be a quasi-isometry.
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Is it always true that if ϕ is a quasi-isometry, then there is always a bi-Lipschitz map

ψ such that dist(ϕ,ψ) < ∞?

The answer is no. Let G(V , E) be the line graph on the natural numbers. Define

ϕ(n) = n/2 if n is even and ϕ(n) = n+1
2

if n is odd.

Then ϕ is a quasi-isometry and it is easy to see that there exists no bi-Lipschitz map in

bounded distance of ϕ.

The following proposition is a corollary of Theorem 3.5 [17]; see also [65].

Proposition 6.1. Let G1(V1, E1) and G2(V2, E2) be nice graphs which have the doubling

property, and let ϕ : V1 → V2 be a quasi-isometry. Then there exists a bi-Lipschitz map

ψ : V1 → V2 such that dist(ϕ,ψ) < ∞.

6.2. Analysis on nice graphs

Let G(V , E) be a nice directed graph. Let 
∞(E) denote the space of bounded functions on

the edges, and let 
∞(V ) be the space of bounded functions on the vertices. The boundary

map ∂ : 
∞(E) → 
∞(V ) is defined by

(∂f)(p) =
∑

→
(q,p)∈E

f(e) −
∑

→
(p,q)∈E

f(e).

Block and Weinberger [8] gave the following characterization of the doubling property.

Proposition 6.2. ∂ is onto if and only if G is wobbling-paradoxical.

Proposition 6.2 was also proved in [20] using Theorem 3.5 together with the following

result, originally due to Gerl.

Proposition 6.3. Let G(V , E) be a nice graph. Let 
2(E) denote the space of square-

summable functions on the edges, and let 
2(V ) be the space of square-summable functions

on the vertices. Let ∂ : 
2(E) → 
2(V ) be given as above. Then ∂ is onto if and only if G

has the doubling property.

6.3. Infinite matrix rings

Again, let G(V , E) be a nice graph. Following Gromov [32] one can define the translation

algebra TG.

The elements of TG are matrices M with rows and columns indexed by V , such that

the entries M(p,q) satisfy the following conditions.

(1) There exists a constant QM , depending only on M, such that, for any p, q ∈ V ,

|M(p,q)| � QM .

(2) There exists a constant WM depending only on M such that M(p,q) = 0 if d(p, q) > WM .

The addition and multiplication is defined in TG the usual way:

(M +N)(p,q) = M(p,q) +N(p,q), (MN)(p,q) =
∑
r∈V

M(p,r)N(r,q).
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If S is a unital ring then a trace Tr: S → R is an additive homomorphism such that

Tr(1) = 1, Tr(AB) = Tr(BA).

The following proposition [21] characterizes the doubling property via translation

algebras.

Proposition 6.4. ([21]) G has the doubling property if and only if there exists a trace on

the ring TG.

6.4. Harmonic functions on graphs

Let G be a locally finite graph. A function f on V (G) is called harmonic if its value at

any vertex is the average of the values at its neighbours.

A function f has finite energy if∑
e∈E(G),(x,y)=e

|f(x) − f(y)|2 < ∞.

Soardi [53] proved that if G is the Cayley graph of an amenable group then all harmonic

functions of finite energy are constant.

Now let G be a nice graph. It is called roughly transitive if, for any x, y ∈ V (G), there

exists a quasi-isometry Tx,y , such that Txy(x) = y and all the constants cx,y, nx,y in the

definition of quasi-isometry are uniformly bounded.

Obviously, any transitive or quasi-transitive graph is roughly transitive. However, there

exist roughly transitive graphs that are not even quasi-isometric to a transitive graph.

Proposition 6.5. (Elek and Tardos [22]) If G is a roughly transitive graph and non-doubling,

then any harmonic function of finite energy on V (G) is constant.

Note, however, that there exist non-constant harmonic functions of finite energy on the

Cayley graph of a free group.

Harmonic functions have an interesting relation to random walks.

Let G be a nice graph and consider the symmetric random walk on G. Let Zn be the

integer-valued random variable that measures the distance from the origin after the nth

step. Then

D = lim inf
n→∞

E(Zn)

n

is called the drift of the random walk.

Obviously, if the walk is recurrent then D = 0. If G is the Cayley graph of a

non-amenable group then D > 0. If G is the Cayley graph of an amenable group

of subexponential growth then D = 0. For the Cayley graphs of amenable groups of

exponential growth D is sometimes zero and sometimes positive [36, 61]. It is known [36]

that D > 0 if and only if there exists a non-constant bounded harmonic function on V (G).

It is important to note that Bartholdi and Virág [5] proved the amenability of the

so-called basilica group by showing that its drift is zero.
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Paul Erdős and his Mathematics, János Bolyai Math. Soc., Budapest, pp. 45–49.

[11] Ceccherini-Silberstein, T., Grigorchuk, R. I. and de la Harpe, P. (1998) Décompositions
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