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1. Introduction

In this paper we give a short survey of additive representation functions, in
particular, on their regularity properties and value distribution. We prove a
couple of new results and present many related unsolved problems.

The study of additive representation functions is closely related to
many other topics in mathematics: the first basic questions arose from
Sidon’s work in harmonic analysis; analytical methods (exponential sums)
and combinatorial methods are equally used; Erdds and Rényi introduced

probabilistic methods, etc.

Paul Erd6s played a dominant role in the advance of this field. As
Halberstam and Roth write in their excellent monograph [23] written on
sequences of integers:
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2. Notations

The set of integers, non-negative integers, resp. positive integers is denoted
by Z,Ny and N. A, B, ... denote (finite or infinite) subsets of Ny, and their
counting functions are denoted by A(n), B(n),... so that, e.g.,

An)=|{a:0<a<n,ac A}

A1 + Az + - -+ + A, denotes the set of the integers that can be represented |
in the form a3 + a2 + -+ - + ax with a; € Aj,...,ar € Ag; in particular, we ‘
write A+ A = 24 = S(A). For A C N, D(A) denotes the difference set

of the set A, i.e., the set of the positive integers that can be represented in

the form a — o’ with a,a’ € A. For A = {a1,a2,...} C No,k € N we write

kx A= {kal,kag, - }

Representation Functions

For A C Ny, n € Ny the number of solutions of the equations

a+d =n a,a’ € A,

/7
a+ad =n, a,a’ € A, a<a

and

a+ad =n, a,a’ € A, a<a

is denoted by r1(A,n), r2(A,n), resp. r3(A,n) and are called the additive
representation functions belonging to A.

For g € N, Bz[g] denotes the class of all (finite or infinite) sets A C Ny
such that for all n € Ny we have r3(A,n) < g, i.e., the equation

a+a =n, a,a’ € A, a<ad

has at most g solutions. The sets A € Bs[1] are called Sidon sets.
If F(n) = O(G(n)), then we write F(n) < G(n).

3. The Representation Function of General Sequences.
The Erdds-Fuchs Theorem and Related Results

Erdds and Turdn [22] proved in 1941 that for an infinite set A C N, the
representation function r;(A,n) cannot be a constant from a certain point
on. Dirac [6] and Newman proved that the same holds with r5(A,n) in place
of r1(A,n). Since their proof is short and elegant, we present it here:
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Let
flx) = Z z® (for z real, |z| < 1).
acA
If ro(A,n) = k for n > m, then

m+1

(f2(x + f2(z?)) ng(.A n)z" = P(s) + k>—

where P, (z) is a polynomial of degree < m. If x — —1 from the right, then
the right-hand side has a finite limit while the left-hand side tends to +o0.
This contradiction proves the theorem.

Moreover, in [22] Erdés and Turdn conjectured that their result can be
sharpened in the following way: if A C N and ¢ > 0, then

N
Z ri(A,n) =cN +0(1)
n=1
cannot hold.

In [12], Erdés and Fuchs proved two theorems one of which sharpens the
above mentioned result of Erd6s and Turan:

Theorem 1 (Erdds and Fuchs [12]). If A = {a;,a2,...} C N,¢ > 0, or
c=0 and ay < Ak* (for k=1,2,...), and i = 1,2,3, then

N

lim sup ]—b— Z(ri(.A, n) —c)? > 0.

N—+o00 =0

Their other, better known result (in fact, this is the result known as
“the Erdds-Fuchs theorem”) proves the conjecture of Erdés and Turén in the
following sharper form:

Theorem 2 (Erdés and Fuchs [12]). If A CN,c> 0, then

N
> ri(A,n) = cN + o(N/*(log N)~/?) (1)

n=1

cannot hold.

One of the most important problems in number theory is the circle
problem, i.e., the estimate of the number of lattice points in the circle
z? 4+ y? < N. Writing A

A(N) = {(z,y) : 2,y € Z,z° +y* < N}| - 7N,
the problem is to estimate A(NN). By a classical result of Hardy and Landau,
one cannot have

A(N) = o(N'/*(log N)'/*). (2)
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The importance of Theorem 2 is based on the fact that the special case
A= {12,22,.. .} of it corresponds to the circle problem, and the Q-estimate
proved in the much more general Theorem 2 is only by a logarithm power
worse than (2).

Theorem 2 has been extended in various directions. Bateman, Kohlbecker
and Tull [3] studied the more general problem when the left-hand side of (1) is
approximated by an arbitrary “nice” function (instead of c¢N). Vaughan [40]
extended the result to sums of k(> 2) terms (see also Hayashi [24]).
Richert [29] proved the multiplicative analogue of Theorem 2. Sarkézy [34]
extended Theorem 2 by giving an Q-result on the number of solutions of

a+b<N, a € A, be B.

Jurkat showed (unpublished) that the factor (log N )~1/2 on the right-hand
side of (1) can be eliminated, and recently, Montgomery and Vaughan [28]
published another proof of this result.

Erdés and Sérkozy [14, 15] showed that if f(n) = +oo, f(n+1) > f(n)

for n > ng and f(n) = o(m—g"n—)g), then
max [ (A,n) = f(m)] = o((F(N))'"?) (3)

cannot hold (see also Vaughan [40], Hayashi [24, 25]). Erdés and the authors
continued the study of the regularity properties of the functions r;(A,n)
in [16, 17) and [18], first by studying the monotonicity properties of these
functions (see also Balasubramanian [2]). In an interesting way, here the
three representation functions r1(A,n), r2(A,n), r3(A,n) behave completely
differently.

We proved

Theorem 3 (P. Erdés, A. Sarkozy, V. T. Sés [17]).

(a) r1(A,n) can be monotone for n > ng only in the trivial case when A
contains all the positive integers from a certain point on; A(N) = N —c
for N > nj.

(b) There is an infinite set A such that N — A(N) > N3 and r3(A,n) is
monotone increasing for n > ng.

(c) If

N — A(N)
lim el =
then ro(A,n) cannot be increasing from a certain point on. (See also
Balasubramanian [2].)

But we still do not have the answer for

Problem 1. Does there exist an infinite set A such that N\ A is infinite
and r2(A,n) is increasing from a certain point on?
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As Theorem 6 below shows, it may change the nature of the problem
completely if a “thin” set of sums can be neglected. Here we mention two
problems of this type:

Problem 2. Does there exist a set A C N such that N — A is infinite and
ri(A;n+1)>ri(A,n)

holds on a sequence of integers n whose density is 17 If such a set exists, then
how “dense” can N\ A be?

Problem 3. Does there exist an arithmetic function [ satisfying f(n) — oo,
f(n+1) > f(n) for n > ng, and f(n) = o((l—og"n—)z), and a set A such that

[r1(A,n) — f(n)| = o((f(n))"/?)
holds on a sequence of integers n whose density is 17

Next we studied the following problem: for which sets A C N is
|r1(A,n + 1) —r1(A,n)| bounded? Since we have recently given a survey [21]
of these results, thus we do not present further details here.

We complete this section by adding two problems that the first author of
this paper could not settle in [34].

Problem 4. Is it true that if a1 < az < --- and by < by < --- are infinite
sets of positive integers with
lim =% =1
k—+oo by

and ¢ > 0, then
H(i,9) : ai +b; < N} = N +0(1)
cannot hold?

Problem 5. Is it true that if a1 < a2 < --- is an infinite set of positive
integers with

1/2
Ak4+1 — A > ak/

and f(n) is a “nice” function (say, its second difference f(n + 2) —
2f(n+1)+ f(n) > 0) with
n < f(n) € ntte,
then ‘
{(i,5) : 0 < lai —a;| < N} = f(N) + O(1)
cannot hold?

(This would cover Dirichlet’s divisor problem in the same way as the
Erdés-Fuchs theorem covers the circle problem.)
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4. A Conjecture of Erdés and Turan and Related
Problems and Results

In 1941 Erdés and Turén [22] formulated the following attractive conjecture:

Conjecture 1 (Erdés and Turan [22]). If A C N and r1(A,n) > 0 for
n>ng (i.e., A is an asymptotic basis of order 2), then r1(A,n) cannot be
bounded:

lim sup 71 (A, n) = +o00. (4)
n—+00
This harmlessly looking conjecture proved to be extremely difficult: since
1941 no serious advance has been made. Erdés and Turdn formulated an even
stronger conjecture:

Conjecture 2 (Erdés and Turan [22]). If a1 < az < --- is an infinite
sequence of positive integers such that for some ¢ > 0 and all k € N we have
ar < ck?, then (4) holds.

Erdés and Fuchs [12] remarked that having the same assumptions as in
Conjecture 2, the mean square of 71 (A, n) can be bounded: there are a ¢ > 0
and an infinite set A C N such that a, < ck? for all kK € N and

N
1
limsup — Z r2(A,n) | < +oo. (5)
N—+o00 N P

Answering a question of Erdés, Ruzsa has proved recently the analogous
result in connection with Conjecture 1:

Theorem 4 (Ruzsa, [32]). There is an infinite set A C N such that
r1(A,n) > 0 for all n > ng and (5) holds.

If Conjecture 1 is true, then assuming that A C N, A is infinite and
r2(A, n) is bounded, the function r2(A, n) must assume the value 0 infinitely
often. Erdés and Freud [11] conjectured that having the same assumptions,
r2(A,n) must assume also the value 1 infinitely often, i.e., there are infinitely
many integers n € S(A) whose representation in the form

a+a =n, a,a €A, a<ad (6)

is unique. This attractive conjecture seems to be true although probably it
is very difficult. Moreover, they write “Probably there are “more” integers n
with a unique representation of the form (6) than integers n with more than
one representation.” We will show that this is not so; at least for A € Ba(g),
g =3

Theorem 5. For every g € N, g > 2 there is an infinite set A C No such
that A € Bs[g] and for € > 0, n > no we have
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2
29 -3

Proof. Let & = {e1,e2,...} be an infinite Sidon set, and define A by
A=2gxE+{0,1,...,9—1}.
We will show that this set A has the desired properties:

(i) A€ By[g],
(ii) A satisfies (7).

If ro(A,n) > 1 for some n € N, i.e.,, n € S(A), then, by the construction
of the set A, n can be represented in the form

H{rn:n < N,ra(A,n) =1} < (1 +¢)

{n:n < N,ra(A,n) > 1}. (7)

(2ge +1) + (2g€' +j) =2g(e+€)+ (i+j)=n (8)
where
e, e €&, (9)
0<4,j<g-1, (10)
2ge + i < 2ge’ + j, (11)

and r5(A,n) is equal to the number of integers e, €', i, j satisfying (8), (9),
(10) and (11). It follows from (10) and (11) that

e<ée (12)
and
0<i+j5<29-2. (13)
Define the integers u, v by
n = 2gu + v, 0<v<2g. (14)
Then it follows from (8), (13) and (14) that
ete =u (15)
and
i+j=v (16)

(where v < 2¢g — 2). Since € is a Sidon set, (12) and (15) determine e and
¢’ uniquely. Thus r2(A,n) is equal to the number of pairs (i, ;) satisfying
(10), (11) and (16). If e < €/, then (11) holds automatically, and the number
of solutions of (10) and (11) is v+ 1 for v < g—1 and 2g — v — 1 for
g —1 <wv <2g — 2. Denote the set of the integers n that can be represented
in the form

n=2ge+e)+i (where e < €', e, e’ € £) (1)
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with ¢ = 0 or 2g — 2 by K, and let £ denote the set of the integers n of
form (17) with 1 < ¢ < 2g—3. Then it follows from the discussion above that

=1 f ek
A irnes (19
and clearly we have
2
K(n) = 59— 3L(n) +0(1). (19)

Finally, if 72(A,n) > 1 and n ¢ K UL, then n can be represented in the form
n=2g9e+v withee &, 0<v<2¢9—2;
let M denote the set of the integers n of this form. Clearly,
M(n) = o(K(n)). (20)
It follows from (18), (19), (20) and
{n:neN;r(An)>1}=KULUM

that
2
{n:n < N,r2(A,n) =1} =(1 +0(1))2g . 3|{n :n < N,r2(A,n) > 1}
which completes the proof of the theorem. O

By Theorem 5, it is not true that if r2(A, n) is bounded, then
ro(A,n) =1 (21)
holds more often than
ro(A,m) > 1.

On the other hand, we think that (21) must hold for a positive percentage of
the elements of S(A):

Problem 6. Show that if A C N is an infinite set such that ro(A,n) is
bounded, then we have

; l{n;n < N,ra(A,n) = 1}
i S(A N)

Note that it could be shown that the limsup in (22) cannot be replaced
by liminf.

Moreover, if (22) is true, then for sets A € Bz[g] one might like to give a
lower bound in terms of g for the limsup in (22). Perhaps Theorem 5 is close
to the truth so that this limsup is > %. The special case g = 2 seems to be
the most interesting and, perhaps, in this case there is a good chance for a
reasonable lower bound:

> 0. (22)
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Problem 7. Assuming, that A C N is an infinite set with A € By[2], i.e.,
r2(A,n) <2 for all n, give a lower bound for

Bouaii {n:n < N,r(A,n) =1}
n—+oo [{’I’L in <N, r2(“47n) = 2}|

By Theorem 5, this imsup can be < 2; is it true, that it is always > 2¢

By our conjecture formulated in Problem 6, the assumption
ra(A4,m) = O(1) (23)

implies that 72(A,n) = 1 must hold for a positive percentage of the elements
of S(A). First we thought that (23) can be replaced by the weaker condition
that r2(A, n) is bounded apart from a “thin” set of integers n and still the
same conclusion holds. Now we will show that this is not so and, indeed, for
every finite set U C N there is a set A such that, apart from a “thin” set of
integers n, r2(A,n) assumes only the prescribed values v € U with about the
same frequency.
For A C Np, u € N denote the set of the integers n € N with

ro(A,n) =u
by Su(A) so that S(A) = I Su(A).

Theorem 6. Let k € N and let uy < us < ... < ug be positive integers.
Then there is an infinite set A C Ny such that writing

BzN\(iqui(A))

we have
N
Su; (A, N) = % + O(N®%)
and
B(N)=0(N%)

_ log3
where o = L10g4.

(Here Sy, (A, N) denotes the counting function of S, (A).)
Thus, e.g., there is a set A such that ro(A,n) = 2 for all but O(N®)
values of n with n < N.

Proof. The proof will be based on the following lemma:

Lemma 1. Let F and G denote the set of the non-negative integers that can
be represented in the form Y €;2%, resp. S0 ;2% where g; = 0 or 1
for all i, and write H =F UG. Then
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(i) Every n € N has a unique representation in the form
f+g=n, feF,  g€g
(ii) S(F,N) = O(N®);
(iii) S(G,N) = O(N®);
(w) We have
[{n :n € N,ra(H,n) > 1}| = O(N*).

Proof. (i) is trivial.

(i) follows from the fact that if n € S(F), then representing n in the form
n=3y.",e4" where g; = 0,1,2 or 3, we have 0 < &; < 2 for all 4, i.e,
the digit 3 is missing.

(iii) follows from (ii) and G =2 x F.

Finally, (iv) follows from (i), (ii) and (iii), and this completes the proof
of the lemma. O

Now we will construct a set A of the desired properties. Denote the
elements of the set G (defined in Lemma 1) by (0 =)g1 < g2 < ---, write
G = {91,92,-,9u.} and L; = k x (F 4+ G;) + {i} for i = 1,2,...k, and
finally, let A = (Uf=1 Ei) U(k x G). Clearly, it suffices to show that

G) Ifi € {1,2,...,k}, n € N, n = i (mod k) and n is large enough
(depending on u;), then n has exactly u; representations as the sum

of an element of U;?:k L; and an element of k x G;
(ii) For 1 < i< j <k we have

{n:n < N,neL;+ L} =O0N%);
(iii) S(k x G,N) = O(N?).

To prove (i), define m by n = km + i, and consider a representation of n
in the desired form:

k
L+kg=n=km+1, EEUEJ-, geaqg, (24)
j=1
By the definition of the sets £;, we have £ € L; if and only if
E=k(f+g)+J (25)

for some f € F,1 <t < uj. It follows from (24) and (25) that
k(f+g:+9)+ij=km+i. (26)

By 1 < i,j < k, this implies that ¢ = j. Thus (26) can be written in the
equivalent form

f+g=m—g:.
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By (i) in Lemma 1, for m > g,, and each of t = 1,2,...,u;, this equation
has exactly one solution in f and g. Again by (i) in Lemma 1, these u; pairs
(f,g) determine distinct solutions (¢, g) of (24).

To complete the proof of (i), it remains to show that distinct pairs (£, g),
(¢, g") satisfying (24) (also with (¢, g’) in place of (£,g)) determine distinct
representations of n if n is large enough, i.e., if

b+kg=n=10 +kg (27)

and n is large, then ¢ # kg’, ¢ # kg. Indeed, assume that contrary to this
statement we have

t=ky', ¥=kyg (28)
Then by (27) and (28), £+ ¢ = n. Hence
£>n/2 (29)
or £’ > n/2; we may assume that (29) holds. By (25) and (28) we have
C=k(f+g)+5=kg. (30)
By 1 <j <k, it follows that j = k. Thus (30) implies
frog+l=4. (31)
By (25) and (29), we have
f— +oo as n — +oo. (32)
It is easy to see that
zgg—loo fer}],igleg, I =gl = oo (33)
f.g>x

By (32) and (33), (31) cannot hold for ¢ < uj and large n. This contradiction
completes the proof of (i).
To prove (ii), observe that n € £; + £; implies that

n € kx(F+G)+{i}+kx(F+G;)+{j} = kxS(F)+({i+i}+kxGi+kxG;).

Here {i+j}+kxG;+kxG; is a finite set (in fact, it has at most uZ elements).
Thus (ii) follows from Lemma 1 (ii).
Finally, by S(k x G) = k x 8(G), (iii) follows from Lemma 1 (ii). O

Remark 1. Let r; € Q1,1 < i < k with Ele r; = 1. Using the same idea
as in the proof of Theorem 6 we can prove the existence of an infinite set
A C Ny for which

Su(AN)=rN+ON%) 1<i<1

with some 0 < a < 1. Tt seems likely that an analogous theorem holds with
arbitrary given densities \;,1 < i < k, in place of r;. If so, the proof will be
more involved.



244 Andrés Sarkozy and Vera T. Sés

5. Sidon Sets: The Erd&s-Turan Theorem, Related
Problems and Results

In 1932 Sidon [36] in connection with his work in Fourier-analysis considered

o0 o0
power series of type Y 2% when () z‘“)h is of bounded coefficients. This
i=1 i=1

led to the investigation of finite and infinite sequences (a;) with the property
that for g fixed the number of solutions

a;, +-+a;, =n
is bounded by g for n € N.
Sidon sequences correspond to the case h =2 and g = 1,1i.e. ro(A,n) < 1.
Recall that for g € N, Bs(g) denotes the class of all (finite or infinite) sets

A C Ny such that for all n € N we have ro(A,n) < g.
Some specific lines of investigations are the following:

(a) For A € By(g) and A C [1,...,N] how large can |A| be? In the infinite
case how fast can the counting function A(n) grow?

(b) What can we say about the structure of A resp. A+ A if |A| resp. A(n)
is large?

There is an excellent account on this subject in Halberstam-Roth [23] and
also a recent survey Erdds-Freud [11].

While there are many results on Sidon sets, much less is known on sets
A € Bs[g]. In particular, let F(N, g) denote the cardinality of the largest set
A € Bslg] selected from {1,2,...,N}. Chowla [5], Erdés [7] and Erdés and
Turén [22] gave quite sharp estimates for the cardinality of the largest Sidon
set selected from {1,2,...,N}:

NY2 _ O(N5/1%) < F(N,1) < N*/2 + O(N/4). (34)

On the other hand, very little is known on F'(N,g) for g > 1. Clearly we
have

F(N,g) > F(N,1) (: (1+ 0(1))N1/2>

for all g € N. Erdés and Freud [11] showed that F(N,2) > 2}/2N'/2. On the
other hand, a trivial counting argument gives

F(N,g) < 2¢'/2N*/2,
Problem 8. Show that for all ¢ € N the limit limy_, ;o0 F(N, g)N~1/2

exists, and determine the value of this limit. In particular, estimate F(N,2).

Further, very little is known on sets A € Bz[g] and their Sidon subsets.
Erdés, resp. Ruzsa (see [7]) studied the size of Sidon sets selected from given
sets A € Balg].

A related problem is the following:
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Problem 9. Is it true that for g > 2, every Sidon set selected from
{1,2,...,N} can be embedded into a much greater sel A € Bslg] selected
from {1,2,...,N}?

In other words, if A C {1,2,..., N} is a Sidon set, then let H(A, N,g)
denote the cardinality of the greatest set £ such that & € Bslg], £ C
{1,2,...,N} and A C &. Is it true that writing K(N, g) = min(H (A, N, g) —
|A]), where the minimum is taken over all Sidon sets A selected from
{1,2,..., N}, we have

lim K(N,2)=+o0?
N—+oc0

How fast does the function K (N, g) grow in terms of N7 Is it true that

lim (K(N,g+1)—K(N,g))=+o0 for all geN?
N—=4o00

A Sidon set A C {1,2,..., N} is said to be mazimal if there is no integer
b such that b € {1,2,...,N}, b ¢ A and AU {b} is a Sidon set. (Note that
very little is known on the cardinality of maximal Sidon sets; see Problem 15
in [15].) Another problem closely related to Problem 9:

Problem 10. Does there exist a maximal Sidon set such that it can be
embedded into a much larger set € € Bs[g]?

In other words, let L(N, g) = max(H (A, N, g) — |A|) where H(A, N, g) is
the function defined in Problem 9 and the maximum is taken over all mazimal
Sidon sets selected from {1,2,..., N}. Is it true that

lim L(N,2) = +o0?
N—+o0

Is it true that

NE‘EOO(L(N’Q +1)— L(N,g)) = 400

for all g € N7
As Sect. 4 also shows, it may change the nature of the problem completely
if a “thin” set of sums can be neglected. Several problems of this type are:

Problem 11. How large set A can be selected from {1,2,..., N} so that it
is an “almost Sidon set” in the sense that

sl =+ow) ()2 (35)

It follows from a construction of Erdés and Freud [11] that there is a set
A such that A C {1,2,...,N}, (35) holds and

1A] > <% & 0(1)) N2, (36)

so that |.A4| can be much greater than F(N,1) = (14 o(1))N'/2 (see (34)).



246 Andrés Sarkozy and Vera T. Sés

In the infinite case much less is known than in the finite case. Beyond
what follows from (34), Erdds proved

Theorem 7 (Stohr [38]). There is an absolute constant ¢ > 0, such that
for every (infinite) Sidon sequence A

A(n) < ¢(n/logn)'/?
holds infinitely often.

On the other hand, Kriickeberg, improving a result of Erdds, proved in
1961

Theorem 8. There is an (infinite) Sidon sequence A such that

A(n) > Lnl/2

V2

holds infinitely often.

It is not known whether or not the factor 1/ V2 is best possible. The
greedy algorithm gives the existence of an (infinite) Sidon sequence for which

A(n) > n'/® for all n.

Ajtai, Komlés and Szemerédi improved this [1]: There is a Sidon sequence A
such that

A(n) > c(nlogn)'/® for all n > ny.

Weak Sidon Sets

We considered Sidon sets defined by

ra(A,n) < 1 (37)
which means that we require

r+yFutv (38)

for any z,y,u,v € A of which at least three are different.

In connection with some particular problems it is more appropriate to
consider Sidon sets where we require (38) only for z,y,u,v € A where all
four are distinct. (So we may have an arithmetic progression of length three,
a solution of z +y = 2u.)

If

r3(A;n) <1 (39)

holds, A is called a weak Sidon set.
It is easy to see that the maximum size of Sidon set resp. of a weak Sidon
set in [1, N| are asymptotically the same.
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A problem of Erdds on the distribution of distances in the plane led us
to formulate the following question:

Let A* be a weak Sidon set. How large Sidon set .4 must be contained
by A*?

Another formulation of the problem is:

Suppose that for A* C [1,N] any four distinct a;,,ai,,a,,a;, € A*
determine at least five distinct differences:

|{|azu ai, |, 1SV<,MS4}IZ5.

Let h(A*) denote the cardinality of the largest Sidon set A C A*.
Let
m) = min h(A*
f(m) = min h(A")
If A* is a weak Sidon set, then for each @ € A* there is at most one pair
b,c € A* such that b+ ¢ = 2a. This implies that
1

Gyérfés and Lehel [27] proved that with some absolute constant § > &5

1 3
- < —
(2 + 5) m < f(m) < £ + 1
Problem 12. Prove that lim I%Q exists and determine the limat.
m—ro0

It is very probable that a dense weak Sidon set contains a Sidon set of
almost the same size:

Problem 13. Suppose A* C [1,N] and m = |A*| > eN'/2. Is it true that
h(A*) > 6(e)N/?
where 6 > 1 ife > 17

Remark 2. The problem of Sidon sets resp. weak Sidon sets is related to
anti-Ramsey-type problems.

Consider the complete graph Ky with vertex set V(Ky) = {1,...,N}
and an edge-coloring ¢ : [V]? — V where ¢(a,b) = |a—b|. A Sidon set A C V/
is the vertex set of a so-called totally multicolored complete subgraph (where
all the edges have different colors).

A weak Sidon set A* C V corresponds to the vertex set of a complete
subgraph where independent edges have different colors.

6. Difference-Sets
Above we considered mostly sums a + a’. One might like to study the

analogues of some of these problems with differences a — a’ in place of sums
a+a.
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Problem 14. In [19] and [20] we studied the structure of the sum set S(A)
of Sidon sets A. What can be said about the structure of the difference set
D(A) of Sidon sets A; in particular,

(a) What can be said about the number and length of blocks of consecutive
integers in D(A),

(b) About the size of the gaps between the consecutive elements of D(A),
etc.?

Another closely related problem:
In [19] we studied the solvability of the equation

D(A) = B

for fixed sets B C N and, in particular, we gave a quite general sufficient
condition for the solvability of this equation and in fact we showed that
under quite general circumstances, not only the elements of the difference set
D(A), but also the number of solutions of

a—a =b, a,a € A

(for all b € B) can be prescribed. The nature of the problem completely
changes if we restrict ourselves to Sidon sets A.

Problem 15. Find possibly general conditions such that for sets B C N
satisfying these conditions, there is a Sidon set A whose difference set is the
given set B.

One might like to see what is the connection between the behavior of
sums and differences (see Ruzsa [33] for a related result):

Problem 16. Consider finite sets A such that
a—d =d, a,dcA

has at most two solutions for all d € N What can be said about the size of
the Sidon sets, resp. sets A € By[2] selected from such a set A?

Problem 17. Do there exist numbers § > 0, Ng such that for N > Ny there
is a set A C{1,2,...,N} for which

|A| > (14 0)NY/?
and both
a—ad =d, aadcA
a+a =n, adcA a<d

have at most two solutions for all d € N, n € N?
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7. Generalizations

So far we have studied sums a+a’ and differences a —a’. Already in these two
cases the difficulty of problems and the results can be completely different.
It is even more so if we consider the linear form ca + ¢’a’, or more generally
flai,...,ak) =cra1 + -+ + cpag where ¢; € Z for 1 < i < k and the ¢;’s are
fixed.

This is indicated already by the following simple but important example.

Ezample of Ruzsa. Let A= {a ca=Y.&2% e, =0or 1}. Then for n € N
=0
the number of solutions
a+2d =n, a,a €A,

is 1 for any n € N.

This shows that the behavior of the representation functions depends
very much on the coefficients of the linear form. Here we formulate only a
few questions by extending the problems we discussed above.

Problem 18. For which (ci1,...,ck) can the representation-function
R(A7 C1y .-y Ck; n))
counting the number of solutions of cia1 + -+ + cxar = n (a1,...,ar € A),

be constant for n > Ng?

Problem 19. For which (ci1,...,ck) is there an Erdds-Fuchs-type result,
analogous to Theorems 1 and 27

Problem 20. For which linear forms is there an Erdds-Sdrkozy [15]-type
result, when Ry (A, cy,...,ck;n) cannot be too close to a “nice” function?

Problem 21. When and how the results on the monotonicity of r;(A;n)
(see Theorem 3) can be extended to the linear form cia + --- + cpax ?

One may generalize these problems even further by studying polynomials
f(ai,aq,...,ar). In particular, very little is known on products aa’. Erdds [10]
estimated the cardinality of sets A such that A C {1,2,..., N} and all the
products aa’ with a,a’ € A, a < o’ are distinct. Moreover he [9] studied the
multiplicative analogue of the Erdds-Turan conjecture mentioned in Sect. 2.
Three further problems involving products are:

Problem 22. For A€ N, n €N, let s(A,n) denote the number of solutions
of the equation

ad' =n, a,a €A a<ad.
Characterize the regularity properties of this function s(A,n) analogously
as in the papers [14—18] where we discussed the additive analogue of this
problem by studying m1(A,n), r2(A,n), r3(A,n). In particular, how well can
one approzimate s(A,n) by a “nice” arithmetic function f(n)?
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Problem 23. Find a multiplicative analogue of the conjecture of Erdds and
Freud mentioned in Sect. 2 and, perhaps, this can be attacked more easily. In
other words, is it true that if A C N is an infinite set such that the function
s(A,n) defined in Problem 15 is bounded, then s(A,n) = 1 for infinitely many
values of n?

Problem 24. Roth [30, 31], Heath-Brown [26], Szemerédi [39] and others
estimated the cardinality of sets A C {1,2,...,N} not containing three-
term arithmetic progressions. Find a multiplicative analogue of this problem:
estimate the cardinality of the largest set A C {1,2,..., N} not containing
three term geometric progressions, i.e.,

2
aiaz = az, ai,az,a3 € A

implies that a1 = az = ag. (Note that the square-free integers not exceeding
N form a set A of this property.)
Ramsey-Type Problems

Many of the problems discussed above can be formulated in the following
way: if A is a “dense” set of integers, then an equation of the form

f(az,ag,...,ak) =0 (40)
can be solved with a1, as,...,ax € A. There are several important results of
the type where instead of considering solutions a1,az,...,ax belonging to a

“dense” set A, we assume that a partition
¢
N=|JA®  (ADnAD =9 for 1<i<j<O) (41)
i=1

of N is given, and then we are looking for “monochromatic” solutions of (40),
i.e., for solutions ai,az, . ..,ax such that all these a’s belong to the same set
A 3 result of this type can be called a Ramsey-type theorem. In particular,
Schur [35] resp. van der Waerden [41] proved that the equation

a1 +ag = as,
resp.
a1 + a2 = 2as, a1 # az

has a monochromatic solution for every partition (41) of N. (Indeed, van
der Waerden proved the more general theorem that for every k € N and
every partition (41), there is a monochromatic arithmetic progression of k
distinct terms.) It follows from these results that for every partition (41)
both equations

aia2 = ag
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and
e
aiaz = as, a1 # az

have monochromatic solutions. (Indeed, in both cases there is a solution of
the form a; = 2%, a9 = 2%2 a3 = 2%3.)

Problem 25. Characterize the polynomials f(ai,as,...,ax) such that the
Eq.(40) has a monochromatic solution for every partition of form (41)
or, at least, find further polynomials f(a1,az,...,ar) with this property. In
particular, does there exist an integer m > 2 such that the equation

2 2 2 2
a1 t+ay+---+a, =a,4

has a monochromatic solution for every partition (41)?

8. Probabilistic Methods. The Theorems of Erdés
and Rényi

In [36] Sidon asked the following question: Does there exist an A C N such
that 71(A,n) > 1 for all n > ng, and r1(A4,n) = O(n®)? In 1956 Erdds gave
an affirmative answer in the following sharper form:

Theorem 9 (Erdds [8]). There is an infinite set A C N such that
cilogn <ri(A,n) <cylogn forn > ng.

Erd6s proved this by a probabilistic argument. In fact, he proved that
there are “many” sets A C N with this property.

In 1960 Erdés and Rényi published an important paper in which, by using
probabilistic methods, they proved several results on additive representation
functions. The most interesting result is, perhaps, the following theorem:

Theorem 10 (Erdds and Rényi, [13]). For all e > 0, there is a A = \(g)
such that there is an infinite Ba[)\] set A C N with

A(n) > nY?*°  for n > ng(e).

Note that for a Bz[)] set A we have A(n) = Ox(n'/?). Thus Theorem 10
provides a quite sharp answer to Sidon’s first question, mentioned in Sect. 5.

Remarkably enough, this paper of Erdés and Rényi appeared in the same
year as their paper written “On the evolution of random graphs” which had
tremendous influence on graph theory and led to one of the most extensively
investigated and comprehensive theories in graph theory. (See Bollobds [4].)
On the other hand, the paper [13] was nearly unnoticed for about three
decades.

The paper [13] of Erdés and Rényi was somewhat sketchy. In their
monograph [15] Halberstam and Roth worked out the details. In [16], Erdds
and Sarkoézy extended Theorem 9 by showing that if f(n) is a “nice”



252 Andrds Sarkézy and Vera T. Sés

function (e.g., combination of the functions n®, (logn)?, (loglogn)Y) with
f(n) > logn, then there is an A C N such that

Iri(A,n) — f(n)| < (f(n)logn)'/2.

(Compare this with their result [14] on Eq. (3).)

The really intensive work in this field started only about 2-3 years ago.
Erdds, Nathanson, Ruzsa, Spencer and Tetali have proved several remarkable
results. Since their papers have not appeared yet, some of them have not even
been written up yet, it would be too early to survey their work here.

Remark 3. Many of the problems in additive number theory are or can be
formulated for arbitrary groups, semigroups or for some specified structures,
like for set systems. (An independent source for Sidon-type problems is for
example coding theory.) We refer to a survey of V.T. Sés [37] on this subject.

Appendix
Al. Introduction

The paper above appeared in 1997. Since that time more than 100 papers
have been published on related problems. In this Appendix our goal is to
give a short survey of these papers. In order to limit the extent of it we will
focus on the most important results, and in the reference list we will present
only the records of the most important and most recent papers, and a few
survey papers; the references to the further related work can be found in
these papers.

A2. Notations

We will keep the notations and the reference numbers of the original paper;
thus, e.g., Problem 2 will refer to the second problem in Sect. 3 of the original
paper. On the other hand, we will refer to the sections and references in the
Appendix by using a prefix A so that, e.g., the second item in the reference
list of the Appendix is marked as [43].

A3. The Representation Function of General Sequences. The
Erdds-Fuchs Theorem and Related Results

Sérkozy [88] proved the following local version of Theorem 1 of Erdés and
Fuchs: for all C' > 0 there are Ny = No(C) and C; = C, (C) so that if A c N
and N > Ny, then there is an M with

M
N <M< N*and Y (R(n)-C)? > Ci M.

n=1
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He also showed that this result is best possible: for all € > 0 thereisan A C N
such that for infinitely many N we have

M
> (R(n)—2)* <eM forall N < M < ﬁN2

n=1

Ruzsa [81] proved a “converse” of the Erdés-Fuchs theorem (Theorem 2)
by showing that there exists a non-decreasing sequence A of nonnegative
integers such that

N
> ri(A,n) =cN + O(N'*log N)
n=1

for some constant ¢ > 0.

Tang [93] sharpened Vaughan’s result [40] on the extension of the Erdés-
Fuchs theorem to k term sums, and later Chen and Tang [46] estimated the
constant implied by the ordo notation.

Horvéth [68] extended the Erdés-Fuchs theorem further by considering
the sum A; + Ay + --- + Ag of different sets Ay, As,..., Ax, and later in
another paper [64] he sharpened this result.

Let A = {a; < az < ---} be an infinite sequence of nonnegative integers,
and write

R(A,z;k) = |{(2i1>---,05) € A* 1 0y + - + +ai, <3}
and
P(A,z;k) = R(A,x; k) — cz.

Chen and Tang [45] estimated the mean square of this discrepancy P(A, z; k).

Lev and Sérkozy [74] proved an Erdés-Fuchs-type theorem for finite
groups, and they showed that their result is sharp.

Horvéath [65] proved the following theorem which is closely related to the
first theorem of Erdés and Fuchs (Theorem 1): If A = {a1,0a2,...} (a1 <
ag < ---) is an infinite sequence of nonnegative integers and d is a positive
integer then there is no integer ngy such that for all n > ng we have

d<rs(An)<d+ [\/ﬁ—i——;—]

Sandor [86] proved a similar theorem, and Chen and Tang [49] extended
Horvéth’s theorem to k term sums and the k term analogues of the other two
functions r; and 7s.

In our original paper we mentioned the results of Erdos and Sarkozy
[14, 15] that if the function f(n) satisfies certain assumptions, then (3) cannot
hold, and that this theorem is nearly sharp. Horvdth [66] extended the first
result to k term sums in place of 71 (A, n), and Kiss [71] proved that Horvath’s
result is nearly best possible.
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In [16] Erd8s, Sarkozy and T. Sés proved that if A is an infinite set of
positive integers, and, denoting the number of blocks formed by consecutive
integers in 4 up to N by B(A, N), we have

lim BlAN) _ +00
N—o4o0o N 1/2
then the differences |ri(A,n + 1) — r1(A,n)| cannot be bounded. They also
showed that this result is best possible. Kiss extended the theorem to kth
differences |Ag(R(n))|, and later he also showed [69] that his result is sharp.

In a recent paper Sarkozy [89] studied the analogues in Z/mZ of the
problems considered in [16].

The results of Erdés, Sarkozy and T. Sés [17, 18], resp. Balasubrama-
nian [2] on the monotonicity properties of additive representation functions
have been extended by Tang [94], Chen and Tang [47, 48], resp. Chen,
Sérkozy, T. S6s and Tang [50] in various directions. In particular, it is proved
in [48] and [50] that if A is an infinite set of positive integers such that its
complement B = N\ A satisfies certain simple conditions then r2(.A, n) cannot
be ultimately increasing. However, Problem 1 is still open in its original form.

S. Giri settled the first half of Problem 2 by constructing a set A of the
desired properties (unpublished yet). It might be interesting to study the
second half of the problem as well: how dense can N\ A be for such a set A?

Problems 3-5 are still open.

A4. A Conjecture of Erdds and Turdn and Related Problems
and Results

Grekos, Haddad, Helou and Pihko [60] proved that if A is a set of nonnegative
integers such that

ri(A,n) > 1 (A4.1)

for every n € N then we have 11 (A, n) > 5 for infinitely many n, and Borwein,
Choi and Chu improved this to r1(A,n) > 7.

Konstantoulas [72] proved that if there is a number ng such that if (A4.1)
holds for n > ng then we have r1(A,n) > 5 for infinitely many n.

By Ruzsa’s Theorem 4 there exists an asymptotic basis A of order 2 such
that for N > Ny we have

%(:Z; (A, n)) o%e.

for some absolute constant C. In two papers Tang [92] presented explicit
values for these constants Ny, C.

For m € N let R,, denote the least integer such that there is a set A C
Z/mZ with A+ A = Z/mZ and |{(a,b) : a+ b =n, a,b € A}| < Ry, for
all n € Z/mZ. Tt follows from Ruzsa’s result above that R,, is bounded.
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Chen [44] proved the uniform bound R,, < 288, and Chen and Tang gave
better bound for certain m values of special form.

Konyagin and Lev [73] studied and settled the Erdés-Turdn problem in
infinite Abelian groups. They determined what are the infinite Abelian groups
G for which the analogue of the Erdés-Turdn conjecture holds and what are
the ones for which it fails, and in both cases they provide further information
on the number of representations of the elements g of G in the form a+a’ = g
with a,a’ belonging to a basis A of G.

(See also a paper of Haddad and Helou [62].)

In Sect. 4 we mentioned the conjecture of Erd6s and Freud that if A C N
is infinite and r2(A,n) is bounded then there are infinitely many n with

r2(A,n) =1, (A4.2)
and probably there are more integers n satisfying (A4.2) than integers n with
ro(A,n) > 1.

Our Theorem 5 above disproved this second stronger version of the conjecture
of Erdés and Freud. Sandor [87] also disproved the weaker version of the
conjecture by constructing an infinite set A of nonnegative integers for
which 72(A,n) < 3 for all n and it assumes only the values 0, 2 and 3
infinitely many times. Sandor’s construction also disproves the conjecture
formulated in our Problem 6 but it does not settle Problem 7. Moreover,
in Sandor’s construction the counting function A(n) of A grows slowly:
A(n) = O((logn)?). Thus it remains to see whether there exists a set A such
that A(n) > n® for some ¢ > 0 and all n, r3(A, n) is bounded, and (A4.2)
has only finitely many solutions.

A5. Sidon Sets: The Erdés-Turan Theorem, Related Problems
and Results

This has been a very intensively studied field in the last 15 years. Since the
extent of this Appendix is limited thus we have to restrict ourselves to listing
some of the most important papers written on this subject. If the reader
wants to know more on the papers written on Sidon sets, then O’Bryant’s
excellent survey paper [77] can be used, while for more information on large
Bh|g] sets one should consult the paper of Cilleruelo, Ruzsa and Vinuesa [51].

In our original paper we mentioned the result of Ajtai, Komlds and
Szemerédi [1] on dense infinite Sidon sets: they proved that there is an
infinite Sidon set A with A(n) > (nlogn)'/2. Ruzsa [83] improved on
this significantly by proving that there is an infinite Sidon set A with
A(n) = nv2-1to(),

Ruzsa [84] showed that there is a mazimal Sidon set A C {1,2,...,N}
with |A] < (N log N)'/3.
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Erdés, Sarkézy and T. Sés [19, 21] asked whether there is a Sidon set
which is also an asymptotic basis of order 3. Deshouillers and Plagne [54]
proved in this direction that there is a Sidon set which is also an asymptotic
basis of order 7, and Kiss [70] improved on this result by showing that there
is a Sidon set which is also an asymptotic basis of order 5.

Answering a question of Sarkozy, Ruzsa [82] showed that there is a set
A c {1,2,...,n} with |[4] > (3 +0(1)) n'/? which is both additive and
multiplicative Sidon set.

Improving on a result of ErdSs, Sarkozy and T. Sés [19, 20], Spencer and
Tetali [91] showed that there exists an infinite Sidon set A such that any two
consecutive elements s; and s; 1 of the sum set A + A satisty s;y1 — 8 <
033/3 logs; (for i =1,2,...) where C is an absolute constant.

As far as we know Problems 8-12 are still open.

In our original paper we mentioned the Erdés-Turdn estimate (34) for
the cardinality F(N,1) of the largest Sidon set selected from {1,2,...,N}.
By (34) we have F(N,1) = N'/2 4 O(N®/16). We remark that Babai and T.
S6s [42] generalized the notion of Sidon set to groups and they studied the
size of Sidon sets in groups. Among others, they proved that any finite group
G has a Sidon subset of cardinality greater than ¢|G|'/. This seems to be
quite far from being best possible, however, as far as we know it has not been
sharpened yet.

A6. Difference-Sets

Some recent results and problems on the connection of sum sets and
difference sets are discussed in the survey and problem papers by Martin
and O’Bryant [75], Nathanson [76], Ruzsa [85] and Gyarmati, Hennecart and
Ruzsa [61].

We do not know about any papers related to Problems 14-17.

AT7. Generalizations

Horvath [67] proved partial results related to Problem 18; however, the
problem is far from being settled.

On the other hand, we do not know about any papers related to
Problems 19-24. In the case of the additive problems the reason of this is
probably that the tools used in the special case of sums a; +- - - +ay, fail when
one tries to extend them to the general case ciaq + - - - + cxak. In the case of
the multiplicative problems there does not seem to exist such a barrier, and
one would expect that there is a better chance to achieve nontrivial results.

Ramsey-Type Problems
The problems of this type are getting quite popular.
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Erdés, Sarkozy and T. Sés [59] proved that for any k& € N and any
k-colouring of N, almost all the even numbers have a monochromatic
representation in the form a + o’ with a # o’. (This settled a conjecture
of Roth.) In a recent paper Borbély [43] extended this result in various
directions. (In another paper Erdés and Sarkozy [56] also studied the
multiplicative analogue of the problem in [59].)

Shkredov [90] proved both density results on the solvability of nonlinear
equations of the type

fat,...,an) =0 (A7.1)

over Z/pZ and the existence of monochromatic solutions of equations of this
type.

Csikvéri, Gyarmati and Sarkozy [53] also studied both density and
Ramsey-type problems involving equations of form (A7.1) over Z/mZ, N
and Q. Among others they extended Schur’s theorem [35] by proving that if
n,k € N and the prime p is large enough in terms of n and k, then for any
k-colouring of Z/pZ the Fermat equation

has a nontrivial monochromatic solution in Z/pZ. Moreover, they conjectured
that for any k colouring of N the equation

a+b=cd, a#b (A7.2)

has a monochromatic solution, and they proved partial results in this
direction. Later Hindman [63] proved this conjecture in a more general form.

P. P. Pach [78] studied the following questions: is it true that if £ € N,
and m € N is large enough, then the Egs. (A7.2) and

ab+1=cd (A7.3)

have a “nontrivial” monochromatic solution in Z/mZ for any k-colouring of
it? He proved that in case of equation (A7.2) the answer is affirmative, while
in case of equation (A7.3) one needs further assumptions on the prime factor
structure of m to ensure the solvability.

Starting out from a problem of Pomerance and Schinzel, Sarkézy asked
the following question: is it true that for any r-colouring of the squarefree
numbers greater than 1 the equation ab = ¢ has a monochromatic solution?
Pomerance and Schinzel [80] proved that the answer is affirmative for r = 2,
and P. P. Pach [79] also proved this for r > 2.

AS8. Probabilistic Methods. The Theorems of Erdés and Rényi

Dubickas [55] slightly sharpened Theorem 9 by showing that one can take
c1 = €2/10 and c; = 2e + ¢ in the theorem for any 0 < ¢ < 1/2.
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Erdés and Rényi [13] also claimed in their paper that Theorem 10 can
be extended from sums of two terms to sums of h terms (for fixed h), i.e.,
there is a similar theorem on By, [\] sets in place of Bz[)] sets. However, for
h > 2 independence issues arise which are not at all easy to handle. This
problem was cleared by Vu [95] who gave a complete and correct proof for
the following theorem: for h € N and h > 2, and any € > 0 there is a constant
g = g(¢) and a By|g] sequence A such that A(z) > z'/"~¢, and, indeed, one
can take gn(g) < e "1, (See also the paper [52] of Cilleruelo, Kiss, Ruzsa
and Vinuesa.) ‘

We remark that the probabilistic approach is used in many of the papers
mentioned in this Appendix.

At the end of Sect.8 we mentioned a few papers to appear soon; these
papers appear as Refs. [57, 91] and [58].

b3

We remark that the results described above induce many further prob-
lems. In a subsequent paper we will return to some of these problems and
also present some related results.
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