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Abstract

In a series of papers, of which the present one is Part I, it is shown that solutions to a variety of problems in distance geometry,
potential theory and theory of metric spaces are provided by appropriate applications of graph theoretic results.
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�1

In what follows we are going to discuss systematic applications of graph theory – among others – to geometry, to
potential theory, and to the theory of function-spaces. This sounds perhaps surprising to those who still think of graph
theory as the “slum of topology”. These applications show that suitably devised graph theorems act as flexible logical
tools (essentially as generalizations of the pigeon hole principle) and have nothing to do with topology at all. We believe
that the applications given in this sequence of papers do not exhaust all possibilities of applications of graph theory
to other branches of mathematics. Scattered applications of graph theory to geometry and number theory (mostly via
Ramsey’s theorem) existed already in the papers of Erdös and Szekeres [6] and Erdös [2,5]. The inherence of graph
theoretic methods in the problems we are dealing with is indicated also by the fact that it leads often to best possible
results.

Several parts of the results contained in this sequence of papers were subject to lectures given by the authors. The
first lecture was given by the last named author on Aug. 30, 1968 in Calgary. The first printed account, reproducing
lectures of the last named two authors at the Conference on Combinatorial Structures and Their Applications in June
1969 at the University of Calgary, appeared in the Proceedings of this Conference (see [17] and [20]). The second paper
of this series which was written much earlier than the present one, appeared already in [7]. Accounts were given also
by the second named author in a lecture at Imperial College, London, in 1970.

The first group of applications refers to the distance distribution of point sets in a complete metric space. Let (X, d)

be a complete metric space and let F be a family of point sets f in X satisfying the following restrictions:

(1.1) For a sufficiently large R, all sets of F are in a sphere of radius R.
(1.2) If f ∈ F and f1 is a finite subset of f , then f1 ∈ F .
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(1.3) If f ∈ F is finite, P ∈ f , then for arbitrary ε > 0 there exists a P1 in X such that

P1 �= P, d(P, P1) < ε,

and the set

f1 = f ∪ {P1}
belongs to the family F too.

Important examples of such families in case of finite-dimensional euclidean spaces Rk , which interest us in this
paper almost exclusively, are:

(a). The family F of all closed domains in Rk with maximal chord 1 (taking in account that in Rk translation does not
change distances).

(b). All closed subsets of the closure of a fixed bounded domain D in Rl(l ≤ k),
(c). All closed sets in Rk whose projection to all hyperplanes in Rl (l < k) can be translated into the closure of a fixed

bounded l-dimensional domain.

For given F let Fn denote the subfamily of F whose elements f satisfy the additional restriction

(1.4) |f | = n.

We are interested in the distribution of distances

(1.5) d(P�, P�), 1 ≤ � < � ≤ n,

in sets f which belong to Fn.
The families F are so general that at first glance it seems hopeless to assert anything nontrivial for the distribution in

this generality. Nevertheless we have found that by introducing “the packing-constants1 belonging to the family F” a
great deal can be said about the distribution. These constants are defined for � ≥ 2 by

(1.6) �� = ��(F ) sup
(P1,...,P�)∈F�

min
1≤i<j≤�

d(Pi, Pj ).

These constants obviously exist and are monotonic in �:

(1.7) �2 ≥ �3 ≥ . . . .

Moreover they are also “monotonic in F” in the sense that F1 ⊂ F2 implies obviously

(1.8) ��(F1) ≤ ��(F2), � ≥ 2.

In the case of Rk , we have also

(1.9) lim
�→∞ �� = 0.

We found that in the general case, in addition to the packing constants, the “critical indices” i2, i3, . . . play a decisive
role in the distribution of distances of the sets of Fn. They are defined by

(1.10) �2 = . . . = �i2 > �i2+1 = . . . = �i3 > �i3+1 = . . . ;

and for convenience we define

(1.11) i1 = 1.

We can formulate now

1 The name can be justified the easiest when the family F consists of the point sets on the unit sphere. Having spherical distance, for each � ≥ 2
suitably placed disjoint caps with spherical radii ��/2 realise the densest packing by � congruent spherical caps of the unit sphere.
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Theorem 1. For each fixed � ≥ 2 and n > i2, the number of distances d(Pi, Pj ) (i �= j) in each set f of Fn satisfying
the inequality

(1.12) d(Pi, Pj ) ≤ �i�+1(=�i�+1)

is at least

(1.13) 1
2 n2/i� − 1

2 n.

The theorem is best possible in a very strong sense. Equality in (1.13) can be attained for all F-families, for all � ≥ 2
and n > i�, n ≡ 0 (mod i�).

�2

In order to show that Theorem 1 leads to genuine geometrical results, let first F be the family of sets on the periphery
of the unit circle. Then evidently

�l = 2 sin(�/l) (l = 2, 3, . . .)

and il = l. Hence by Theorem 1 for � ≥ 2 we have: If n > � and n points lie on the periphery of the unit circle, then
at least

( 1
2 n2/� − 1

2 n
)

distances are ≤ 2 sin(�/(� + 1)). Putting m points on the periphery very close to each vertex
of a regular �-gon, we see at once that the number of distances ≤ 2 sin(�/(� + 1)) (even the number of distances
≤ 2 sin(�/�) − �, � small positive) equals 1

2 n2/� − 1
2 n indeed.

Another important case when all packing constants can be determined is given by the subsets of an arc AB having
the property that if P is fixed on it and Q moves along it off P then

(2.1) QP decreases strictly monotonically.

In this case – as is easy to see – �� is furnished by the side length b� of the “inscribed quasi-regular �-gon
AP 2P3 . . . P�−1B” defined by

(2.2) AP 2 = P2P3 = . . . = P�−2P�−1 = P�−1B = b�

the points Pj being on the arc.
All packing constants belonging to circular arcs can be explicitly determined. Several packing constants belonging

to the unit-square in R2 and unit cube in R3 have been determined in the papers of Meir and Schaer [12] and Schaer
[14]. Probably all packing constants belonging to a convex curve can be explicitly determined (somewhat in the sense
of (2.2)).

In the case when the family F consists of plane sets with maximal chord length 1, the packing constants ��, 2 ≤ � ≤ 7
were determined for a different purpose by Bateman and Erdös in 1951 [1]; they are

(2.3) �2 = �3 = 1, �4 = 1
2

√
2, �5 = 1

2 (
√

5 − 1),

�6 = 1/(2 sin 72◦), �7 = 1
2 .

As proved by Thue (see [18]), �� is, for large �, asymptotically

(
1

12�2
)1/4

�−1/2.

Since in this case i� = � + 1 (2 ≤ � ≤ 5), for � = 2 Theorem 1 yields that if n > 3 points are located on a plane with
maximal distance 1, then at least 1

6 n2 − 1
2 n distances are ≤ 1

2

√
2. This was the only known case of Theorem 1 (see

Erdös [3]). A classical case of the determination of the packing constants is known since Newton and Gregory. If F
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consists of all subsets of the unit sphere in R3, their known dispute (see [8], p. 236) boils down to the question whether
or not in this case �13 < 1 = �12 or �13 = �12. Since now, this time in nonspherical metric,

(2.5) �2 = 2, �3 = √
3, �4 =

√
8
3 , �5 = �6 = √

2 > �7,

we have i� = � for 2 ≤ � ≤ 4 and i5 = 6. Theorem 1 now yields, e.g. for � = 4, that if n > 4 points lie on the unit
sphere, at least 1

8 n2 − 1
2 n euclidean distances between them are ≤ √

2 (and generally no more). 2 Schoenberg [15]
and Seidel [16] found that choosing F to be the family of all sets in Rk with maximal chord length 1, beside the trivial
�2 = �3 = . . . = �k+1 = 1, we have

(2.4) �k+2 =
{√

k/(k + 2) if k is even,√
(k2 + 2k − 1)/(k2 + 4k + 3) if k is odd,

and hence i2 = k + 1. Theorem 1 gives e.g. that if n > k + 1 points in Rk (k even) have maximal distance 1 then at
most kn2/(2k + 2) distances can be greater than

√
k/(k + 2). In other words, if we have (for some even k) a system

of n > k + 1 points with maximal distance 1 and more than kn2/(2k + 2) of the distances are >
√

k/(k + 2), then the
system cannot be isometrically embedded in Rk (again best possible). Such type of non-embeddability criteria seem
not to be observed before.

All these motivate the interest in the general problems of prescribability, uniqueness and geometrical realizability of
the sequence of packing constants (as mentioned already in [20]).

�3

Theorem 1 gives sharp lower bounds for the number of distances not exceeding �i�+1 in Fn ⊂ F . What can be said
of the number of distances not exceeding � for a fixed �? We are going to prove

Theorem 2. If 0 < � ≤ �2 and � ≥ 2 is (uniquely) determined by

(3.1) �i�+1 ≤ � < �i� ,

then for n > iv the number of distances d(Pi, Pj ), i �= j , in each set f of Fn satisfying the inequality

(3.2) d(Pi, Pj ) ≤ �

is at least

(3.3) n2/(2i�) − 1
2n.

This lower bound is best possible for all F-families, for all � ≤ �2 and n > i�, n ≡ 0 (mod i�).
A particularly elegant (but somewhat weaker) form can be given to Theorem 2 by observing that, together with its

best possibility concerning n, it implies the existence of

(3.4) lim
n→∞

(n

2

)−1
min
f ∈Fn

�(f ),

where �(f ) denotes the number of pairs Pi, Pj in f with

(3.5) d(Pi, Pj ) ≤ �, i < j .

Denoting the limit in (3.4) by HF (�) and calling it “the lower distance distribution function of the family F”, an
alternative form of Theorem 2 is

2 Since the Newton–Gregory dispute, the sequence of packing-constants is intensely investigated from the point of view of strict monotonicity.
Using Theorem 1 the other way around, one can devise a general method to show �� > ��+1 if it is true (see [21]).
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Theorem 2′. For all F -families of sets in (X, d), the lower distance distribution function HF (�) is a right-continuous
step function with jumps only at � = �i� and

lim
�→�i�+0

HF (�) = 1/(i�−1), � = 2, 3, . . . .

(Note the definition of i1 in (1.11)).

�4

Next we turn to some applications in complex function theory. Let B be a bounded and closed set on the plane with
boundary �B. Then we assert for the capacity (see [10]) of B

Theorem 3. If �B belongs to an F -family satisfying (1.1), (1.2), (1.3) with packing constants �∗
� and

(4.1)
∑
�

�−2 log(1/�∗
�)

diverges, then the capacity of B is 0.

The theorem is best possible in the sense that for arbitrary small ε > 0 there exist sets B with positive capacity such
that

(4.2)
∑
�

�−2+ε log(1/�∗
�) diverges.

More generally, we shall prove

Theorem 4. If B is a bounded and closed continuum (whose complement is simply connected) and �B belongs to
an F -family of sets satisfying (1.1), (1.2), (1.3) and having the packing constants �∗

� , then the outer conformal radius
r = r(B) obeys the inequality

(4.3) r(B) ≤
∞∏

�=2

(�∗
�)

1/(�−1)�.

Since
∑∞

�=21/(� − 1)� = 1, both sides of (4.3) are linear in a magnifying constant, hence without loss of generality
we may assume

�∗
2 = 1.

If we retain in (4.3) only the first few packing-constants we can get upper bounds for r(B).
Obviously (4.3) can be used as a system of inequalities, giving upper bounds for the outer conformal radius via

various geometrical properties of the set (expressed by our F-families).
As is well known, Pólya proved the inequality

F ≤ �d(B)2,

where F stands for the outer Jordan measure of B and d(B) for its transfinite diameter (supposing now only that B is
bounded and closed). Connecting this with the real content of Theorem 4 we get

Corollary 4.1. If B is a bounded and closed set in R2 with outer Jordan measure F so that �B belongs to one of our
set-families H with packing constants ��(H), then we have the inequality

(4.4) F ≤ �
∞∏

�=2

��(H)2/(�−1)�.
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This is a purely geometrical inequality between certain geometrical constants of B. It would be of interest to find a
geometrical proof for it and also to find the higher-dimensional analogues, mainly for R3.

�5

Next we turn to some applications which yield bounds for energy integrals. Let D be a bounded and closed set in Rk

with positive finite l-dimensional Jordan measure |D|, l ≤ k. We consider integrals of the form

(5.1) I (g) =
∫

(D)

∫
(D)

g(PQ) d�P d�Q

connected to a mass distribution with density 1 on D. Here PQ means euclidean distance and g(x) is any function
satisfying

(5.2)
(i) g(x) is monotonically decreasing
(ii) g(x) is bounded from below in (0, �2).

The cases

g(x) = log x−1, g(x) = x−�, � > 1,

are obviously included. Now we choose as the family F all subsets of D. Then we assert

Theorem 5. Denoting by �� the packing constants of the family F , the inequality

(5.3) |D|−2I (g) ≥
∞∑

�=2

g(��)/(� − 1)�

holds for all g(x) satisfying (5.2).

Equality holds in (5.3) for g(x) ≡ 1. It is perhaps of interest to note that the evaluation points on the right-hand side
do not depend on g, reminding the classical formulae of mechanical quadrature.

Denoting the potential at P generated by g(x) (with uniform mass distribution) by

(5.4) G(P ) =
∫

(D)

g(PQ) d�Q,

Theorem 5 yields at once the inequality

(5.5) sup
P∈D

G(P ) ≥ |D|
∞∑

�=2

g(��)/(� − 1)�.

It is therefore a plausible conjecture that for every �, 0 ≤ � ≤ 1, the inequality

(5.6) G(P ) ≥ �|D|
∞∑

�=2

g(��)/(� − 1)�

holds in D with the possible exception of a set of measure ≤ �|D|. This would be an interesting counterpart of the
classical upper bound of Ahlfors–Cartan (see [13]). We could prove so far a weaker theorem only. Let g(x) be positive
and monotonically decreasing for x > 0 and let the index r be defined (if it exists) by

(5.7) max
�

{g(��)/(� − 1)�} = g(��)/(r − 1)r .

Then we have
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Theorem 6. For the potential G(P ) generated by g(x) in (5.4) the inequality

G(P ) ≥ �|D|
r∑

�=2

g(��)/(� − 1)�

holds in D for every �, 0 ≤ � ≤ 1, with exception of a set of measure �(1 − (r − 1)−1)|D| at most.

�6

Next we turn to the proof of Theorem 1. It is based on the following graph theorem [17]:
For given K, N, 3 ≤ K ≤ N , let

(6.1) N = (K − 1)t + s, 0 ≤ s ≤ K − 2.

A graph TN (admitting only simple edges and no loops) with N vertices which does not contain a complete subgraph
of order K cannot have more than

(6.2)
K − 2

2(K − 1)
(N2 − s2) +

( s

2

)
edges. In the unique extremal graph (where equality can be attained) the vertices can be divided into K − 1 disjoint
classes each containing t + 1 or t vertices so that each pair of vertices from different classes is connected by an edge
whereas pairs from identical classes are not connected.

Let now � be fixed and {P1, P2, . . . , Pn} be in Fn. We make correspond to it a graph �′
n with vertices P ′

1, P
′
2, . . . , P

′
n

as follows: P ′
j and P ′

k (j < k) be connected by an edge in �′
n if and only if

(6.3) d(Pj , Pk) ≥ �i�+1(=�i�+1).

Let

n = i�m + h, 0 ≤ h ≤ i� − 1.

We assert that the number of pairs satisfying (6.3) cannot exceed

(6.4)
i� − 1

2i�
(n2 − h2) +

(
h

2

)
def= U .

For, otherwise, the graph �′
n had more than U edges and thus the graph (6.1)–(6.2) with

N = n, K = i� + 1, t = m, s = h

would imply the existence of a complete subgraph of order i� + 1. Returning to distances, however, this would mean
that for suitable points P1, P2, . . . , Pi�+1 from {P1, . . . , Pn}, all distances were > �i�+1. Since the number of points is
finite, for a sufficiently small � > 0 all these distances are even > �i�+1 + �. But this is in contradiction to the definition
of the ��’s in (1.6). Hence our assertion (6.4) is correct. But then the number of pairs with

d(Pj , Pk) ≤ �i�+1, 1 ≤ j < k ≤ n,

is at least(n

2

)
− 1

2 {(i� − 1)/i�}(n2 − h2) −
(

h

2

)
= 1

2 n2/i� − 1
2 n + 1

2 h(1 − h/i�) ≥ 1
2 n2/i� − 1

2 n,

as claimed.
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�7

In order to prove that Theorem 1 is best possible for all F-families and for all � ≥ 2, let for arbitrarily small ε > 0
the set

(7.1) {P ∗
1 , P ∗

2 , . . . , P ∗
i�
}

be in Fi� such that

(7.2) min
i≤j<k≤i�

d(P ∗
j , P ∗

k ) > �i� − ε.

Let M be an arbitrary positive integer. Repeated use of (1.3) results that arbitrarily close to each of the points P ∗
j , M −1

different points can be found so that the resulting system � of n = Mi� points belongs to Fn and the distance of two
points located “close” to different points is

> �i� − 2ε.

Since �i� > �i�+1, ε can be chosen so small that

�i� − 2ε > �i�+1.

Hence the number of distances between points of � not exceeding �i�+1 is indeed

i�

(
M

2

)
= i�

(
1
2 M2 − 1

2 M
)

= i�

(
1
2 n2/i2

� − 1
2n/i�

)
= 1

2 n2/i� − 1
2 n.

In order to prove Theorem 2, we observe that the estimation (3.3) follows at once from monotonicity with respect to
�. Hence we have only to show that it is best possible also for �i�+1 < � < �i� . Fixing such a �, and choosing an � > 0
so small that

� < �i� − 2�,

the reasoning of �7 repeated with ε = 1
2 � yields the desired conclusion.

�8

Before proving Theorems 3 and 4, we shall prove Theorem 5. We remark first that without loss of generality we may
assume

(8.1) g(x) ≥ 0, 0 < x ≤ �2.

Namely if (5.3) holds for this case and g1(x) decreases monotonically for x > 0 so that

g1(x) ≥ −c1, 0 < x ≤ �2,

then applying the result to g(x) = g1(x) + c1, we get

c1|D|−2
∫

(D)

∫
(D)

d�P d�Q + |D|−2
∫

(D)

∫
(D)

g1(PQ) d�P d�Q

≥
∞∑

�=2

g1(��) + c1

(� − 1)�
,

hence the theorem follows for the general case. So we may suppose (8.1).
Let f = {P1, P2, . . . , Pn} ∈ Fn and consider the sum

(8.2) Sn = n−2
∑

i≤j �=k≤n

g(Pj , Pk)
def= n−2

∑
1≤j �=k≤n

g(rjk).
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This can be split into partial sums according to

�h+1 < rjk ≤ �h, h = 2, 3, . . .

(permitting also empty sums if it happens that �h+1 = �h). Owing to the monotonicity of g(x) this gives

(8.3) Sn ≥ 2n−2
∞∑

h=2

g(�h)Wh,

where Wh denotes the number of pairs (j, k), j �= k, with

�h+1 < rjk ≤ �h.

Using the notation

(8.4) Zh
def=

∞∑
m=h

Wm,

it follows from Theorem 1 that for n ≥ h − 1,

(8.5) Zh ≥ 1
2 n2/(h − 1) − 1

2 n.

Further, clearly, for certain integer L

Zh = 0 for h ≥ L.

Using partial summation we get from (8.3)

Sn ≥ 2n−2{g(�2)(Z2 − Z3) + g(�3)(Z3 − Z4) + . . . + g(�L−1)(ZL−1 − ZL)}

= 2n−2

{
g(�2)Z2 +

L−1∑
h=3

(g(�h) − g(�h−1))Zh

}

= 2n−2

{
g(�2)Z2 +

∞∑
h=3

(g(�h) − g(�h−1))Zh

}
.

All terms of the last sum are nonnegative; hence retaining only the terms with h ≤ n + 1 and applying (8.5) we get

Sn ≥ 2n−2

{
g(�2)

(
1
2 n2 − 1

2 n
)

+
n+1∑
h=3

(g(�h) − g(�h−1))
(

1
2 n2/(h − 1) − 1

2 n
)}

= 2n−2

{
− 1

2 ng(�n+1) + 1
2 n2(g(�2) +

n+1∑
h=3

(g(�h) − g(�h−1))/(h − 1))

}

=
n∑

h=2

g(�h)/(h − 1)h.

Now Theorem 5 follows from (8.6) by usual passage to limit.

�9

Next we turn to the proof of Theorem 6. Let z1, z2, . . . , zn be in B and

E(z1, . . . zn) =
(n

2

)−1 ∑
i≤j<k≤n

log |zj − zk|−1 def=
(n

2

)−1 ∑
1≤j<k≤n

log(1/rjk).

The minimum on B of E(z1, z2, . . . , zn) for fixed n exists and is attained for a system of points {z∗
1, z

∗
2, . . . , z

∗
n} on B.
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Denoting by r∗
jk the corresponding distances, we have

(9.1) E(z∗
1, . . . , z

∗
n) = 1

2 n2
(n

2

)−1

⎧⎨
⎩n−2

∑
1≤j �=k≤n

log(1/r∗
jk)

⎫⎬
⎭ ,

which, applying the reasoning of �8, yields

(9.2) E(z∗
1, . . . , z

∗
n) ≥ (n − 1)−1

n∑
h=2

(1/(h − 1)h) log(1/�∗
k).

As Fekete proved [9], the left side of (9.2) tends to log �−1 as n → ∞, � being the transfinite diameter of B. Owing
to the known relation � = r(B), the proof of Theorem 4 is now completed.

�10

Theorem 3 is a remarkable special case of Theorem 4; so we turn now to prove the assertion preceding (4.2) concerning
its best possibility. Let 0 < ε < 1

100 be fixed and let

(10.1) 2 ≤ n1 < n2 < . . .

a sequence of integers (to be determined later). Then every number in (0, 1) can be represented in the form

(10.2) x =
∞∑

�=1

c�/n1n2 . . . n�, 0 ≤ c� ≤ n� − 1.

Let our set B consist of x’s having as c� “digit” the values 0 or n� −1. We want to estimate �2k , the 2kth packing constant
of this set. Having any 2k points of our set, at least 2k−1 of these have common first digit, at least 2k−2 of these have
identical first two digits, . . ., at least 2 have first k − 1 identical digits. Hence

(10.3) �2k ≤ (nk − 1)/n1n2 . . . nk ≤ 1/n1n2 . . . nk−1.

Owing to the monotonicity of the packing constants we have for 2k ≤ � < 2k+1

�� < 1/n1n2 . . . nk−1.

Hence

Uk
def=

2k+1−1∑
�=2k

�−2+ε log �−1
� > log(n1n2 . . . nk−1)

2k+1−1∑
�=2k

�−2+ε

> 2−(k+1)(1−ε)2k log(n1n2 . . . nk−1)

> 1
4 · 2−k(1−ε)

k−1∑
�=1

log n�.

Choosing now

(10.4) n� = [22
�(1− 1

2 ε)], � = 1, 2, . . . ,

we get

Uk > 1
20 · 2−k(1−ε)

k−1∑
�=1

21− 1
2 ε

> c · 2
1
2 εk

with a numerical constant c. Thus the series (4.2) indeed diverges.
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If we can prove that the transfinite diameter of our set is positive then the proof of the assertion (4.2) is finished. This
will be done by exhibiting for each integer l, 2l elements x� of our set so that

(10.5)

⎧⎨
⎩

∏
1≤j<k≤2

|xj − xk|
⎫⎬
⎭

1/

(
2l

2

)
> c > 0

independently of l. For this purpose we choose for each l ≥ 3 the points x� as

(10.6)

l∑
j=1

εj /n1n2 . . . nj , εj = 0 or nj − 1.

We split the product in (10.5) into

(10.7) �1 �2 . . . �l−1,

where �� is extended to all factors |xj − xk| such that the first different digit in the expansion (10.6) of xj and xk

occurs on the �th place. Each such factor is therefore (putting n0 = 1)

(10.8) > (n� − 1)/n1n2 . . . n� −
∞∑

j=�+1

(n� − 1)/n1n2 . . . nj

= 1/n1n2 . . . n�−1 − 2/n1n2 . . . n�

= (1/n1n2 . . . n�−1)(1 − 2/n�).

In order to calculate the number of factors in ��, we observe that the first � − 1 identical digits in xj and xk can be
chosen on 2�−1 ways, the last l − � digits of xj resp. xk can be chosen independently on 2l−� ways. This gives rise to
(2l−�)22�−1 factors in ��. Hence

�� > {(1/n1n2 . . . n�−1)(1 − 2/n�)}2�−122l−2�
,

and thus the product in (10.5) is at least∏
1≤�≤l−1

{(1/n1n2 . . . n�−1)(1 − 2/n�)}22l−�/2l (2l−1)

>
∏

1≤�≤l−1

(1/n1n2 . . . n�−1)(1 − 2/n�)
2−�+1

> c1 exp

{
−2

l−1∑
�=2

2−�(log n1 + log n2 + · · · + log n�−1)

}

with a positive numerical c1. Since, owing to the choice (10.4), indeed

k−1∑
�=2

2−�(log n1 + . . . + log n�−1) < 2
∞∑

�=2

2−� log n� < c.

�11

Finally we turn to the proof of Theorem 4. We shall denote by |s| the number of elements of a set s. We shall need
the following

Lemma 1. If L1, L2, . . . , Lm are subsets of the finite set L and for � = 1, 2, . . . , m,

(11.1) |L�| > ((m − 1)/m)|L|,
then the intersection of all L�’s is not empty.
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Proof. For the proof let

l∗1 , l∗2 , . . . , l∗n, n = |L|,
be all elements of 	 and let �� be the number of L�’s which contain l�. Then we have, using (11.1),

n(m − 1) <

m∑
j=1

|Lj | =
n∑

�=1

��,

which implies that max� �� ≥ m. This is equivalent to our assertion.

We shall need an easy corollary of the graph theorem (6.1), (6.2), which we shall formulate as

Lemma 2. If in a graph GN with N vertices every vertex has degree at least ((� − 2)/(� − 1))N , then GN contains a
complete subgraph of order �.

Proof. The proof is easy. The degree condition implies that the number of edges in the graph is greater than the
corresponding quantity in (6.2). This proves the lemma.

We shall also need

Lemma 3. Let �N be a graph with N vertices which does not contain any complete subgraph on K vertices, 3 ≤ K ≤
N . Let

(11.2) 0 ≤ 
 ≤ 1/(K − 1).

Then the number of vertices of degree not exceeding (1 − 
)N in �N is greater than

(11.3) {1 − 
(K − 2)}N .

Proof. For the proof we decompose the vertices of �N into the disjoint classes �1 and �2, the first one containing all
vertices of degree

(11.4) > (1 − 
)N

and �2 the others. The essential observation is that �1 cannot contain a complete subgraph of order K − 1. Suppose
namely that

(11.5) Q1, Q2, . . . , QK−1

were the vertices of such a subgraph. Denoting for j = 1, 2, . . . , K − 1 the set of vertices in �N which are connected
by an edge to Qj by Rj , we have by (11.4),

(11.6) |Rj | > (1 − 
)N, j = 1, 2, . . . , K − 1.

This implies, owing to (11.2), that

|Rj | > K − 2

K − 1
n.

Hence Lemma 1 is applicable to the Rj ’s with m = K − 1. Consequently, �N would contain a vertex Q∗ which is
contained in all Rj ’s, i.e. is connected to all Qj ’s. But then (Q1, Q2, . . . , QK−1, Q

∗) would be a complete subgraph
of order K in �N , in contradiction to our assumptions. Thus �1, contains no complete subgraphs of order K − 1. But
then the application of Lemma 2 to GN = �1 with � = K − 1 implies that the degree of at least one vertex in �1 with
respect to �1 is

<
K − 3

K − 2
|�1|
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and hence its degree with respect to �N is less than

N − |�1| + K − 3

K − 2
|�1| = N − 1

K − 2
|�1|.

This yields in connection with (11.4) that

(1 − 
)N < N − 1

K − 2
|�1|,

i.e.

|�1| < 
(K − 2)N .

This implies indeed that more than (1 − 
(K − 2))N vertices in �N have degree ≤ (1 − 
)N .

We shall use Lemma 3 in the following form:
If �N contains no complete subgraphs of order K and 
 satisfies (11.2), then the complementary graph �N contains

more than

(11.7) (1 − 
(K − 2))N

vertices of degree (with respect to �N )

(11.8) > 
N .

�12

Now we can turn to the proof of Theorem 7. Let P1, P2, . . . , Pn be in an f from the family F with packing constants
�� and critical indices i1, i2, . . .. For a fixed � ≥ 2, corresponding to P1, . . . , Pn, we define a graph G with vertices
P ′

j , j = 1, 2, . . . , n, as follows:
The edge P ′

jP
′
k occurs in G if and only if

(12.1) PjPk > �i�+1(=�i�+1).

We easily see, as before, that G does not contain a complete subgraph of order i�+1 = i� + 1. Thus, applying Lemma 3
in the form (11.7), (11.8) with �N = G, N = n, K = (i� + 1), we get that for

(12.2) 0 ≤ 
 ≤ 1/i�

more than

(12.3) (1 − 
(i� − 1))n

points Pj have the property that the inequality

PjPk ≤ �i�+1

holds for more than 
n points Pk, k �= j . Thus the positivity and monotonicity of g(x) implies that

(12.4) n−1
n∑

k=1
k �=j

g(PkPj ) ≥ 
g(�i�+1).

By usual passage to limit we obtain that the inequality

(12.5) G(P ) ≥ 
|D|g(�i�+1)
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holds in the set f of F with the possible exception of a set of measure

(12.6) ≤ 
(i� − 1)|D|.
Replacing 
 by (1/i�)�, 0 ≤ � ≤ 1, this yields that the inequality

(12.7) G(P ) ≥ (�|D|/i�)g(�i�+1) ≥ �|D|(g(�i�+1)/(i�+1 − 1)i�+1)i�+1

holds in each set f of the family F with exception of a set of measure

≤ �(1 − 1/i�)|D| = �(1 − 1/(i�+1 − 1))|D|.
Defining r by (5.7), the inequality (12.7) implies on choosing � so that i�+1 = r that

G(P ) ≥ �|D|
r∑

�=2

g(��)/(� − 1)�

at most holds in D with the exception of a set of measure

�|D|(1 − 1/(r − 1)).
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