
Journal of Combinatorial Theory, Series B 98 (2008) 146–163

www.elsevier.com/locate/jctb

Generalized quasirandom graphs

László Lovász a, Vera T. Sós b,1

a Microsoft Research, Redmond, WA, USA
b Rényi Institute, Budapest, Hungary

Received 11 January 2006

Available online 25 October 2007

Abstract

We prove that if a sequence of graphs has (asymptotically) the same distribution of small subgraphs as a
generalized random graph modeled on a fixed weighted graph H , then these graphs have a structure that is
asymptotically the same as the structure of H . Furthermore, it suffices to require this for a finite number of
subgraphs, whose number and size is bounded by a function of |V (H)|.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Quasirandom (also called pseudorandom) graphs were introduced by Thomason [10] and
Chung, Graham and Wilson [3]. These graphs have many properties that true random graphs
have.

To be more precise, a sequence (Gn: n = 1,2, . . .) of graphs is called quasirandom with
density p (where 0 < 1 < p), if for every simple finite graph F , the number of copies of F in
Gn is asymptotically |V (Gn)||V (F )|p|E(F)| (this is the asymptotic number of copies of F in a
random graph with edge probability p; we consider labeled copies, so for example the number
of copies of K2 in Gn in 2|E(Gn)|).

It turns out that this definition implies many other properties that are familiar from the the-
ory of random graphs; for example, almost all degrees are about pn, almost all codegrees are
about p2n, all cuts with Θ(n) nodes on both sides have edge-density about p etc. Many of these
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characterize quasirandom graphs, and this fact provides many equivalent ways to define a quasi-
random sequence [3,8–10]. Quasirandomness is closely related to Szemerédi’s lemma [7]. One
of the most surprising facts proved in [3] is that it is enough to require the condition about the
number of copies of F for just two graphs, namely F = K2 and C4.

Consider a weighted graph H on q nodes, with a weight αi > 0 associated with each node
and a weight 0 � βij � 1 associated with each edge ij . We may assume that H is complete
with a loop at every node, since the missing edges can be added with weight 0. A generalized
random graph G(n;H) with model H is generated as follows. We take [n] = {1, . . . , n} as its
node set. We partition [n] into q sets V1, . . . , Vq , by putting node u in Vi with probability αi ,
and connecting each pair u ∈ Vi and v ∈ Vj with probability βij (all these decisions are made
independently). A generalized quasirandom graph sequence (Gn) with model H is defined by
the property that for every fixed finite graph F , the number of copies of F in Gn is asymptotically
the same as the number of copies of F in a generalized random graph G(N,H) on N = |V (Gn)|
nodes.

One can define, more generally, convergent sequences of graphs (Gn) by the property that
for every fixed finite graph F , the number of copies of F in Gn, appropriately normalized, is
convergent [1,2], and a limit object can be assigned to every convergent sequence [6]. General-
ized quasirandom sequences are convergent sequences with the special property that their limit
can be expressed as a finite weighted graph. This motivates the following two basic questions
concerning generalized quasirandom graphs:

(a) Is it enough to require the condition concerning the number of copies of F for a finite set of
graphs Fi (depending on H )?

(b) Is the structure of a generalized quasirandom graph similar to a generalized random graph
in the following sense? Its nodes can be partitioned into q classes V1, . . . , Vq of sizes
α1N, . . . , αqN so that the graph spanned by Vi is quasirandom with density βi,i, and the
bipartite graph formed by the edges between Vi and Vj is quasirandom with density βij

(for the modification of the definition of quasirandomness to bipartite graphs, see the next
section).

In this paper we answer both questions in the affirmative. The main tool is to formulate the
conditions in terms of homomorphisms of graphs, and then invoke the tool of graph algebras
borrowed from a recent paper of Freedman, Lovász and Schrijver [4].

Recent results about limits of graph sequences [6] and distances of graphs [2] (see [1] for a
survey) yield another proof of (b), and in fact in a more general form characterizing convergent
graph sequences as convergence in a suitable metric. However, this proof does not seem to imply
the affirmative answer to (a), i.e., the finiteness of the number of test graphs needed.

One may expect that the following converse to (a) also has an affirmative answer: “Let
F1, . . . ,Fk be finite graphs and 0 � a1, . . . , ak � 1. Assume that every sequence (Gn) of graphs
for which the density of Fi in Gn converges to ai for every i is convergent. Does it follow that
every such sequence (Gn) is generalized quasirandom?” Recently B. Szegedy and Lovász (un-
published) found a counterexample. The question of how far the notion of quasirandomness can
be relaxed so that (a) remains true is open.

Quasirandom graph sequences have several other characterizations, in terms of cuts, eigen-
values, Szemerédi partitions, etc. Most of these extend to H -quasirandom graph sequences, and
even to the more general setting of convergent graph sequences: several results that guarantee (b)
under various “multiway cut” conditions are proved in [2]. (The most notable exception is the
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spectrum, which does not carry enough information to determine the structure of the graph as
in (b).) It would be interesting to find analogues of (a) for these other characterizations.

2. Preliminaries and results

2.1. Homomorphisms and quasirandom graphs

For any simple unweighted graph F and weighted graph H , we define

hom(F,H) =
∑

ψ : V (F )→V (H)

αψβψ

where

αψ =
∏

i∈V (F )

αψ(i)

and

βψ =
∏

ij∈E(F)

βψ(i)ψ(j).

We consider an unweighted graph as a weighted graph where all nodeweights and edgeweights
are 1, and if there is no edge, the weight is 0. In this case, hom(F,H) counts the number of
homomorphisms of F into H (adjacency-preserving maps of V (F) into V (H)).

A sequence (Gn) of simple unweighted graphs is quasirandom with density p, if for every
simple graph F

hom(F,Gn)

|V (Gn)||V (F )| → p|E(F)| (n → ∞).

If, for every n � 1, Gn is a (ordinary) random graph G(n,p), then the sequence (Gn) is
quasirandom with probability 1.

It will be convenient to think of a bipartite graph H as having an “upper” bipartition class
U(H) and a “lower” bipartition class W(H). For two simple, unweighted bipartite graphs F

and H , let hom′(F,H) denote the number of those homomorphisms of F into H that map U(F)

to U(H) and W(F) to W(H). A sequence (Gn) of bipartite graphs is bipartite quasirandom
with density p, if for every simple bipartite graph F

hom(F,Gn)

|U(Gn)||U(F)||W(Gn)||W(F)| → p|E(F)| (n → ∞).

The following result from [3] will be important for us:

Theorem 2.1. A sequence (Gn) of graphs is quasirandom with density p if and only if

hom(K2,Gn)

|V (Gn)|2 → p (n → ∞)

and
hom(C4,Gn)

|V (Gn)|4 → p4 (n → ∞).

An analogous result holds for bipartite quasirandom graphs.
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2.2. Generalized quasirandom graphs

Let G1,G2, . . . be unweighted graphs and H , a weighted graph on V (H) = [q] such that∑
i∈V (H) αi = 1 and 0 � βij � 1 for every i, j ∈ V (H). We may assume that H is complete

(with loops at each node), since the missing edges can be added with weight 0. We say that the
sequence (Gn) is H -quasirandom, if for every unweighted, simple graph F ,

hom(F,Gn)

|V (Gn)||V (F )| → hom(F,H). (1)

In the special case when H is a single node, with a loop with weight p, we get the definition of
a quasirandom sequence.

One way to construct a H -quasirandom sequence is the following. Take n nodes (where n is
very large), and partition them into q classes V1, . . . , Vq (where |V (H)| = {1, . . . , q}) so that

|Vi | ≈ αin.

For every i, insert on the nodes of Vi a quasirandom graph with density βii , and for every i �= j ,
insert between the nodes of Vi and Vj a bipartite quasirandom graph with density βij .

Our main result is that the converse is true:

Theorem 2.2. Let H be a weighted graph with V (H) = [q], node weights (αi : i = 1, . . . , q)

and edge weights (βij : i, j = 1, . . . , q). Let (Gn,n = 1,2, . . .) be a H-quasirandom sequence of
unweighted simple graphs. Then for every n there exists a partition V (Gn) = {V1, . . . , Vq} such
that

(a) |Vi ||V (Gn)| → αi (i = 1, . . . , q),

(b) the subgraph of Gn induced by Vi is a quasirandom graph sequence with edge density βii

for all i = 1, . . . , q , and
(c) the bipartite subgraph between Vi and Vj is a quasirandom bipartite graph sequence with

edge-density βij for all i, j = 1, . . . , q , i �= j .

It is not hard to see that conversely, every graph sequence (Gn) with structure (a)–(b)–(c)
is H -quasirandom. The proof of Theorem 2.2 will also show the following fact, which can be
thought of as a generalization of Theorem 2.1:

Theorem 2.3. A weighted graph H on q nodes is H -quasirandom if and only if

hom(F,Gn)

|V (Gn)||V (F )| → hom(F,H)

for every simple graph F with at most q + (10q)q nodes.

The bound on the size of the graphs F can certainly be improved, but to determine the exact
minimum seems very difficult. The main point is that it depends only on the number of nodes
in H , not on the edgeweights or nodeweights.

2.3. Plan of the proof

Suppose that we have a (small) weighted model graph H with V (H) = [q] and a (huge)
simple graph Gn with V (Gn) = [n]. We would like to classify the nodes of Gn, so that each
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class corresponds to a node of H . Given a node u of Gn, we would like to find a corresponding
node i of H .

A first idea is to look at the degree dGn(u) of u, and match it with a node i of corresponding
degree; the degree of i should be defined as dH (i) = ∑

j αjβij (where the βij are the edgeweights
in H ), and we want that dGn(u) ≈ dH (i)n.

It is not too hard to show that for “most” nodes of Gn there is a node in H for which this
degree condition holds (with an error tending to 0 as n → ∞). Consider the star Sm with m

nodes, then

hom(Sm,H) =
q∑

i=1

αidH (i)m−1,
hom(Sm,Gn)

nm
= 1

n

n∑
u=1

(
dGn(u)

n

)m−1

.

From the fact that these two exponential functions of m are close for every m, it follows that the
bases for the exponentials can be matched up: about αin terms on the right-hand side must be
close to dH (i), for i = 1, . . . , q .

The trouble is that H may have several nodes with the same degree. To refine our argument,
we look at larger neighborhoods; in other words, we count not only the number of edges incident
with u, but also the number of triangles hanging from u, the number of paths of length 2 starting
at u etc.

In general, let F be any (simple, unweighted) graph with V (F) = [k], where node 1 is con-
sidered as a special “root.” We count the number of homomorphisms of F into Gn that map 1
onto u, to get a number homu(F,Gn). The corresponding quantity for a weighted graph H is

homi (F,H) =
∑

ψ :V (F )→[q]
ψ(1)=i

k∏
m=2

αψ(m)

∏
jm∈E(F)

βψ(j)ψ(m)

for i ∈ V (H). (We take those terms in the definition of hom(F,H) with ψ(1) = i and omit the
factor αi . Multiplying this number by nq−1, we get asymptotically homv(F,G(n,H)) for any
v ∈ Vi .) Note that∑

i∈[q]
αi homi (F,H) = hom(F,H),

and ∑
u∈[n]

homu(F,Gn) = hom(F,Gn).

We want to match u with a node i of H for which homu(F,Gn) ≈ homi (F,H)nq−1 for all F .
Consider the vectors

hF = (
hom1(F,H), . . . ,homq(F,H)

) ∈ R
q .

There are infinitely many of these, but they live in a finite dimensional space R
q . Suppose that

{hF1, . . . , hFq } form a basis of R
q , then we can express the vector e1 = (1,0, . . . ,0) as a linear

combination of them:

e1 =
q∑

λihFi
.

i=1
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Now consider the analogous vectors

gF = (
hom1(F,Gn)/nq−1, . . . ,homn(F,Gn)n

q−1) ∈ R
n,

and the linear combination

s =
q∑

i=1

λigFi
.

If a node u is “similar” to node 1 of H , then su should be about 1; if u is similar to some other
node of H , then su should be close to 0. So the large entries of s should tell us which nodes of
Gn should be matched with 1. We could find the nodes to be matched with 2,3, . . . , q similarly.

To develop this idea to a proof, there are several difficulties. To show that for most nodes u

of Gn, the sequence (gF (u)) is similar to a sequence (hF (i)) we have to extend our argument
above. A convenient tool for this will be the language of quantum graphs and graph algebras,
developed in [4–6].

The most substantial difficulty in filling out the details is the following. We assumed above
that the vectors hF span the whole space R

q . This is not so in general; the trouble is caused by
two (related but different) symmetries H may have: twin nodes and automorphisms. Of these,
twins are easy to eliminate (see Section 3.4), but automorphisms cause a conceptual problem.
For example, the model graph H may have a node-transitive automorphism group; then there is
no way to distinguish between its nodes, and our whole scheme for finding a “match” for u fails.

The way out will be to use not one special node in F but q of them; if we fix a bijective map
of these nodes onto V (H), then this breaks any symmetry between the nodes of H . We will have
to pay for this trick with a lot of technical details.

Let us mention one further difficulty, less serious but still nontrivial. Let F be a finite graph
with multiple edges, and let F ′ be the simple graph obtained from F by forgetting about
the edge multiplicities. Then hom(F ′,Gn) = hom(F,Gn) (since the Gn are unweighted), but
hom(F ′,H) �= hom(F,H) in general. So the sequence hom(F,Gn)/|V (Gn)||V (F )| is conver-
gent, but its limit is hom(F ′,H) rather than hom(F,H). We started with using only simple
graphs, but when we glue them together along more than one node, we may create multiple
edges. In Section 3.5 we describe a construction from [6] that can be used to eliminate these.

3. Graph algebras

3.1. Quantum graphs

We introduce some formalism. A quantum graph is a formal finite linear combination (with
real coefficients) of graphs. Quantum graphs form an (infinite dimensional) linear space G0. We
can introduce a multiplication in this space: for two ordinary graphs, the product is defined as
disjoint union; we extend this linearly to quantum graphs. This turns G0 into a commutative and
associative algebra.

We extend these constructions to a slightly more complex situation. Fix a positive integer k.
A k-labeled graph is a finite graph in which some of the nodes are labeled by numbers 1, . . . , k

(a node can have at most one label). Two k-labeled graphs are isomorphic, if there is a label-
preserving isomorphism between them. We denote by Kk the k-labeled complete graph with k

nodes, and by Ek , the k-labeled graph with k nodes and no edges. ∅-labeled graphs are just
ordinary graphs.
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A k-labeled quantum graph is a formal finite linear combination (with real coefficients) of
k-labeled graphs. Let Gk denote the (infinite dimensional) vector space of all k-labeled quantum
graphs.

Let F1 and F2 be two k-labeled graphs. Their product F1F2 is defined as follows: we take their
disjoint union, and then identify nodes with the same label. (Note that F1F2 may have multiple
edges even F1 and F2 are simple.) Clearly this multiplication is associative and commutative.
Extending this multiplication to k-labeled quantum graphs linearly, we get an associative and
commutative algebra Gk . The graph Ek with k labeled nodes and no edges is a unit element
in Gk .

3.2. Partial homomorphism functions

For every k-labeled graph F , weighted graph H , and ϕ : [k] → [q], we define

homϕ(F,H) =
∑

ψ :V (F )→[q]
ψ extends ϕ

∏
i∈V (F )\[k]

αψ(i)

∏
ij∈E(F)

βψ(i)ψ(j).

We extend the definition of homϕ(x,H) to all x ∈ Gk linearly. If we fix a map ϕ : [k] → [q],
then the map homϕ(.,H) will be multiplicative on Gk . If F is a k-labeled graph, we also write
homi1...ik instead of homϕ where ϕ(1) = i1, . . . , ϕ(k) = ik .

Clearly homϕ(F,H) � 1 for every ϕ : [k] → V (H). So if x = ∑
i λiFi ∈ Gk , then

∣∣homϕ(x,H)
∣∣ =

∣∣∣∣
∑

i

λi homϕ(Fi,H)

∣∣∣∣ �
∑

i

|λi | = N(x). (2)

If G is an unweighted graph with n nodes, then the same argument gives that

|homϕ(x,G)|
nk

� N(x). (3)

What will be important for us is that the right-hand side is independent of G.

3.3. Graph homomorphisms and algebra homomorphisms

Fix a weighted “model graph” H with V (H) = [q], with nodeweights α1, . . . , αq and
edgeweights βij . The algebras Gk are independent of the model graph H , but we use the
hom(.,H) function to introduce additional structure.

First, for k = 0, we can define hom(x,H) for every quantum graph x, by extending it linearly
from the generators. Then we have, for x, y ∈ G0,

hom(x + y,H) = hom(x,H) + hom(y,H)

and

hom(xy,H) = hom(x,H)hom(y,H),

so hom(x,H) is an algebra homomorphism from G0 into the reals.
The function hom(.,H) is not multiplicative on Gk for k � 1, but for every fixed mapping

φ : [k] → V (H), the mapping homφ(.,H) is multiplicative. If we view R
[q]k as an algebra (the

direct product of qk copies of R), then we get an algebra homomorphism Ξk from Gk into R
[q]k .

We denote by Nk the kernel of Ξk .
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We can also use the hom(.,.) to introduce a bilinear form on Gk by

〈x, y〉 = hom(xy,H).

In particular, we have

〈F1,F2〉 = hom(F1F2,H)

for two ordinary graphs F1 and F2. It is not hard to see [4] that this bilinear form is semidefinite:
〈x, x〉 � 0 for all x. So we can define

‖x‖ = 〈x, x〉1/2.

This value is a seminorm, but not a norm, because there will be quantum graphs x with ‖x‖ = 0.
We write x = y (mod H) if ‖x − y‖ = 0. It is not hard to show that this is equivalent to saying
that 〈x −y, z〉 = 0 for every z ∈ Gk . A further equivalent formulation is that homφ(x −y,H) = 0
for every φ : [k] → [q], i.e., x − y ∈Nk .

We can factor out Nk , to obtain an algebra Gk/H = Gk/Nk . The bilinear form 〈.,.〉 gives a
positive definite inner product on Gk/H . It was shown in [4] that this algebra is finite dimensional
(see Corollary 3.2 below).

3.4. Twins and automorphisms

Let us think of R
qk

as vectors indexed by maps ϕ : [k] → [q]. For every x ∈ Gk , the vector
(homϕ(x,H): ϕ ∈ [q]k) is in this space. Can every vector in R

qk
be realized by some quantum

graph x? The answer is “generically” in the affirmative, but not always. There are two (similar,
but slightly different) reasons this.

We call two nodes i, j ∈ [q] twins, if for every node k ∈ [q], βik = βjk (note: the condition
includes k = i and k = j ; the node weights αi play no role in this definition).

Suppose that H is not twin-free, so that it has two twin nodes i and j . Then for any x ∈ G1,
the numbers homi (x,H) and homj (x,H) differ by the same scalar, so not every vector in R

q

can be realized.
This trouble is, however, easily eliminated. If H is not twin-free, we can identify the equiv-

alence classes of twin nodes, define the node-weight α of a new node as the sum of the
node-weights of its pre-images, and define the weight of an edge as the weight of any of its
pre-images (which all have the same weight). This way we get a twin-free graph H̄ such that
hom(F,H) = hom(F, H̄ ) for every graph F .

From now on, we will assume that H is twin-free.
The second reason giving non-realizable vectors in R

qk
takes more work to handle. For every

x ∈ Gk , the vector (homϕ(x,H): ϕ ∈ [q]k) will be invariant under automorphisms of H (acting
on index ϕ by right multiplication). It was proved in [5] that this is all:

Theorem 3.1. If the model graph H is twin-free, then a vector y ∈ R
[q]k is realizable as

(homϕ(x,H): ϕ ∈ [q]k) for some x ∈ Gk if and only if it is invariant under the automorphisms
of H .

We note that from this it is easy to determine the dimension of the algebras Gk/H . Let Aut(H)

denote the automorphism group of H .

Corollary 3.2. If the model graph H is twin-free, then the dimension of Gk/H is equal to the
number of orbits of Aut(H) on ordered k-tuples of nodes in H .
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3.5. Contractors and connectors

We can use Theorem 3.1 to construct some useful special elements in Gk . It implies that there
is an element z ∈ G2 such that

homij (z,H) =
{

1, if i = j,

0, otherwise.

Such a quantum graph is called a contractor. The name comes from the following fact (which
is easy to verify). For every 2-labeled graph F with no edge connecting the labeled nodes, let
F ′ denote the 1-labeled graph that is obtained by identifying the labeled nodes. We extend this
operation linearly over G2. Then for every 2-labeled quantum graph x,

hom(xz,H) = hom(x′,H).

In [6] it was shown that for every weighted graph H on q nodes, there is a contractor that is
a linear combination of series-parallel graphs with at most (6q)q nodes (we will only need the
bound on the size).

Another useful construction will help us get rid of multiple edges. A k-labeled graph is simple,
if it has no multiple edges, and its labeled nodes are independent. A k-labeled quantum graph is
simple, if it is a combination of simple k-labeled graphs.

A connector is a 2-labeled quantum graph p that acts as a edge, i.e., p ≡ K2 (mod H ). It was
proved in [6] that for every weighted graph H , there exists a simple connector (note: K2 is a
connector, but it is not simple by our definition). In fact, this connector can be represented as a
linear combination of paths with at most q + 2 nodes, labeled at their endpoints. Replacing each
edge by a connector, we get:

Lemma 3.3. Let x be any k-labeled quantum graph. Then there exists a simple k-labeled quan-
tum graph y such that x ≡ y (mod H ).

4. Proof of Theorem 2.2

Let (G1,G2, . . .) be a sequence of graphs such that V (Gn] = [n] and

hom(F,Gn)

n|V (F )| → hom(F,H)

for every simple graph F (we shall see that we will use this condition only for a finite number of
graphs F ). Let G′

n denote the weighted graph obtained from Gn by weighting its nodes by 1/n,
so that now the condition can be written as

hom
(
F,G′

n

) → hom(F,H).

We will try to avoid confusion between Gn and H by denoting a typical node of H by i or j ,
and a typical node of Gn by u or v; a typical map into H will be denoted by ϕ, while a typical
map into Gn (or G′

n) will be denoted by η.
The graph H defines a seminorm ‖.‖ on Gk ; the graph G′

n defines another seminorm, which
we denote by ‖.‖n. Our condition implies that for every x ∈ Gk ,

‖x‖n → ‖x‖.
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4.1. More special quantum graphs

Recall that G2 has a contractor z for H . By Lemma 3.3, we may assume that z is simple.
By replacing z by z2 if necessary, we may assume that homϕ(z,H) � 0 for every graph H and
ϕ : [2] → V (H).

By Theorem 3.1, there is a quantum graph w ∈ Gq such that

homφ(w,H) =
{

1 if φ is bijective,
0 otherwise.

By Lemma 3.3, we may assume that w is simple. Clearly w2 ≡ w (mod H ), so we can replace
w by w2. Then homϕ(w,H ′) � 0 for every graph H ′ and every ϕ : [q] → V (H).

We define a number of special elements of Gq . For x ∈ G2 and y ∈ Gk , we say that y1 is
obtained from y by gluing x on nodes i and j (i, j ∈ [k]), if it is obtained by identifying the two
labeled nodes of x with i and j , respectively; we keep the labeling as it was in y.

For every i ∈ [q], we add a new isolated node to w, label it q + 1, and glue a copy of z on
(i, q + 1). Then we unlabel q + 1, to get a quantum graph wi ∈ Gq .

For every i, j ∈ [q], we add a new isolated node to w, label it q + 1, and glue a copy of z

on (i, q + 1) and another copy on (j, q + 1). Then we unlabel q + 1, to get a quantum graph
wij ∈ Gq .

For every i, j ∈ [q] and every bipartite graph F , we construct the disjoint union of w and F ,
and label the nodes of U(F) by q + 1, . . . , q + |U(F)| and the nodes of W(F) by q + |U(F)| +
1, . . . , q + |U(F)| + |W(F)|. We glue a copy of z on each of the pairs (i, q + 1), . . . , (i, q +
|U(F)|) and also on each pair (j, q + |U(F)| + 1), . . . , (j, q + |U(F)| + |W(F)|). Then we
unlabel nodes q +1, . . . , q +|U(F)|+ |W(F)|, to get a quantum graph wij,F ∈ Gq . We will only
use this construction in two special cases: when F = K2 and when F = C4 (in both cases the
bipartition is unique up to automorphisms).

We conclude this section with some properties of these quantum graphs under the map Ξq .
We remarked before that w ≡ w2 (mod H ). We also need that

‖w‖2 =
∑

ϕ : [q]→[q]
αϕ homϕ(w,H)2 =

∑
ϕ∈Aut(H)

αϕ = ∣∣Aut(H)
∣∣ ∏
i∈[q]

αi. (4)

We denote the number on the right-hand side by c. Similar arguments give the following equa-
tions:

‖w − w1 − · · · − wq‖ = 0,

‖wi − wii‖ = 0
(∀i ∈ [q]),

‖wi − αiw‖ = 0
(∀i ∈ [q]),

‖wij‖ = 0
(∀i, j ∈ [q], i �= j

)
,∥∥wij,F − α

|U(F)|
i α

|W(F)|
j β

|E(F)|
ij w

∥∥ = 0
(∀i, j ∈ [q], ∀ bipartite F

)
.

(The last equation holds whether or not i = j .)

4.2. Constructing the partition

Now we look at the norm defined by G′
n. We know that

‖w‖n → ‖w‖ = c (n → ∞),
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and similarly we get that as n → ∞,

‖w − w1 − · · · − wq‖n → 0,

‖wi − wii‖n → 0
(∀i ∈ [q]),

‖wi − αiw‖n → 0
(∀i ∈ [q]),

‖wij‖n → 0
(∀i, j ∈ [q], i �= j

)
,∥∥wij,F − α

|U(F)|
i α

|W(F)|
j β

|E(F)|
ij w

∥∥
n

→ 0
(∀i, j ∈ [q], ∀ bipartite F

)
.

So for a fixed ε > 0, we have∣∣‖w‖n − c
∣∣ < ε,

and so if ε < c/2, and n is large enough, we have ‖w‖n > c/2. On the other hand, we have

‖w‖2
n = 1

nq

∑
η : [q]→[n]

homη

(
w,G′

n

)2
,

and here every term is bounded by (3): homη(w,G′
n) � N(w). It follows that N(w) � c/2 and,

for at least c2nq/(8N(w)2) maps η, we have homη(w,G′
n) � c/4.

Now we look at the other special quantum graphs. We know that

‖w − w1 − · · · − wq‖2
n +

q∑
i=1

‖wi − wii‖2
n +

q∑
i=1

‖wi − αiw‖2
n +

∑
1�i �=j�q

‖wij‖2
n

+
∑

1�i,j�q

‖wij,K2 − aiαjβijw‖2
n +

∑
1�i,j�q

∥∥wij,C4 − a2
i α

2
j β

4
ijw

∥∥2
n

< ε

if n is large enough. Let S denote this sum. We can write, for every quantum graph x ∈ Gq ,

‖x‖2
n = 1

nq

∑
η : [q]→[n]

homη

(
x,G′

n

)2
,

and so

S = 1

nq

∑
η : [q]→[n]

(
homη

(
w − w1 − · · · − wq,G′

n

)2

+
∑

i

homη

(
wi − wii,G

′
n

)2 +
∑

i

homη

(
wi − αiw,G′

n

)2

+
∑
i �=j

homη

(
wij ,G

′
n

)2 +
∑
i,j

homη

(
wij,K2 − αiαjβijw,G′

n

)2

+
∑
i,j

(
homη

(
wij,C2 − α2

i α
2
j β

4
ijw,G′

n

))2
)

.

Thus we can find an η : [q] → [n] such that

homη

(
w,G′

n

)
� c

4
, (5)

and
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homη

(
w − w1 − · · · − wq,G′

n

)2
< ε, (6)∑

i

homη

(
wi − wii,G

′
n

)2
< ε, (7)

∑
i

homη

(
wi − αiw,G′

n

)2
< ε, (8)

∑
i �=j

homη

(
wij ,G

′
n

)2
< ε, (9)

∑
i,j

homη

(
wij,K2 − αiαjβijw,G′

n

)2
< ε, (10)

∑
i,j

homη

(
wij,C4 − α2

i α
2
j β

4
ijw,G′

n

)2
< ε. (11)

We fix ε, n and this map η now. To simplify notation, we set vi = η(i), and for u ∈ [n], we set
gi(u) = homviu(z,G

′
n). Let ki(u) = 1 if gi(u) is the largest among the numbers gj (u) (j ∈ [q])

and ki(u) = 0 otherwise. (We break ties arbitrarily, so that
∑

i ki(u) = 1 for all u.) We define a
partition [n] = V1 ∪ · · · ∪ Vq as follows: put u in Vi if ki(u) = 1. We are going to prove that this
partition satisfies the requirements of the theorem.

4.3. A lemma about the partition

The following lemma shows that, on the average, gi(u) ≈ 1 if u ∈ Vi and gi(u) ≈ 0 otherwise.

Lemma 4.1.

1

n

∑
u∈[n]

∑
i∈[q]

(
gi(u) − ki(u)

)2 � 256qε

c2
.

Proof. We need an auxiliary function: For every u ∈ [n] and i ∈ [q], let

hi(u) =
{

1, if gi(u) � 1
2 ,

0, otherwise.

We have

homη

(
wi − wii,G

′
n

)2 = homη

(
(wi − wii)

2,G′
n

)2

= homη

(
w,G′

n

)2 ∑
u∈[n]

(
gi(u) − gi(u)2)2

,

and so it follows by (5) and (7) that

1

n

∑
u∈[n]

∑
i∈[q]

gi(u)2(1 − gi(u)
)2 16ε

c2
. (12)

Similarly, (6) implies that

1

n

∑ (
1 −

∑
gi(u)

)2

� 16ε

c2
. (13)
u∈[n] i∈[q]
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Next we show that
1

n

∑
u∈[n]

∑
i∈[q]

(
gi(u) − hi(u)

)2 � 64ε

c2
. (14)

Indeed, by the definition of hi(u), we have(
gi(u) − hi(u)

)2 � 4gi(u)2(1 − gi(u)2),
and so (14) follows by (12). We also claim that

1

n

∑
u∈[n]

∑
i∈[q]

(
hi(u) − ki(u)

)2 � 64qε

c2
. (15)

For a fixed u ∈ [n], we have

∑
i∈[q]

(
hi(u) − ki(u)

)2 �
(

1 −
∑
i∈[q]

hi(u)

)2

,

since the sum on the left-hand side consists of
∑

i hi(u) terms of 1 if this sum is positive, and a
single 1 if this sum is 0. So by (13) and (14),

1

n

∑
u∈[n]

∑
i∈[q]

(
hi(u) − ki(u)

)2 � 1

n

∑
u∈[n]

(
1 −

∑
i∈[q]

hi(u)

)2

� 2

n

∑
u∈[n]

(
1 −

∑
i∈[q]

gi(u)

)2

+ 2

n

∑
u∈[n]

( ∑
i∈[q]

(
hi(u) − gi(u)

))2

� 2

n

∑
u∈[n]

(
1 −

∑
i∈[q]

gi(u)

)2

+ 2q

n

∑
u∈[n]

∑
i∈[q]

(
hi(u) − gi(u)

)2

� 32ε

c2
+ 32qε

c2
� 64qε

c2
.

Now the lemma follows from (14) and (15):

1

n

∑
u∈[n]

∑
i∈[q]

(
gi(u) − ki(u)

)2

� 2

n

∑
u∈[n]

∑
i∈[q]

(
gi(u) − hi(u)

)2 + 2

n

∑
u∈[n]

∑
i∈[q]

(
hi(u) − ki(u)

)2

� 128ε

c2
+ 128qε

c2
� 256qε

c2
. �

4.4. The size of the classes

We prove that |Vi | ≈ αin. We first relate the size of Vi to wi :

homη

(
wi,G

′
n

) = 1

n

∑
u∈[n]

homη

(
w,G′

n

)
gi(u)

= c

4n

∑
ki(u) + c

4n

∑ (
gi(u) − ki(u)

)2
u∈[n] u∈[n]
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= c

4n
|Vi | + R,

where the error term R satisfies

R2 =
(

c

4n

∑
u∈[n]

(
gi(u) − ki(u)

))2

� c2

16n

∑
u∈[n]

(
gi(u) − ki(u)

)2 � 16qε

by Lemma 4.1. So∣∣∣∣4 homη(wi,G
′
n)

c
− |Vi |

n

∣∣∣∣ � 16
√

qε

c
.

On the other hand, (8) gives that∣∣homη

(
wi,G

′
n

) − αi homη

(
w,G′

n

)∣∣ �
√

ε,

and so∣∣∣∣4 homη(wi,G
′
n)

c
− αi

∣∣∣∣ � 4
√

ε

c
.

So ∣∣∣∣ |Vi |
n

− αi

∣∣∣∣ �
16

√
qε

c
+ 4

√
ε

c
� c1

√
ε,

where c1 is independent of n and ε. This proves assertion (a) of Theorem 2.2.

4.5. Quasirandomness of the parts

The proofs of (b) and (c) are similar, and we only describe the proof of (c). Let 1 � i < j � q .
We start with expressing the edge-density (in G′

n) between Vi and Vj . We have

homη

(
wij,K2,G

′
n

) = 1

n2
homη

(
w,G′

n

) ∑
uv∈E(G′

n)

gi(u)gj (v)

= c

4n2

∑
uv∈E(G′

n)

ki(u)kj (v) + c

4n2

∑
uv∈E(G′

n)

(
gi(u)gj (v) − ki(u)kj (v)

)

= c

4n2

∣∣EG′
n
(Vi,Vj )

∣∣ + R.

We estimate the error term as follows:

R = c

4n2

∑
uv∈E(G′

n)

(
gi(u)gj (v) − ki(u)kj (v)

)

= c

4n2

∑
uv∈E(G′

n)

(
gi(u) − ki(u)

)
kj (v) + c

4n2

∑
uv∈E(G′

n)

gi(u)
(
gj (v) − kj (v)

)
.

To estimate the first term, we use that kj (v) ∈ {0,1} and Lemma 4.1:
(

c

4n2

∑
uv∈E(G′

n)

(
gi(u) − ki(u)

)
kj (v)

)2

� c

4n2

∑
uv∈E(G′

n)

(
gi(u) − ki(u)

)2
kj (v)2

� c2

16n

∑ (
gi(u) − ki(u)

)2 � 16qε.
u∈[n]
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Estimating the second term is analogous, except that we have to use that |gi(u)| � N(z), and so
we get N(z)216qε. Thus

R � 4
(
N(z) + 1

)√
qε.

Thus ∣∣∣∣4 homη(wij,K2 ,G
′
n)

c
− EG′

n
(Vi,Vj )

n2

∣∣∣∣ � 4R

c
� 16(N(z) + 1)

√
qε

c
.

On the other hand, (10) gives that∣∣∣∣4 homη(wij,K2 ,G
′
n)

c
− αiαjβij

∣∣∣∣ � 4
√

ε

c
,

and so∣∣∣∣EG′
n
(Vi,Vj )

n2
− αiαjβij

∣∣∣∣ � c3
√

ε,

where c3 is independent of n and ε. We can write this as∣∣∣∣EG′
n
(Vi,Vj )

|Vi | · |Vj | − αin

|Vi |
αjn

|Vj |βij

∣∣∣∣ � c3
n2

|Vi | · |Vi |
√

ε.

Since we already know that |Vi |/n → αi , as ε → 0 and n → ∞, this proves that the edge-density
between Vi and Vj tends to βij .

An analogous argument, based on (11), shows that the density of C4 in the bipartite graph
formed by the edges between Vi and Vj tends to β4

ij . By Theorem 2.1, this proves (c), and
completes the proof of the theorem.

4.6. Finiteness

Theorem 2.3 follows by looking at some details of the proof. For a fixed H , we only used
that hom(x,G′

n) → hom(x,H) for a finite number of quantum graphs: w2, (wi −wii)
2,w2

ij , etc.
Expanding the squares, it suffices to know hom(x,G′

n) → hom(x,H) for x ∈ W , where

W = {
w2,w2

i ,wiwii,wiw,w2
ij ,w

2
ij,F ,wij,F w: i, j ∈ [q], F ∈ {K2,C4}

}
.

These quantum graphs were composed of copies of z, w, and edges. We can express z and w

as linear combinations of ordinary 2-labeled and q-labeled graphs:

z =
a∑

i=1

λiAi,

and

w =
b∑

i=1

μiBi,

where A1, . . . ,Aa is a basis of G2/H and B1, . . . ,Bb is a basis of Gq/H . Then each x ∈ W can be
written as a linear combination of ordinary q-labeled graphs, obtained by replacing each z by one
of the Ai and each w be one of the Bi . This gives a finite number of ordinary graphs F1, . . . ,Fr ,
and if hom(Fi,G

′
n) → hom(Fi,H) for i = 1, . . . , r , then the proof works and proves that Gn has

the structure in Theorem 2.2, and hence it is quasirandom with model H .
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The argument above gives an explicit bound on the number r . We have a � q2 and b � qq ,
by Corollary 3.2. The largest number of copies of w and z used in the same graph in W is 4 w’s
and 16 z’s in wij,C4 (remember, we started with squaring z and w). So this gives at most a16b4

different graphs. There are fewer than 5q2 quantum graphs in W , which gives r < 5q20q .
We also need to bound the graphs Fi we need. By the argument above, each Fi is glued

together from at most 16 of the graphs Ai and 4 of the graphs Bi , so the proof of Theorem 2.3
will be complete if we prove the following bound on the size of ordinary graphs that generate
Gk/H :

Theorem 4.2. The algebra Gk/H is generated by ordinary simple k-labeled graphs with at most
k + (10q)q nodes.

Proof. The idea is simple: let F be any k-labeled graph, and let J ⊆ (
(V (F )\[k]

2

)
be any set of pairs

of elements in V (F)\[k]. Let HJ denote the set of maps φ :V (F) → [q] for which φ(x) = φ(y)

for every {x, y} ∈ J , and let ψ : [k] → [q]. Define

homJ,ψ(F,H) =
∑

φ∈HJ
φ extends ψ

αφβφ.

Furthermore, let I be the set of injective maps φ :V (F) → [q], and

injψ(F,H) =
∑
φ∈I

φ extends ψ

αφβφ.

Then by inclusion–exclusion,

injψ(F,H) =
∑
J

(−1)|J | homJ,ψ(F,H).

Suppose that |V (F)| > q , then the left-hand side is 0, so we get that

homψ(F,H) =
∑
J �=∅

(−1)|J |−1 homJ,ψ (F,H).

Now “essentially” we have

homJ,ψ(F,H) = homψ(F/J,H),

where F/J is obtained from F by identifying all pairs of nodes in J . Considering the quantum
graph

X =
∑
J �=∅

(−1)|J |−1F/J,

we have

homψ(F,H) = homψ(x,H)

for every ψ , which means that F ≡ x (mod H ). Since each graph in the definition of x has fewer
nodes than F , we are done by induction (it seems).
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The trouble is that identifying nodes in F may create loops, multiple edges, and, most sig-
nificantly, F/J will have nodeweights: let ki denote the number of nodes of F mapped onto
i ∈ V (F/J )\[k], then for every φ :V (F/J ) → [q], we have

αφ =
∏

i∈V (F/J )

α
ki

φ(i),

which depends on these nodeweights.
The way out is that temporarily we allow k-labeled ordinary graphs F that have positive inte-

ger nodeweights (ki : i ∈ V (F)\[k]) (it is convenient to leave the labeled nodes alone), positive
integer edgeweights mij (i, j ∈ [q], i �= j ) and each node i ∈ V (F)\[k] may carry a loop with a
positive integer weight mii . Let us call such an F a decorated graph. For a decorated k-labeled
graph F , and map φ : [k] → [q], we can define

homφ(F,H) =
∑

ψ : V (F )→[q]
ψ extends ϕ

∏
i∈V (F )\[k]

α
ki

ψ(i)

∏
ij∈E(F)

β
mij

ψ(i)ψ(j).

We can now form the linear space G∗
k of formal linear combinations of decorated graphs, define

product, inner product, and congruence modulo H in it, and factor out the kernel as before. The
inclusion–exclusion argument above gives that

Lemma 4.3. The algebra G∗
k /H is generated by k-labeled decorated quantum graphs with at

most q unlabeled nodes.

Next we show that we can get rid of the large weights.

Lemma 4.4. Let F be a decorated k-labeled graph. Then F is congruent modulo H to a linear
combination of decorated k-labeled graphs that are isomorphic to F but all nodeweights are at
most q and all edgeweights are at most q2.

Proof. Let u ∈ V (F)\[k] have nodeweight ku > q . Let F (r) denote the decorated k-labeled
graph obtained from F by reducing the weight of u by r . Consider the polynomial

q∏
i=1

(x − αi) =
q∑

j=0

ajx
q−j .

Then for every φ :V (F) → [q], we have
q∑

j=0

aj homφ

(
F (j),H

) =
q∑

j=0

ajα
−j

φ(u) homφ(F,H) = 0,

and so we also have for every ψ : [k] → [q]
q∑

j=0

aj homψ

(
F (j),H

) = 0.

Thus

homψ(F ) = −
q∑

homψ

(
F (j)

) = homψ(x,H),
j=1
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where x = −∑q

j=1 F (j) is a quantum graph in which all the terms have smaller total weight. By

induction, the lemma follows. If any of the edgeweights is larger than q2, we argue similarly. �
To conclude, it suffices to prove

Lemma 4.5. Every decorated k-labeled graph is congruent modulo H to a linear combination
of undecorated k-labeled graphs with at most k + (10q)q nodes.

Proof. By Lemma 4.4, we may assume that the given quantum graph F has nodeweights at
most q and edgeweights at most q2. Replace each unlabeled node u in F by a set Su =
{u1, . . . , uku} of ku nodes, and attach a contractor to u1 and uj for j = 2, . . . , ku. For every
edge uv of F , insert muv edges between the nodes in Su arbitrarily. (We may be forced to create
multiple edges and loops.) We can replace a loop at uj ∈ Su by attaching both labeled nodes of a
simple connector to uj . (This may create a double edge in this connector.) We now get rid of the
multiple edges by replacing them with a simple connector.

The number of nodes in the contractors is at most (number of nodes in F ) × (maximum
nodeweight) × (maximum number of nodes in component of the contractor), which is at most
q2(6q)q . The number of nodes in the connectors coming from loops is at most q × q ×
2 × q = 2q3. The number of nodes in the connectors coming from other edges is at most(
q+2

2

) × q × q < q4. This proves the lemma. �
This completes the proof of Theorem 4.2. �
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