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a b s t r a c t

We study some properties of graphs (or, rather, graph sequences)
defined by demanding that the number of subgraphs of a given
type,with vertices in subsets of given sizes, approximatively equals
the number expected in a random graph. It has been shown by
several authors that several such conditions are quasi-random, but
that there are exceptions. In order to understand this better, we
investigate some new properties of this type. We show that these
properties too are quasi-random, at least in some cases; however,
there are also cases that are left as open problems, and we discuss
why the proofs fail in these cases.

The proofs are based on the theory of graph limits; and on the
method and results developed by Janson (2011), this translates
the combinatorial problem to an analytic problem, which then is
translated to an algebraic problem.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Consider a sequence of graphs (Gn), with |Gn| → ∞ as n → ∞. Thomason [18,19] and Chung,
Graham and Wilson [4] showed that a number of different ‘random-like’ properties of the sequence
(Gn) are equivalent, and we say that (Gn) is quasi-random, or more precisely p-quasi-random, if it sat-
isfies these properties. (Here p ∈ [0, 1] is a parameter.) Many other equivalent properties of different
types have later been added by various authors. We say that a property of sequences (Gn) of graphs
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(with |Gn| → ∞) is a quasi-random property (or more specifically a p-quasi-random property) if it
characterizes quasi-random (or p-quasi-random) sequences of graphs.

One of the quasi-random properties considered by Chung, Graham andWilson [4] is based on sub-
graph counts, see (2.2). Further quasi-random properties based on restricted subgraph count proper-
ties have been found by Chung and Graham [3], Simonovits and Sós [15,17], Shapira [12], Shapira and
Yuster [13,14], Yuster [20], Janson [7], Huang and Lee [6], see Section 2.

The purpose of the present paper is to continue the study of such properties by considering some
further cases not treated earlier; in particular (Theorems 2.11 and 2.12), we prove that some further
properties of this type are quasi-random. Our main purpose is not to just add to the already long list
of quasi-random properties; we hope that this study will contribute to the understanding of this type
of quasi-random property, and in particular explain why the case in Theorem 2.12 is more difficult
than the one in Theorem 2.11. (See also Section 9 for a discussion of further similar properties.)

We use the method of Janson [7] based on graph limits. We assume that the reader is familiar
with the basics of the theory of graph limits and graphons developed in e.g. Lovász and Szegedy
[9] and Borgs, Chayes, Lovász, Sós and Vesztergombi [1]; otherwise, see Janson [7] (for the present
context) or the comprehensive book by Lovász [8]. As iswell-known, there is a simple characterization
of quasi-random sequences in terms of graph limits: a sequence (Gn) with |Gn| → ∞ is p-quasi-
random if and only if Gn → Wp, where Wp is the graphon that is constant with Wp = p [1,2,9], see
also [8, Section 1.4.2 and Example 11.37]. (Indeed, quasi-randomgraphs form one of the roots of graph
limit theory.)

The idea of the method is to use this characterization to translate the property of graph sequences
to a property of graphons (see Section 3), and then show that only constant graphons satisfy this
property. It turns out that this leads to both analytic (Section 4) and algebraic (Section 6) problems,
which we find interesting in themselves. We have only partly succeeded to solve these problems, so
we leave several open problems.

Remark 1.1. Many of the references above use Szemerédi’s regularity lemma as their main tool to
study quasi-random properties, and it has been known since [16] that quasi-randomness can be
characterized using Szemerédi partitions. It is also well-known that there are strong connections
between Szemerédi’s regularity lemma and graph limits, see [1,10,8], so on a deeper level themethods
are related although they superficially look very different. (It thus might be possible to translate
arguments of one type to the other, although it is far from clear how thismight be done.) Bothmethods
lead also to the same (sometimes difficult) algebraic problems. As discussed in [7], the method used
here eliminates the many small error terms in the regularity lemma approach; on the other hand, it
leads to analytic problems with no direct counterpart in the other approach. It is partly a matter of
taste what type of arguments one prefers.

2. Notation, background and main results

All graphs in this paper are finite, undirected and simple. The vertex and edge sets of a graph G are
denoted by V (G) and E(G). We write |G| := |V (G)| for the number of vertices of G, and e(G) := |E(G)|
for the number of edges. As usual, [n] := {1, . . . , n}.

All unspecified limits in this paper are as n → ∞, and o(1) denotes a quantity that tends to 0 as
n → ∞. We will often use o(1) for quantities that depend on some subset(s) of a vertex set V (G);
we then always implicitly assume that the convergence is uniform for all choices of the subsets. We
interpret o(an) for a given sequence an similarly.

Let F andG be labelled graphs. For convenience,we assume throughout the paper (when itmatters)
that V (F) = [|F |] = {1, . . . , |F |}. We generally let m = |F |.

Definition 2.1. (i) N(F ,G) is the number of labelled copies of F in G (not necessarily induced); equiv-
alently, N(F ,G) is the number of injective maps ϕ : V (F) → V (G) that are graph homomorphisms
(i.e., if i and j are adjacent in F , then ϕ(i) and ϕ(j) are adjacent in G).

(ii) If U1, . . . ,U|F | are subsets of V (G), let N(F ,G;U1, . . . ,U|F |) be the number of labelled copies of
F in G with the ith vertex in Ui; equivalently, N(F ,G;U1, . . . ,U|F |) is the number of injective graph
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homomorphisms ϕ : F → G such that ϕ(i) ∈ Ui for every i ∈ V (F). (Note that we consider a fixed
labelling of the vertices of F and count the number of copies where vertex i is in Ui, so the labelling
and the ordering of U1, . . . ,U|F | are important.)

(iii) We also define a symmetrized version N(F ,G;U1, . . . ,U|F |) by taking the average over all la-
bellings of F ; equivalently,

N(F ,G;U1, . . . ,U|F |) :=
1

|F |!


σ

N(F ,G;Uσ(1), . . . ,Uσ(|F |)), (2.1)

summing over all permutations σ of {1, . . . , |F |}.

In (ii) and (iii), we are often interested in the case when U1, . . . ,U|F | are pairwise disjoint, and thenN(F ,G;U1, . . . ,U|F |) is the number of labelled copies of F in G with one vertex in each set Ui (in any
order), divided by |F |!.

Remark 2.2. If either U1 = · · · = U|F | or F = Km for some m, then N(F ,G;U1, . . . ,U|F |) := N(F ,
G;U1, . . . ,U|F |), and the symmetrized versionN is equal to N .

One of the several equivalent definitions of quasi-random graphs by Chung, Graham and Wilson
[4] is the following using the subgraph counts N(F ,G):

Theorem 2.3 (Chung, Graham and Wilson [4]). A sequence of graphs (Gn) with |Gn| → ∞ is p-quasi-
random if and only if, for every graph F ,

N(F ,Gn) = (pe(F) + o(1))|Gn|
|F |. � (2.2)

It is not necessary to require (2.2) for all graphs F ; in particular, it suffices to use the graphs K2
and C4 [4]. However, no single graph F will do on its own. As a substitute, Simonovits and Sós [15]
considered the hereditary version of (2.2), i.e. the condition N(F ,G;U, . . . ,U) for subsets U .

Wenote first that for quasi-randomgraphs, it is shown in [15,12] that the restricted subgraph count
N(F ,G;U1, . . . ,U|F |) is asymptotically the sameas it is for randomgraphs, for any subsetsU1, . . . ,U|F |.
(For a proof using graph limits, see Janson [7, Lemma 4.2].)

Lemma 2.4 ([15,12]). Suppose that (Gn) is a p-quasi-random sequence of graphs, where 0 6 p 6 1, and
let F be any fixed graph with e(F) > 0. Then, for all subsets U1, . . . ,U|F | of V (Gn),

N(F ,Gn;U1, . . . ,U|F |) = pe(F)
|F |
i=1

|Ui| + o

|Gn|

|F |


(2.3)

and

N(F ,Gn;U1, . . . ,U|F |) = pe(F)
|F |
i=1

|Ui| + o

|Gn|

|F |

. � (2.4)

Note that (2.4) is an immediate consequence of (2.3) by the definition (2.1).
Conversely, Simonovits and Sós [15] showed that (2.3) implies that (Gn) is p-quasi-random.

Actually, they considered only the symmetric case U1 = · · · = U|F | and proved the following stronger
result. (In this case, (2.4) is obviously equivalent to (2.3), see Remark 2.2.)

Theorem 2.5 (Simonovits and Sós [15]). Suppose that (Gn) is a sequence of graphs with |Gn| → ∞. Let
F be any fixed graph with e(F) > 0 and let 0 < p 6 1. Then (Gn) is p-quasi-random if and only if, for all
subsets U of V (Gn), (2.3) holds with U1 = · · · = U|F | = U. �

Remark 2.6. The case F = K2, when N(K2,Gn;U) is twice the number of edges with both endpoints
in U , is one of the original quasi-random properties in Chung, Graham and Wilson [4].
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Remark 2.7. Theorem 2.5 obviously fails when e(F) = 0, since then (2.3) holds trivially for any Gn. It
fails also if p = 0; for example, if F = K3 and Gn is the complete bipartite graph Kn,n.

In other words, Theorem 2.5 says that, if e(F) > 0 and 0 < p 6 1, then (2.3) and (2.4) (for arbitrary
U1, . . . ,U|F |) are both p-quasi-random properties, and this holds also if we restrict U1, . . . ,U|F | to
U1 = · · · = U|F |.

Several authors have considered other restrictions on U1, . . . ,U|F | and shown that (2.3) or (2.4)
still is a quasi-random property.

Shapira [12] and Yuster [20] continued to consider U1 = · · · = U|F |, and assumed further that
|U1| = ⌊α|Gn|⌋ for some fixed α with 0 < α < 1; they showed ([12] for α = 1/(|F | + 1) and [20] in
general) that (2.3) for such U1, . . . ,U|F | is a quasi-random property. (The case F = K2 and α = 1/2
is in Chung, Graham and Wilson [4].) Note that for such U1, . . . ,U|F |, (2.4) is equivalent to (2.3) by
Remark 2.2.

The case when U1, . . . ,U|F | are disjoint and furthermore have the same size (but otherwise
unrestricted) is considered by Shapira [12] and Shapira and Yuster [13]; they show that (2.4) with this
restriction also is a quasi-random property. (As a consequence, (2.3) with this restriction is a quasi-
random property.) Moreover, by combining Shapira [12, Lemma 2.2] and the result of Yuster [20] just
mentioned, it follows that it suffices to consider disjoint U1, . . . ,U|F | with the same size ⌊α|Gn|⌋, for
any fixed α < 1/|F |.

We introduce some more notation.

Definition 2.8. Let F be a graph, m := |F | and (α1, . . . , αm) a vector of positive numbers withm
i=1 αi 6 1; let further p ∈ [0, 1]. We define the following properties of graph sequences (Gn).

(For convenience, we omit p from the notations.)

(i) Let F be labelled. Then P (F;α1, . . . , αm) is the property that (2.3) holds for all disjoint subsets
U1, . . . ,Um of V (Gn)with |Ui| = ⌊αi|Gn|⌋, i = 1, . . . ,m.

(ii) Let F be unlabelled. ThenP ′(F;α1, . . . , αm) is the property thatP (F;α1, . . . , αm) holds for every
labelling of F .

(iii) Let F be unlabelled. Then P (F;α1, . . . , αm) is the property that (2.4) holds for all U1, . . . ,Um as
in (i).

Of course, we can use P ′ and P also for a labelled F by ignoring the labelling.

Remark 2.9. If F = Km, then all labellings of F are equivalent, and the three properties P (F;α1,
. . . , αm), P ′(F;α1, . . . , αm) and P (F;α1, . . . , αm) are equivalent. In general, P ′(F;α1, . . . , αm) =⇒P (F;α1, . . . , αm) by the definition ofN as an average of N over all labellings of F , but we do not know
whether the converse implication always holds.

Furthermore, for a fixed labelling of F , P ′(F;α1, . . . , αm) is equivalent to the conjunction of
P (F;ασ(1), . . . , ασ(m)) for all permutations (ασ(1), . . . , ασ(m)) of (α1, . . . , αm). In particular, if α1 =

· · · = αm, then P ′(F;α1, . . . , αm) equals P (F;α1, . . . , αm), for any labelling.
In general, trivially P ′(F;α1, . . . , αm) =⇒ P (F;α1, . . . , αm) for a labelled graph F , but we

do not know whether the converse holds. Nor do we know any general implications between
P (F;α1, . . . , αm) and P (F;α1, . . . , αm).

See further Remark 2.14.

Using this notation, it thus follows from Shapira [12] and Yuster [20] that, for any graph F with
e(F) > 0 and 0 < p 6 1, P (F;α, . . . , α) is a quasi-randomproperty for everyα < 1/|F |. This can also
be proved by the methods of Janson [7], where the somewhat weaker statement that P (F;α, . . . , α)
is a quasi-random property for every α < 1/|F | is shown [7, Theorem 3.6]. We show here a more
general statement in Theorem 2.11.

Example 2.10. For F = K2, P (K2, α1, α2) = P (K2, α1, α2) says that (asymptotically) the number of
edges e(U1,U2) is as expected in G(n, p) for any two disjoint sets U1,U2 with Ui = ⌊αi|Gn|⌋. Chung
and Graham [3] showed that the cut property P (K2;α, 1 − α) is a quasi-random property for every
fixed α ∈ (0, 1) except α = 1/2, when it is not (for 0 < p < 1); see further Janson [7, Section 9].
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(One counterexample for α = 1/2 is given by any sequence (Gn) converging to the two-type graphon
W (x, y) =

1
2


1[0,p](x) + 1[0,p](y)


.) Simonovits and Sós [15] showed that P (K2, 1/3, 1/3) is a quasi-

random property.

Shapira and Yuster [14, Proposition 14] showed (as a consequence of related results for cuts in hy-
pergraphs) that P (Km, α1, . . . , αm) is a quasi-random property, for every m > 2 and (α1, . . . , αm) ≠

(1/m, . . . , 1/m)with
m

i=1 αi = 1. This can easily be extended to subgraph counts for arbitrary graphs
F with e(F) > 0; we give a proof using our methods in Section 6.

Theorem 2.11. Let F be a graph with e(F) > 0, and let 0 < p 6 1. Further, let (α1, . . . , αm) be a vector
of positive numbers of length m = |F | with

m
i=1 αi 6 1.

(i) If (α1, . . . , αm) ≠ (1/m, . . . , 1/m), then P (F;α1, . . . , αm) and the stronger P ′(F;α1, . . . , αm)
are quasi-random properties.

(ii) If
m

i=1 αi < 1, then P (F;α1, . . . , αm) is a quasi-random property.

The exceptional case α1 = · · · = αm = 1/m is more complicated; Shapira and Yuster [14]
showed that the relatedhypergraph cut property usedby them toprove Theorem2.11 fails in this case;
nevertheless, Huang and Lee [6] showed that also P (Km, 1/m, . . . , 1/m) is a quasi-random property
for any m > 3. (For m = 2 it is not, see Example 2.10.) We extend the result of Huang and Lee [6] to
counts of several other subgraphs.

Theorem 2.12. Let F be a graph with e(F) > 1 and m = |F |. Let also 0 < p 6 1. If F is either a regular
graph or a star, or disconnected, then P (F; 1/m, . . . , 1/m) and the weaker P (F; 1/m, . . . , 1/m) are
quasi-random properties.

One indication that this theorem is more complicated than Theorem 2.11 is that the conclusion is
false for F = K2 by Example 2.10, and slightly more generally when e(F) 6 1. We conjecture that this
is the only counterexample.

Conjecture 2.13. The conclusions of Theorem 2.12 hold for any graph F with e(F) > 1.

We give a proof of Theorem 2.12 in Section 7. With our methods using graph limits, the crucial
fact is that while the central analytic Lemma 4.6 does not extend to the case (α1, . . . , αm) =

(1/m, . . . , 1/m), there is a weaker version, Lemma 4.3, that holds in this case, and this is sufficient to
draw the conclusionwith some extra algebraicwork. However,we have so far not succeeded to extend
the final, algebraic, part of the proof to all graphs F , see Section 7, so we need the extra assumptions
on F in Theorem 2.12. (Section 7 contains also some further examples of small graphs F for which the
conclusion holds.)

Remark 2.14. When F ≠ Km, the relation between the propertiesP (non-averaged) and P (averaged)
is not completely clear. (For F = Km, these properties coincide, see Remark 2.9.)

Consider first α1 = · · · = αm = 1/m as in Theorem 2.12. Then P = P ′
=⇒ P . (See Remark 2.9

again.) For a graph F such that Theorem 2.12 applies, the theorem implies that the properties are
equivalent, but as said above, we do not knowwhether that holds in general. In principle, it should be
easier to show that the propertyP (F; 1/m, . . . , 1/m) is p-quasi-random than to show that theweaker
(averaged) property P (F; 1/m, . . . , 1/m) is; it is even conceivable that there exists a counterexample
to Conjecture 2.13 such that nevertheless P (F; 1/m, . . . , 1/m) is p-quasi-random. However, our
method of proof uses Lemma 4.3 which assumes that the function f there is symmetric, and hence
our proofs use the symmetric P (F; 1/m, . . . , 1/m) and we are not able to use the extra power of
P (F; 1/m, . . . , 1/m). For example, switching from sequences of graph to graphons (see Section 3 for
this translation), we cannot answer the following question. (Cf. Section 5 for P (F; 1/m, . . . , 1/m).)
A 2-type graphon is a graphon that is constant on the sets Si × Sj, i, j ∈ {1, 2}, for some partition
[0, 1] = S1 ∪ S2 into two disjoint sets; we can without loss of generality assume that the sets Si are
intervals. (Equivalently, we may regard the graphon as defined on a two-point probability space.)
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Problem 2.15. If F is such that P (F; 1/m, . . . , 1/m) is not p-quasi-random, is there always a 2-type
graphon witnessing this?

For other sequences α1, . . . , αm, we note first that if
m

i=1 αi < 1, then Theorem 2.11 shows
that both P and P are quasi-random properties, and thus equivalent. Similarly, if

m
i=1 αi = 1 but

(α1, . . . , αm) ≠ (1/m, . . . , 1/m), then P is quasi-random by Theorem 2.11, and thus P =⇒ P .
However, we do not know whether the converse holds:

Problem 2.16. Suppose that F is a labelled graph with e(F) > 0, that 0 < p 6 1 and that
m

i=1 αi = 1
but (α1, . . . , αm) ≠ (1/m, . . . , 1/m). Is then P (F;α1, . . . , αm) a quasi-random property?

If there is any case such that the answer to this problem is negative, we can ask the same question
as in Problem 2.15:

Problem 2.17. If F and (α1, . . . , αm) are such that P (F;α1, . . . , αm) is not p-quasi-random, is there
always a 2-type graphon witnessing this?

Example 2.18. Let F = P3 = K1,2, for definiteness labelled with edges 12 and 13, and consider the
property P (F;α1, α2, α3). If α1 + α2 + α3 < 1, then the property is quasi-random by Theorem 2.11;
thus assume α1 + α2 + α3 = 1. In the case α1 = α2 = α3 = 1/3, the property is quasi-random by
Theorem 2.12. We can show this also in the case α2 ≠ α3, using the symmetry of P3, see Remark 6.1.
However, we do not know if this extends to α2 = α3, for example in the following case:

Problem 2.19. Is (with the labelling above) P (P3, 1
2 ,

1
4 ,

1
4 ) a quasi-random property?

Remark 2.20. We have considered the subgraph counts N(F ,Gn;U1, . . . ,Um) and N(F ,Gn;U1,
. . . ,Um) in two cases: either U1 = · · · = Um (as in [15]) or U1, . . . ,Um are disjoint. It also seems
interesting to consider other, intermediate, cases of restrictions. This is discussed in Section 9, where
we in particular consider, as a typical example, the case U1 = U2 and U1 ∩ U3 = ∅.

Remark 2.21. We consider in this paper not necessarily induced copies of a fixed graph F . There are
also similar results for counts of induced copies of F , but these aremore complicated and less complete,
see Simonovits and Sós [17], Shapira and Yuster [13] and Janson [7]. We hope to return to the induced
case, but leave it for now as an open problem:

Problem 2.22. Are there analogues of Theorems 2.11 and 2.12 for the induced case?

3. Transfer to graph limits

We assume that our graphons are defined on [0, 1]2. We introduce some further notation: The
support of a function ψ is the set supp(ψ) := {x : ψ(x) ≠ 0}. λ denotes Lebesgue measure. All
functions are supposed to be (Lebesgue) measurable. If F is a labelled graph and W a graphon, we
define

ΨF ,W (x1, . . . , x|F |) :=


ij∈E(F)

W (xi, xj). (3.1)

If f is a function on [0, 1]m for somem, we let f̃ denote its symmetrization defined by

f̃ (x1, . . . , xm) :=
1
m!


σ∈Sm

f

xσ(1), . . . , xσ(m)


, (3.2)

where Sm is the symmetric group of allm! permutations of {1, . . . ,m}.
The connection between the subgraph count properties and properties of graph limits is given by

the following lemma.
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Lemma 3.1. Suppose that Gn → W for some graphon W. Let F be a fixed graph, let m := |F | and let
γ > 0 and α1, . . . , αm ∈ (0, 1) be fixed numbers with

m
i=1 αi 6 1. Then the following are equivalent:

(i) For all disjoint subsets U1, . . . ,U|F | of V (Gn) with |Ui| = ⌊αi|Gn|⌋,

N(F ,Gn;U1, . . . ,U|F |) = γ

|F |
i=1

|Ui| + o

|Gn|

|F |

. (3.3)

(ii) For all disjoint subsets A1, . . . , A|F | of [0, 1] with λ(Ai) = αi,
A1×···×A|F |

ΨF ,W (x1, . . . , x|F |) = γ

|F |
i=1

λ(Ai). (3.4)

The same holds if we replace N in i and ΨF ,W in ii by the symmetrized versionsN and ΨF ,W .

Proof. The case with N and ΨF ,W and with α1 = · · · = αm < 1/|F | is part of Janson [7, Lemma 7.2].
The case of general α1, . . . , αm, and the symmetrized version with N and ΨF ,W are proved in exactly
the same way.

With this lemma in mind, we make the following definitions corresponding to Definition 2.8.

Definition 3.2. Let, as in Definition 2.8, F be a graph, m := |F |, (α1, . . . , αm) a vector of positive
numbers with

m
i=1 αi 6 1, and p ∈ [0, 1]. We define the following properties of graphonsW .

(i) P∗(F;α1, . . . , αm) is the property that
A1×···×Am

ΨF ,W (x1, . . . , xm) = pe(F)
m
i=1

λ(Ai), (3.5)

for all disjoint subsets A1, . . . , Am of [0, 1] with λ(Ai) = αi, i = 1, . . . ,m.
(ii) P ′

∗
(F;α1, . . . , αm) is the property that P∗(F;α1, . . . , αm) holds for every labelling of F .

(iii) P∗(F;α1, . . . , αm) is the property that
A1×···×Am

ΨF ,W (x1, . . . , xm) = pe(F)
m
i=1

λ(Ai) (3.6)

for all A1, . . . , Am as in i.

Definition 3.3. A property of graphons W is quasi-random if every graphon W that satisfies it is a.e.
equal to a constant. Furthermore, the property is p-quasi-random if it is satisfied only by graphonsW
that are a.e. equal to p.

We can now use standard arguments to translate our problem from graph sequences to graphons.
Recall thatm := |F |.

Lemma 3.4. For any given graph F , p ∈ [0, 1] and α1, . . . , αm ∈ (0, 1) with
m

i=1 αi 6 1, the property
P (F;α1, . . . , αm) (of graph sequences) is p-quasi-random if and only if the property P∗(F;α1, . . . , αm)
(of graphons) is.

Similarly, the property P ′(F;α1, . . . , αm) is p-quasi-random if and only if the property P ′
∗
(F;α1,

. . . , αm) is, and P (F;α1, . . . , αm) is p-quasi-random if and only if P∗(F;α1, . . . , αm) is.

Proof. Suppose that P (F;α1, . . . , αm) is p-quasi-random, and let W be a graphon satisfying
P∗(F;α1, . . . , αm). Let (Gn) be any sequence of graphs converging toW . By assumption, Lemma 3.1(ii)
holds with γ = pe(F), and thus Lemma 3.1 shows that (3.3) holds for all disjoint U1, . . . ,Um with
|Ui| = ⌊αi|Gn|⌋. In other words, (Gn) satisfies the property P (F;α1, . . . , αm), and since this property
was assumed to be p-quasi-random, the sequence (Gn) is p-quasi-random, and thus Gn → Wp, where
Wp = p everywhere. Since Gn → W , this impliesW = Wp = p a.e.
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Conversely, suppose that P∗(F;α1, . . . , αm) is p-quasi-random, and let (Gn) be a graph sequence
satisfying P (F;α1, . . . , αm). This means that Lemma 3.1(i) holds with γ = pe(F). Consider a
subsequence of (Gn) that converges to some graphonW . Lemma 3.1 then shows that (3.4) holds for all
disjoint A1, . . . , Am with λ(Ai) = αi. In other words, W satisfies the property P∗(F;α1, . . . , αm), and
since this property was assumed to be p-quasi-random, W = p a.e. Consequently, every convergent
subsequence of (Gn) converges to the constant graphon Wp = p. Since every subsequence has
convergent sub-subsequences, it follows that the full sequence (Gn) converges to Wp, i.e., (Gn) is
p-quasi-random.

The same proof works for P (F;α1, . . . , αm) and P∗(F;α1, . . . , αm). �

In the rest of the paper we analyse the graphon properties P∗(F;α1, . . . , αm) and P∗(F;α1,
. . . , αm).

4. The analytic part

Janson [7] proved the following lemma:

Lemma 4.1 ([7, Lemma 7.3]). Let m > 1 and α ∈ (0, 1). Suppose that f is an integrable function on
[0, 1]m such that


A1×···×Am

f = 0 for all tuples A1, . . . , Am of measurable subsets of [0, 1] such that
λ(A1) = · · · = λ(Am) = α. Then f = 0 a.e.

Moreover, if α < m−1, it is enough to consider disjoint A1, . . . , Am.

It was remarked in [7, Remark 7.4] that the second part (disjoint subsets) of this lemma fails when
α = 1/m, i.e., whenwe consider partitions of [0, 1] intom disjoint sets of equal measure 1/m (we call
these equipartitions); a simple counterexample is provided by the following lemma.

Lemma 4.2. Let m > 1. Suppose that

f (x1, . . . , xm) = g(x1)+ · · · + g(xm) (4.1)

for some integrable function g on [0, 1]with
 1
0 g = 0. Then f is a symmetric integrable function on [0, 1]m

and 
A1×···×Am

f = 0 (4.2)

for all partitions {A1, . . . , Am} of [0, 1] into m disjoint measurable subsets such that λ(A1) = · · · =

λ(Am) = 1/m. �

Proof. If {A1, . . . , Am} is an equipartition of [0, 1], then
A1×···×Am

f (x1, . . . , xm) =

m
i=1

 1
m

m−1

Ai
g(xi) dxi

= m1−m
m
i=1


Ai
g(x) dx = m1−m

 1

0
g(x) dx = 0. � (4.3)

Moreover, it was shown in [7, Proof of Lemma 9.4 and the comments after it], see also [7, Lemma
10.3], that if m = 2 and f is symmetric with


A1×A2

f = 0 for every equipartition {A1, A2}, then f
has to be of the form (4.1) a.e. We shall here extend this to any m, thus showing that the converse to
Lemma 4.2 holds.

Lemma 4.3. Let m > 1. Suppose that f : [0, 1]m → C is a symmetric integrable function such that
A1×···×Am

f = 0 (4.4)
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for all partitions {A1, . . . , Am} of [0, 1] into m disjoint measurable subsets such that λ(A1) = · · · =

λ(Am) = 1/m. Then

f (x1, . . . , xm) = g(x1)+ · · · + g(xm) a.e. (4.5)

for some integrable function g on [0, 1] with
 1
0 g = 0.

Proof. The lemma is trivial when m = 1. The case m = 2 is, as said above, proved in [7], but for
completeness, we repeat the argument:

Let f1(x) :=
 1
0 f (x, y) dy. Then, for every subset A ⊂ [0, 1] with λ(A) = 1/2, (4.4) with A1 := A

and A2 := [0, 1] \ A yields

0 =


A1×A2

f (x, y) dx dy =


A×[0,1]

f (x, y) dx dy −


A×A

f (x, y) dx dy

=


A
f1(x) dx −


A×A

f (x, y) dx dy

= 2

A×A

f1(x) dx dy −


A×A

f (x, y) dx dy

=


A×A


f1(x)+ f1(y)− f (x, y)


dx dy. (4.6)

The integrand in the last integral is symmetric, and it follows by [7, Lemma 7.6] that it vanishes a.e.,
which proves (4.5) with g = f1; moreover, arguing as in (4.3), for any equipartition {A1, A2} of [0,1],

0 =


A1×A2

f (x, y) dx dy =
1
2

 1

0
g(x) dx, (4.7)

and thus
 1
0 g = 0, completing the proof whenm = 2.

Thus suppose in the remainder of the proof thatm > 3.
Step 1: Fix a subset B ⊂ [0, 1] with measure λ(B) = 2/m, and fix an equipartition of the

complement [0, 1] \ B intom − 2 sets A3, . . . , Am of equal measure 1/m. Let

f2(x1, x2) :=


A3×···×Am

f (x1, x2, . . . , xm) dx3 · · · dxm. (4.8)

Then the assumption (4.4) says that for any equipartition B = A1 ∪ A2 of B into two disjoint subsets
of equal measure,

A1×A2
f2(x1, x2) dx1 dx2 = 0. (4.9)

The set B is, as a measure space, isomorphic to [0, 2/m], and by a trivial rescaling, the case m = 2
shows that there exists an integrable function h on Bwith


B h = 0 such that

f2(x1, x2) = h(x1)+ h(x2), a.e. x1, x2 ∈ B. (4.10)

This means that if ψ1 and ψ2 are bounded functions on [0, 1] such that
 1
0 ψ1 =

 1
0 ψ2 = 0 and

supp(ψ1) ∪ supp(ψ2) ⊆ B, then
[0,1]m

f (x1, . . . , xm)ψ1(x1)ψ2(x2)1A3(x3) · · · 1Am(xm) dx1 · · · dxm

=


B×B

f2(x1, x2)ψ1(x1)ψ2(x2) dx1 dx2
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=


B
h(x1)ψ1(x1) dx1


B
ψ2(x2) dx2 +


B
ψ1(x1) dx1


B
h(x2)ψ2(x2) dx2

= 0. (4.11)

Step 2: Let us instead start with two bounded functions ψ1 and ψ2 on [0, 1] such that
 1
0 ψ1 = 1

0 ψ2 = 0, and assume that λ(supp(ψ1))+λ(supp(ψ2)) < 2/m. Let B0 := supp(ψ1)∪ supp(ψ2) and

Bc
0 := [0, 1] \ B0. Then λ(Bc

0) = 1 − λ(B0) > (m − 2)/m.
Define

f3(x3, . . . , xm) :=


[0,1]2

f (x1, x2, . . . , xm)ψ1(x1)ψ2(x2) dx1 dx2. (4.12)

For any disjoint sets A3, . . . , Am ⊂ Bc
0 with λ(A3) = · · · = λ(Am) = 1/m, we can use Step 1 with

B := [0, 1] \
m

3 Ai ⊃ B0 and conclude by (4.11) that
A3×···×Am

f3(x3, . . . , xm) = 0. (4.13)

The set Bc
0 is, as a measure space up to a trivial rescaling of the measure, isomorphic to [0, 1]. Since

λ(Bc
0) > (m − 2)/m, it follows by the second part of Lemma 4.1 that (4.13) (for arbitrary A3, . . . , Am

as above) implies

f3(x3, . . . , xm) = 0, a.e. x3, . . . , xm ∈ Bc
0. (4.14)

Step 3: Fix bounded functions ϕ3, . . . , ϕm on [0, 1]. For B ⊆ [0, 1], define

fB(x1, x2) :=


(Bc)m−2

f (x1, . . . , xm)ϕ3(x3) · · ·ϕm(xm). (4.15)

If λ(B) > 0 and ψ1 and ψ2 are bounded functions with supp(ψν) ⊆ B, λ(supp(ψν)) < 1/m and 1
0 ψν = 0, ν = 1, 2, then Step 2 shows, using (4.15), (4.12) and (4.14), since B0 ⊆ B and thus Bc

⊆ Bc
0,

[0,1]2
fB(x1, x2)ψ1(x1)ψ2(x2) =


(Bc)m−2

f3(x1, . . . , xm)ϕ3(x3) · · ·ϕm(xm)

= 0. (4.16)

Now suppose that B is open, and x1, x′

1, x2, x
′

2 ∈ B. For small enough ε > 0, the functions

ψν(x) :=
1
2ε


1(xν−ε,xν+ε)(x)− 1(x′ν−ε,x′ν+ε)(x)


, ν = 1, 2, (4.17)

satisfy the conditions above and thus (4.16) holds. Letting ε → 0, it follows that if (x1, x2), (x1, x′

2),
(x′

1, x2), (x
′

1, x
′

2) are Lebesgue points of fB, then

fB(x1, x2)− fB(x1, x′

2)− fB(x′

1, x2)+ fB(x′

1, x
′

2) = 0. (4.18)

Thus, (4.18) holds for a.e. x1, x′

1, x2, x
′

2 ∈ B.
Consider now the countable collection B of sets B ⊂ (0, 1) that are unions of four open intervals

with rational endpoints. It follows that for a.e. x1, x′

1, x2, x
′

2 ∈ [0, 1], (4.18) holds for every set B ∈ B
such that x1, x′

1, x2, x
′

2 ∈ B.
Consider such a 4-tuple x1, x′

1, x2, x
′

2 ∈ [0, 1]. There exists a decreasing sequence Bn of sets
in B with


∞

1 Bn = {x1, x′

1, x2, x
′

2}. Then (4.18) holds for each Bn, and by (4.15) and dominated
convergence, fBn(x, y) → f∅(x, y) for all x, y ∈ [0, 1]; hence,

f∅(x1, x2)− f∅(x1, x′

2)− f∅(x′

1, x2)+ f∅(x′

1, x
′

2) = 0. (4.19)
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Step 4: Let ϕ1, . . . , ϕm be bounded functions on [0, 1] such that
 1
0 ϕ1 =

 1
0 ϕ2 = 0. Step 3 shows that

(4.19) holds for a.e. x1, x′

1, x2, x
′

2 ∈ [0, 1]. Wemay thus fix x′

1, x
′

2 ∈ [0, 1] such that (4.19) holds for a.e.
x1, x2. Then multiply (4.19) by ϕ1(x1)ϕ2(x2) and integrate over x1, x2 ∈ [0, 1]. Since

 1
0 ϕ1 =

 1
0 ϕ2 =

0, the integrals with the last three terms on the left-hand side of (4.19) vanish, and the result is
[0,1]2

f∅(x1, x2)ϕ1(x1)ϕ2(x2) dx1 dx2 = 0. (4.20)

By the definition (4.15), this says
[0,1]m

f (x1, . . . , xm)ϕ1(x1)ϕ2(x2)ϕ3(x3) · · ·ϕm(xm) = 0. (4.21)

Step 5: We may conclude in several ways. The perhaps simplest is to use Fourier analysis. We thus
choose ϕj(x) = e2π injx, j = 1, . . . ,m, with nj ∈ Z and n1, n2 ≠ 0. Step 4 then applies and (4.21) says
that the Fourier coefficientf (n1, . . . , nm) = 0 (4.22)

when n1, n2 ≠ 0. Since f is symmetric, it follows thatf (n1, . . . , nm) = 0 as soon as at least two of the
indices n1, . . . , nm are non-zero.

Let

g(x1) :=


[0,1]m−1

f (x1, . . . , xm) dx2 · · · dxm −


[0,1]m

f , (4.23)

and note that g is a function on [0, 1] with
 1
0 g = 0. Furthermore, let

h(x1, . . . , xm) :=

m
i=1

g(xi)+


[0,1]m

f . (4.24)

Thenh(n1, . . . , nm) = 0 = f (n1, . . . , nm) as soon as at least two of the indices n1, . . . , nm are non-
zero. Moreover, when n1 ≠ 0,

h(n1, 0, . . . , 0) =


[0,1]m

h(x1, . . . , xn)e2π in1x1 = g(n1) =f (n1, 0, . . . , 0) (4.25)

and thus by symmetryh(n1, . . . , nm) = f (n1, . . . , nm) also when exactly one index n1, . . . , nm is
non-zero. Finally, since

 1
0 g(x) dx = 0,

h(0, . . . , 0) =


[0,1]m

h =


[0,1]m

f =f (0, . . . , 0). (4.26)

Consequently,h(n1, . . . , nm) =f (n1, . . . , nm) for all n1, . . . , nm and thus h = f a.e.

Step 6: We have shown that a.e. f = h, given by (4.24). Let a :=

f ; it remains to show that a = 0.

This is easy; using (4.24) and Lemma 4.2,
A1×···×Am

f =


A1×···×Am

h =


A1×···×Am

m
i=1

g(xi)+


A1×···×Am

a

= 0 + aλ(A1) · · · λ(Am), (4.27)

and thus the assumption (4.4) yields a = 0. �



S. Janson, V.T. Sós / European Journal of Combinatorics 46 (2015) 134–160 145

Remark 4.4. As remarked in Janson [7, Remark 9.5], it is essential that f is symmetric in Lemma 4.3
(unlike Lemma 4.1). For example, it is easily seen that the condition (4.4) is also satisfied by every
anti-symmetric f such that the marginal 1

0
f (x1, . . . , xm) dxm = 0 (4.28)

for a.e. x1, . . . , xm−1; in fact, (4.28) implies, for any partition {A1, . . . , Am},
A1×···×Am

f dx1 · · · dxm = −

m−1
k=1


A1×···×Am−1×Ak

f dx1 · · · dxm = 0,

since each integral in the sum vanishes by the anti-symmetry. As a concrete example, for any m > 2,
we may take the modified discriminant

f (x1, . . . , xm) = e2π i(x1+···+xm)

j<k


e2π ixj − e2π ixk


(4.29)

(or its real part).
For m = 2, it is easy to see that every f satisfying (4.4) for all equipartitions {A1, . . . , Am} is the

sum of a symmetric function satisfying (4.5) and an anti-symmetric function satisfying (4.28), see
[7, Remark 9.5]. For m > 3, we do not know any characterization of general f satisfying (4.4), and we
leave that as an open problem:

Problem 4.5. Find all integrable functions f on [0, 1]m (not necessarily symmetric) that satisfy (4.4)
for all partitions {A1, . . . , Am} of [0, 1] into m disjoint measurable subsets such that λ(A1) = · · · =

λ(Am) = 1/m.

We end this section with another, much simpler, extension of Lemma 4.1 to α1, . . . , αm that may
be different and possibly with

m
i=1 αi < 1, with exception only of the exceptional case treated in

Lemma 4.3 when all αi are equal to 1/m.

Lemma 4.6. Let m > 1 and let α1, . . . , αm ∈ (0, 1) with
m

i=1 αi 6 1. Suppose that f is an integrable
function on [0, 1]m such that

A1×···×Am
f = 0 (4.30)

for all sequences A1, . . . , Am of disjoint measurable subsets of [0, 1] such that λ(Ai) = αi, i = 1, . . . ,m.
Suppose further that either

(i)
m

i=1 αi < 1, or
(ii)

m
i=1 αi = 1 but (α1, . . . , αm) ≠ (1/m, . . . , 1/m), and f is symmetric.

Then f = 0 a.e.

Proof. The case m = 1 is included in Lemma 4.1. (For m = 1, (ii) cannot occur.) The case (ii) with
m = 2 is [7, Lemma 9.4]. The remaining cases are proved by induction (on m) in the same way as the
special case in [7, Lemma 7.3]; we sketch the proof and refer to [7] for omitted details.

We thus assume m > 2, and in the case m = 2 that (i) holds. Furthermore, if (ii) holds, we may
assume αm ≠ αm−1 by permuting the coordinates.

We fix a set A1 with λ(A1) = α1 and consider the function

fA1(x2, . . . , xm) :=


A1

f (x1, . . . , xm) dx1

on Bm−1 where B := [0, 1]\A1. B is as ameasure space isomorphic to [0, 1], after rescaling themeasure,
and the hypothesis implies that fA1 satisfies a corresponding hypothesis on Bm−1; hence fA1 = 0 a.e.
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on Bm−1 by induction. It follows that (4.30) holds for all disjoint sets A1, . . . , Am with λ(A1) = α1 and
λ(A2), . . . , λ(Am) arbitrary.

Now instead fix any disjoint A2, . . . , Am with
m

i=2 λ(Ai) < 1 − α1, and let B′
:= [0, 1] \

m
i=2 Ai.

Then (4.30) thus holds for any A1 ⊂ B′ with λ(A1) = α1, and it follows from the case m = 1 applied
to

f A2,...,Am(x) :=


A2×···×Am

f (x, x2, . . . , xm) dx2 · · · dxm

that f A2,...,Am(x) = 0 a.e.; hence (4.30) holds for all disjoint A1, . . . , Am with
m

i=2 λ(Ai) < 1 − α1. It
follows that f (x1, . . . , xm) = 0 for every Lebesgue point (x1, . . . , xm) of f with x1, . . . , xm distinct. �

Remark 4.7. In Lemma 4.6(ii), the assumption that f is symmetric is essential, as is seen by the
counterexample in Remark 4.4.

Remark 4.8. The proof shows that in the case
m

i=1 αi = 1, it suffices to assume that f is symmetric
in the last two variables, provided αm−1 ≠ αm.

We apply the results above to the property P∗(F;α1, . . . , αm). By (3.6), this property says that
(4.30) holds for f := ΨF ,W − pe(F) and all disjoint subsets A1, . . . , Am of [0, 1] with λ(Ai) = αi,
i = 1, . . . ,m.

Lemma 4.9. Let m > 1 and let α1, . . . , αm ∈ (0, 1) with
m

i=1 αi 6 1. Suppose that W is a graphon
and p ∈ [0, 1].

(a) If (α1, . . . , αm) ≠ (1/m, . . . , 1/m), then P∗(F;α1, . . . , αm) holds if and only ifΨF ,W (x1, . . . , xm) = pe(F) a.e. (4.31)

(b) If (α1, . . . , αm) = (1/m, . . . , 1/m), then P∗(F;α1, . . . , αm) holds if and only if there exists an
integrable function h with

 1
0 h = pe(F)/m such that

ΨF ,W (x1, . . . , xm) =

m
i=1

h(xi) a.e. (4.32)

Proof. Part (a) follows directly from (3.6) and Lemma 4.6, while (b) follows from Lemmas 4.2 and 4.3,
with h(x) = g(x)+ pe(F)/m. �

We thus see that the exceptional case α1 = · · · = αm = 1/m in Theorem 2.12 is more intricate
than the cases covered by Theorem 2.11.

We note also a similar result for P∗.

Lemma 4.10. If
m

i=1 αi < 1, then P∗(F;α1, . . . , αm) holds if and only if

ΨF ,W (x1, . . . , xm) = pe(F) a.e. (4.33)

Proof. This too follows from (3.6) and Lemma 4.6. �

In this case we have to assume
m

i=1 αi < 1 for the proof, because ΨF ,W is (in general) not
symmetric, cf. Remarks 4.4 and 4.7.

Problem 4.11. Does Lemma 4.10 hold also if
m

i=1 αi = 1 with (α1, . . . , αm) ≠ (1/m, . . . , 1/m)?
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5. Reduction to a two-type graphon

We next reduce the problem by showing that, as for the similar problem considered by Simonovits
and Sós [17], if the property P∗(F;α1, . . . , αm) is not quasi-random, then there exists a counterexam-
plewith a 2-type graphon. This reduction reduces our problem to an algebraic one, whichwe consider
in the next section.

We state the reduction in a somewhat general form, to be used together with Lemma 4.9, and we
give two versions (Theorems 5.2 and 5.3), to handle the two cases in parts (a) and (b) in Lemma 4.9.
The proofs are given later in this section.

Remark 5.1. Theorem 5.2 is an extension of Janson [7, Theorem 5.5], where Φ is a multiaffine
polynomial, which would be sufficient for our application here. We nevertheless state Theorem 5.2 in
order to show the similarities between Theorems 5.2 and 5.3, and because we now can give a more
elegant proof of a more general statement than in [7], see Remark 5.9.

If Φ

(wij)i<j


is a function of the

m
2


variables wij, 1 6 i < j 6 m, for some m > 2, and W is a

graphon, we define, for x1, . . . , xm ∈ [0, 1],

ΦW (x1, . . . , xm) := Φ

(W (xi, xj))i<j


. (5.1)

Theorem 5.2. Suppose that Φ

(wij)i<j


is a continuous function of the

m
2


variables wij, 1 6 i < j 6 m,

for some m > 2, and let a ∈ R. Then the following are equivalent.
(i) There exists a graphon W such that

ΦW (x1, . . . , xm) = a (5.2)

for a.e. x1, . . . , xm ∈ [0, 1], but W is not a.e. constant.
(ii) There exists a 2-type graphon W such that (5.2) holds for all x1, . . . , xm, but W is not constant.
(iii) There exist numbers u, v, s ∈ [0, 1], not all equal, such that for every subset A ⊆ [m], if we choose

wij :=

u, i, j ∈ A,
v, i, j ∉ A,
s, i ∈ A, j ∉ A or conversely,

(5.3)

then

Φ((wij)i<j) = a. (5.4)

Theorem 5.3. Suppose that Φ

(wij)i<j


is a continuous function of the

m
2


variables wij, 1 6 i < j 6 m,

for some m > 2. Then the following are equivalent.
(i) There exists a graphon W and a function h on [0, 1], with h not a.e. 0, such that

ΦW (x1, . . . , xm) =

m
i=1

h(xi) (5.5)

for a.e. x1, . . . , xm ∈ [0, 1], but W is not a.e. constant.
(ii) There exist a 2-type graphon W and a function h on [0, 1], with h not a.e. 0, such that (5.5) holds for

all x1, . . . , xm, but W is not constant.
(iii) There exist numbers u, v, s ∈ [0, 1], not all equal, and a, b ∈ R, not both 0, such that for every subset

A ⊆ [m], if we choose

wij :=

u, i, j ∈ A,
v, i, j ∉ A,
s, i ∈ A, j ∉ A or conversely,

(5.6)

then

Φ((wij)i<j) = a + b|A|. (5.7)
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Remark 5.4. In part (ii) of Theorems 5.2–5.3, we may further require that the two parts of [0, 1] are
the intervals [0, 1

2 ] and (
1
2 , 1]. Equivalently, we may regardW as a graphon defined on the two-point

probability space ({0, 1}, µ), with µ{0} = µ{1} =
1
2 .

Remark 5.5. Theorem 5.3 holds also without the restrictions that h is not a.e. 0, and a, b are not both
0; this follows by the same proof (with some simplifications). Note that the excluded case, when
h = 0 a.e. and a = b = 0, is equivalent to Theorem 5.2. For our purposes, it is essential that the case
a = b = 0 is excluded, since there are such examples that have to be excluded from our arguments,
for example the bipartite example in Remark 2.7, which corresponds to the case u = v = 0, s = 1
andΦ((wij)i<j) = 0 for any A.

The proofs follow the proof of Janson [7, Theorem 5.5], with some modifications. We prove the
more complicated Theorem 5.3 in detail first, and then sketch the similar but simpler proof of
Theorem 5.2.

Proof of Theorem 5.3. (ii) =⇒ (i): Trivial.
(iii) =⇒ (ii): Define a 2-type graphonW by

W (x, y) :=


u, x, y >

1
2
,

v, x, y 6
1
2
,

s, x 6
1
2
< y or conversely,

(5.8)

and let the function h be

h(x) :=


a/m, x 6

1
2
,

a/m + b, x >
1
2
.

(5.9)

Then

ΦW (x1, . . . , xm) = Φ((wij)i<j) (5.10)

wherewij is given by (5.6) with A := {i : xi > 1
2 }, and (5.5) follows from (5.7).

(i) =⇒ (iii): Suppose that W is a graphon as in (i), but that (iii) does not hold; we will show that
this leads to a contradiction. We first use Lemma 5.8, which (by replacingW byW and h by h̄) shows
that we may assume that (5.5) holds for all x1, . . . , xm ∈ [0, 1].

Suppose that x, y ∈ [0, 1]. Given A ⊆ [m], let xi := x for i ∈ A and xi := y for i ∉ A. Then
W (xi, xj) = wij as given by (5.6) with u = W (x, x), v = W (y, y), s = W (x, y). Furthermore, (5.5)
holds by our assumption, and thus

Φ((wij)i<j) = ΦW (x1, . . . , xm) =

m
i=1

h(xi) = |A|h(x)+ (m − |A|)h(y)

= a + b|A| (5.11)

with a = mh(y) and b = h(x)−h(y). Hence, (5.7) holds. Since (iii) does not hold, wemust have either
u = v = s or a = b = 0. Note that a = b = 0 if and only if h(x) = h(y) = 0. Consequently, we have
shown the following property:

If x, y ∈ [0, 1], then W (x, x) = W (y, y) = W (x, y) or h(x) = h(y) = 0. (5.12)

Furthermore, ifW (x, x) = W (y, y) then (5.11), with A = ∅ and A = [m], implies that

a = ΦW (y, . . . , y) = ΦW (x, . . . , x) = a + mb (5.13)
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and thus b = 0 so h(x) = h(y). Consequently, (5.12) implies that

x, y ∈ [0, 1] =⇒ h(x) = h(y). (5.14)

In other words, h(x) = γ for some constant γ ∈ R.
Note that γ ≠ 0, since otherwise h(x) would be 0 for all x, contrary to the assumption (i). Hence,

h(x) ≠ 0 for all x and (5.12) implies

x, y ∈ [0, 1] =⇒ W (x, x) = W (y, y) = W (x, y). (5.15)

Thus W is constant, contradicting the assumption.
This contradiction shows that (iii) holds. �

Proof of Theorem 5.2. We argue as in the proof of Theorem 5.3, with b = 0 and h(x) = a/m; in the
proof of (i) =⇒ (iii) we use Lemma 5.7 instead of Lemma 5.8, and note directly that (5.11) with b = 0,
which is (5.4), implies u = v = s since (iii) is assumed not to hold. �

Remark 5.6. In both proofs, the proof of (iii) =⇒ (ii) also works in the opposite direction and thus
shows (iii) ⇐⇒ (ii) directly; (iii) is just an explicit version of what (ii) means.

The proofs used the following technical lemmas, which both are consequences of a recent powerful
general removal lemma by Petrov [11]. Recall that a graphonW is a version ofW ifW = W a.e.

Lemma 5.7. Suppose that Φ

(wij)i<j


is a continuous function of the

m
2


variableswij ∈ [0, 1], 1 6 i <

j 6 m, for some m > 2. Suppose further that W : [0, 1]2 → [0, 1] is a graphon, and suppose that

ΦW (x1, . . . , xm) = a (5.16)

for some a ∈ R and a.e. x1, . . . , xm ∈ [0, 1]. Then there is a version W of W such that

ΦW (x1, . . . , xm) = a (5.17)

for all x1, . . . , xm ∈ [0, 1].

Proof. This is a direct application of [11, Theorem 1(2)], see [11, Example 1]. We let M := Φ−1(a) ⊆

[0, 1](
m
2) and note that (5.16) can be written


W (xi, xj)


i<j ∈ M for a.e. x1, . . . , xm. By [11, Theorem

1(2)], there exists a version W of W such that

W (xi, xj)


i<j ∈ M for all x1, . . . , xm, which is (5.17).

(Petrov’s theorem is stated for an infinite sequence x1, x2, . . . , for maximal generality, but we can
always ignore all but any given finite number of the variables.) �

Lemma 5.8. Suppose that Φ

(wij)i<j


is a continuous function of the

m
2


variableswij ∈ [0, 1], 1 6 i <

j 6 m, for some m > 2. Suppose further that W : [0, 1]2 → [0, 1] is a graphon, and suppose that

ΦW (x1, . . . , xm) =

m
i=1

h(xi) (5.18)

for some h : [0, 1] → R and a.e. x1, . . . , xm ∈ [0, 1]. Then there is a version W of W and a measurable
function h̄ : [0, 1] → R such that

ΦW (x1, . . . , xm) =

m
i=1

h̄(xi) (5.19)

for all x1, . . . , xm ∈ [0, 1].

Proof. We translate (5.18) into the setting of [11] as follows.
By (5.18), for a.e. x1, . . . , xm, y1, . . . , ym ∈ [0, 1],

ΦW (x1, . . . , xm)− ΦW (y1, . . . , ym)

=

m
ℓ=1


ΦW (xℓ, y1, . . . ,yℓ, . . . , ym)− ΦW (y1, . . . , . . . , ym)


, (5.20)
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where yℓ means that this variable is omitted. Let xm+i := yi (1 6 i 6 m) and wij := W (xi, xj)
(1 6 i, j 6 2m). Then (5.20) can be written as

Φ
(wij)i≠j


= 0 (5.21)

for some continuous function Φ : [0, 1]2m(2m−1)
→ R. Let

M := Φ−1(0) ⊆ [0, 1]2m(2m−1). (5.22)

Since Φ is continuous,M is a closed subset, and by (5.21),
W (xi, xj)


i≠j ∈ M (5.23)

for a.e. x1, . . . , x2m. By [11, Theorem 1(2)], there exists a versionW ofW such that
W (xi, xj)


i≠j ∈ M (5.24)

for all x1, . . . , x2m. This means that Φ
(W (xi, xj))i≠j


= 0 for all x1, . . . , x2m, and thus the analogue of

(5.20) for W holds for all x1, . . . , xm, y1, . . . , ym. Now choose y1 = · · · = ym = 0. Then this analogue
of (5.20) yields (5.19) with h̄(x) = ΦW (x, 0, . . . , 0)−

m−1
m ΦW (0, . . . , 0). �

Remark 5.9. Lemma 5.7, which follows from Petrov’s removal lemma [11], is a simpler, stronger and
more general version of Janson [7, Lemma 5.3]. Similarly, a modification of the proof of [7, Lemma 5.3]
can be used to prove a weaker version of Lemma 5.8; however, Petrov’s removal lemma enables us to
a simpler and stronger statement with a simpler proof.

6. An algebraic condition

It is now easy to prove Theorem 2.11.
Proof of Theorem 2.11. (i): Suppose, in order to get a contradiction, that the property P (F;α1,
. . . , αm) is not p-quasi-random. By Lemma 3.4, also P∗(F;α1, . . . , αm) is not p-quasi-random. That
means that there exists a graphonW that is not a.e. equal to p such that P∗(F;α1, . . . , αm) holds, and
thus by Lemma 4.9(a),ΨF ,W (x1, . . . , xm) = pe(F) a.e. (6.1)

IfW a.e. equals a constant,w say, then ΨF ,W = we(F) a.e., and thuswe(F)
= pe(F) andw = p, soW = p

a.e. which we have excluded. Hence,W is not a.e. constant.
Note that ΨF ,W (x1, . . . , xm) by (3.1)–(3.2) is a polynomial in W (xi, xj), 1 6 i < j 6 m, and thus

by (5.1) can be written as ΦW (x1, . . . , xm) for a suitable polynomial Φ . We apply Theorem 5.2, with
a = pe(F). By (6.1), Theorem 5.2(i) holds, and thus Theorem 5.2(iii) holds. Let u, v, s be as there, and
definewij by (5.3).

Choosing A = [m], we have wij = u for all i and j, and it is easily seen that Φ

(wij)i<j


= ue(F)

(see also Lemma 6.2); hence (5.4) yields u = p. Similarly, the case A = ∅ yields v = p. Finally, take
A = {1}, and regard Φ


(wij)i<j


as a polynomial in s. Since u, v > 0 and e(F) > 0, this polynomial

has non-negative coefficients and at least one non-zero term with a positive power of s; hence the
polynomial is strictly increasing in s > 0, so (5.4) has at most one root s. However, when u = v = p,
(5.4) is satisfied by s = p, and thus this is the only root. Consequently, u = v = s = p, a contradiction,
which completes the proof.

(ii): Similarly, using Lemma 4.10 and Theorem 5.2. �

Remark 6.1. Suppose that the graph F contains two vertices that are twins, i.e., such that the map
interchanging these vertices and fixing all others is an automorphism. Label F such that the twins
are vertices m − 1 and m. The argument in the proof of Theorem 2.11 shows, using Remark 4.8, that
P (F;α1, . . . , αm) is quasi-random provided αm−1 ≠ αm. (We do not know whether this extends to
αm = αm−1. Cf. Problem4.11.) In particular, this applies to F = P3, see Example 2.18 and Problem2.19.
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For Theorem 2.12, the algebra is more complicated, and we analyse the condition (5.7) as follows.
For a subset A of V (F), let eF (A) be the number of edges in F with both endpoints in A; similarly, if

A and B are disjoint subsets of V (F), let eF (A, B) be the number of edges with one endpoint in A and
the other in B. Further, let Ac

:= V (F) \ A be the complement of A.

Lemma 6.2. Suppose that F is a graph with |F | = m and let W be the 2-type graphon given by (5.8) for
some u, v, s ∈ [0, 1]. Let x1, . . . , xm ∈ [0, 1] and let k := |{i 6 m : xi > 1/2}|. Then

ΨF ,W (x1, . . . , xm) =


m
k


−1


A⊆V (F):|A|=k

ueF (A)veF (A
c)seF (A,A

c). (6.2)

Proof. Let A := {i 6 m : xi > 1/2}. Then by (3.1) and (5.8),

ΨF ,W (x1, . . . , xm) = ueF (A)veF (A
c)seF (A,A

c). (6.3)

By (3.2), ΨF ,W (x1, . . . , xm) is the average of this over all permutations of x1, . . . , xm, which means
taking the average over the

m
k


sets A ⊆ [m] with |A| = k.

Lemma 6.3. Suppose that F is a graph with |F | = m. Then the following are equivalent.

(i) For some p ∈ (0, 1], P (F; 1/m, . . . , 1/m) is not p-quasi-random.
(ii) For some p ∈ (0, 1], P∗(F; 1/m, . . . , 1/m) is not p-quasi-random.
(iii) There exist numbers u, v, s > 0, not all equal, and some reals a and b, not both 0, such that

A⊆V (F):|A|=k

ueF (A)veF (A
c)seF (A,A

c)
=


m
k


(a + bk), k = 0, . . . ,m. (6.4)

(iv) There exist numbers u, v, s > 0, not all equal, such that the polynomial (in q)

ΛF;u,v,s(q) :=


A⊆V (F)

ueF (A)veF (A
c)seF (A,A

c)q|A|(1 − q)m−|A| (6.5)

has degree at most 1, but does not vanish identically.
(v) There exist numbers u, v, s > 0, not all equal, such that the polynomial (in x)

Λ̂F;u,v,s(x) :=


A⊆V (F)

ueF (A)veF (A
c)seF (A,A

c)(x − 1)|A| (6.6)

is divisible by xm−1, but does not vanish identically.

Note that (for q ∈ [0, 1]) ΛF;u,v,s(q) is the expectation of ueF (A)veF (A
c)seF (A,A

c) if A is the random
subset [m]q of [m] obtain by including each element with probability q, independently of each other.

Proof. (i) ⇐⇒ (ii): This is contained in Lemma 3.4.
(ii) =⇒ (iii): If (ii) holds, then there exists a graphon W that is not a.e. constant for whichP∗(F; 1/m, . . . , 1/m) holds. Then, by Lemma 4.9(b), there exists an integrable function hwith

 1
0 h =

pe(F)/m ≠ 0 such that (4.32) holds.
As in the proof of Theorem 2.11, ΨF ,W (x1, . . . , xm) can be written asΦW (x1, . . . , xm) for a polyno-

mial Φ . Then (4.32) is the same as (5.5) and Theorem 5.3(i) holds. By Theorem 5.3 (and its proof) we
may assume that W is a 2-type graphon given by (5.8) for some u, v, s ∈ [0, 1], and then Lemma 6.2
and (5.10) show that (5.7) is equivalent to (6.4), and thus (iii) follows.

(iii) =⇒ (ii): This is similar but simpler. We may assume that u, v, s ∈ [0, 1], by multiplying them
by a small positive number if necessary. Let W be the graphon defined by (5.8). Then Lemma 6.2 and
(6.4) yield ΨF ,W (x1, . . . , xm) = a+ bkwhere k = |{i : xi > 1/2}, so (4.32) holds with h given by (5.9).

We have assumed that a and b are not both 0, and thus h(x) is not identically 0. Furthermore,
(4.32) implies h(x) > 0 a.e., and thus

 1
0 h > 0. Since ΨF ,W 6 1, (4.32) also implies

 1
0 h 6 1/m. Hence
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there exists p ∈ (0, 1] with pe(F) = m
 1
0 h. (Also in the trivial case e(F) = 0, since then ΨF ,W =

1.) Lemma 4.9 now shows that P∗(F; 1/m, . . . , 1/m) holds, and since W is not a.e. constant, this
yields (ii).

(iii) ⇐⇒ (iv): By multiplying (6.4) by tk and summing over k, we see that (6.4) is equivalent to
A⊆V (F)

ueF (A)veF (A
c)seF (A,A

c)t |A|
=

m
k=0


m
k


(a + bk)tk, t ∈ R. (6.7)

Letting t = q/(1 − q) and multiplying by (1 − q)m, this is equivalent to
A⊆V (F)

ueF (A)veF (A
c)seF (A,A

c)q|A|(1 − q)m−|A|
=

m
k=0


m
k


(a + bk)qk(1 − q)m−k

where the right hand side equals a + bmq by an elementary calculation (or by the formula for the
mean of a binomial distribution). The equivalence follows.

(iv) ⇐⇒ (v): Take q = 1/x, replace A by Ac and interchange u and v to obtain

Λ̂F;u,v,s(x) = xmΛF;v,u,s(1/x). � (6.8)

Remark 6.4. It follows from the proof that the polynomialΛF;u,v,s(q) has degree 0, i.e., is a (non-zero)
constant ⇐⇒ (6.4) holds with b = 0 ⇐⇒ ΨF ,W (x1, . . . , xm) = a for some (non-zero) a. As shown
above in the proof of Theorem 2.11, this happens for some u, v, s > 0, not all equal, only in the trivial
case e(F) = 0. (This is an equivalent way of stating the algebraic part of the proof of Theorem 2.11,
but we preferred to give a direct proof above without the present machinery.) Hence, if e(F) > 0 and
(iv) holds, then the degree ofΛF;u,v,s is exactly 1.

Remark 6.5. ΛF;u,v,s(q) is not changed if we add some isolated vertices to F . Hence we may assume
that F has no isolated vertices.

We note that the cases k = 0 and k = m of (6.4) simply are

ve(F) = a, (6.9)

ue(F)
= a + mb. (6.10)

In particular, the assumption that not a = b = 0 means that not u = v = 0. (This case has to be
excluded, for any non-bipartite F , cf. Remark 2.7.)

Moreover, if F has degree sequence d1, . . . , dm, the cases k = 1 and k = m − 1 of (6.4) are

1
m

m
i=1

ve(F)−disdi = a + b, (6.11)

1
m

m
i=1

ue(F)−disdi = a + (m − 1)b. (6.12)

Example 6.6. If F = K2, then by (6.5),

ΛF;u,v,s(q) = uq2 + 2sq(1 − q)+ v(1 − q)2 = v + 2(s − v)q + (u + v − 2s)q2,

which has degree 1 if we choose any distinct u and v and let s = (u + v)/2. Hence Lemma 6.3 shows
that P (K2; 1/2, 1/2) is not quasi-random, as we already know, see Example 2.10.

In this case, ΨK2,W (x1, x2) = W (x1, x2), so Lemma 4.9(b) shows that P∗(K2; 1/2, 1/2) holds if and
only if W (x, y) = h(x) + h(y) for some measurable h : [0, 1] → [0, 1] with

 1
0 h = p/2, see further

Janson [7, Section 9].
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Remark 6.7. We may add some further conditions on u, v, s in Lemma 6.3(iii)–(v). In the trivial case
e(F) = 0 we can take any u, v, s, so let us assume e(F) > 0. By Remark 6.4, we then must have b ≠ 0,
so by (6.9)–(6.10), u ≠ v. Furthermore, we may interchange u and v (and replace q by 1 − q in (6.5)),
so we may assume u < v. In this case, (6.9)–(6.10) yield b > 0. By (6.11) and (6.9), this implies s > v,
and by (6.12) and (6.10), it implies s < u. Hence we may assume v < s < u.

Suppose v = 0. Then a = 0 by (6.9). By Remark 6.5, wemay assume that F has no isolated vertices.
If di < e(F) for all i, then (6.11) yields 0 = a + b = b, which is impossible. Hence we must have
di = e(F) for some i, which means that F is a star. In the case of a star with m = |F | > 3, v = a = 0
in (6.11) yields sm−1

= mb, while (6.10) yields um−1
= mb so u = s, a contradiction. Hence v = 0 is

impossible and we may assume v > 0. (If m = 2, so F = K2, v = 0 is possible, but we may choose
any v > 0 and u > v by Example 6.6.)

Consequently, it suffices to consider distinct u, v, s > 0, and we may assume 0 < v < s < u (or,
by symmetry, 0 < u < s < v).

Furthermore, the equations (6.4) are homogeneous in (u, v, s), so we may assume that any given
of them equals 1; for example, we may assume v = 1, which implies a = 1 by (6.9).

7. Completing the proof of Theorem 2.12

We say that a graph F is good if, for every p ∈ (0, 1], P (F; 1/m, . . . , 1/m) is p-quasi-random;
otherwise F is bad. In this terminology, Lemma 6.3 says (using Remark 6.7) that F is bad if and only
if there exist distinct u, v, s > 0 such that (6.4) holds, or, equivalently, that ΛF;u,v,s(q) in (6.5) has
degree at most 1.

An empty graph, i.e., a graph F with e(F) = 0, is trivially bad; in this case (6.5) yieldsΛF;u,v,s(q) = 1,
soΛF;u,v,s has degree 0. By Remark 6.4, this is the only case when deg(ΛF;u,v,s) = 0.

The single edgeK2 is also bad, see Examples 2.10 and 6.6.More generally, any graph F with e(F) = 1
is bad by Remark 6.5.

Conjecture 2.13 says that all other graphs are good. We proceed to verify this in the cases given in
Theorem 2.12.

Example 7.1 (Regular Graphs). Suppose that F is d-regular for some d > 1, and thatm = |F | > 3. (This
includes the case Km, m > 3, considered by [6].) Then e(F) = dm/2.

We use only (6.9)–(6.12); if we further simplify by assuming v = a = 1, as wemay by Remark 6.7,
we obtain, from (6.10)–(6.12),

udm/2
= 1 + mb, (7.1)

sd = 1 + b, (7.2)

ud(m−2)/2sd = 1 + (m − 1)b, (7.3)

and thus

(1 + (m − 1)b)m = (1 + mb)m−2(1 + b)m. (7.4)

However, the function

h(x) := (m − 2) log(1 + mx)+ m log(1 + x)− m log(1 + (m − 1)x) (7.5)

(defined for x > −1/m) has derivative

h′(x) =
m(m − 1)(m − 2)x2

(1 + x)(1 + (m − 1)x)(1 + mx)
> 0 (7.6)

for x > −1/mwith x ≠ 0, and thus h(x) is strictly increasing on (−1/m,∞) and h(x) ≠ h(0) = 0 for
x ≠ 0, which shows that (7.4) implies b = 0, and thus s = u = 1 = v by (7.1)–(7.3), a contradiction.
Consequently, there are no u, v, s satisfying the conditions and thus F is good.
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Example 7.2 (Stars). Suppose that F is a star K1,m−1. Let A ⊆ V (F) and let k := |A|. If A contains
the centre of F , then eF (A) = k − 1, eF (Ac) = 0 and eF (A, Ac) = m − k; otherwise, eF (A) = 0,
eF (Ac) = m − k − 1 and eF (A, Ac) = k. It follows from (6.6) and the binomial theorem that

Λ̂F;u,v,s(x) = (x − 1)

u(x − 1)+ s

m−1
+


s(x − 1)+ v

m−1
. (7.7)

Assume m > 3, and that F is bad. Then, by Lemma 6.3(v) and Remark 6.7, there exist distinct
u, v, s > 0 such that Λ̂F;u,v,s(x) is divisible by xm−1. In particular,

0 = Λ̂F;u,v,s(0) = −(s − u)m−1
+ (v − s)m−1. (7.8)

Hence (s− u)m−1
= (v− s)m−1 and thus |s− u| = |v− s|, and since u, v, s are real, s− u = ±(v− s).

However, we assume u ≠ v and thus s − u ≠ s − v. Consequently, s − u = v − s.
We may further assume s = 1, and thus u = 1 − y and v = 1 + y for some y ≠ 0. Thus, by (7.7),

Λ̂F;u,v,s(x) = (x − 1)

(1 − y)x + y

m−1
+


x + y

m−1
. (7.9)

Sincem > 3, Λ̂F;u,v,s(x) is divisible by x2, so the derivative Λ̂′

F;u,v,s(0) = 0. Hence,

0 = Λ̂′

F;u,v,s(0) = ym−1
− (m − 1)(1 − y)ym−2

+ (m − 1)ym−2

= mym−1
≠ 0. (7.10)

This is a contradiction, which shows that F = K1,m−1 is good when m > 3. (For m = 2, K1,1 = K2 is
bad, as remarked above.)

Example 7.3 (Disconnected Graphs). Suppose that F =
k

i=1 Fi is disconnected with components
F1, . . . , Fk. It follows easily from (6.5) that then

ΛF;u,v,s(q) =

k
i=1

ΛFi;u,v,s(q). (7.11)

A component Fi with |Fi| = 1 has ΛFi;u,v,s(q) = 1 and can be ignored, as said in Remark 6.5. On
the other hand, if |Fi| > 2, and thus e(Fi) > 0, then by Remark 6.4, ΛFi;u,v,s(q) has degree at least 1
whenever u, v, s > 0 are not all equal. Consequently, if there are at least 2 components with more
than one vertex, thenΛF;u,v,s(q) has degree at least 2, and thus F is good.

This ends our (short) list of classes of graphs that are known to be good, and completes the proof
of Theorem 2.12. We can give further examples of individual small good graphs F as follows.

Example 7.4 (Computer Algebra). Fix a graph F and consider again the four equations (6.9)–(6.12). If
we set s = 1 (see Remark 6.7), we can eliminate a and b and obtain the two equations

m
i=1

ue(F)−di = (m − 1)ue(F)
+ ve(F), (7.12)

m
i=1

ve(F)−di = ue(F)
+ (m − 1)ve(F). (7.13)

Since these are two polynomial equations in two unknowns, there are plenty of complex solutions
(u, v). However, if F is bad, then by Lemma 6.3 and Remark 6.7 there exists a solution with 0 < u <
1 < v, and by symmetry another solution with 0 < v < 1 < u. Using computer algebra (in our
case Maple), we can check this by writing (7.12)–(7.13) as f1(u, v) = 0 and f2(u, v) = 0 and then
computing the resultant R(u) of f1(u, v) and f2(u, v) as polynomials in v. Then the roots of R(u) are
exactly the values u such that (7.12)–(7.13) have a solution (u, v) for some v. Hence, if F is bad, then
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R(u) has at least one root in the interval (0, 1) and at least one root in (1,∞). Consequently, if we
compute the number of roots of R(u) in (0, 1) and in (1,∞) (by Sturm’s theorem, this can be done
using exact integer arithmetic), and one of these numbers is 0, then F is good.

In general, this is perhaps toomuch to hope for. But even if there are such roots, we can proceed by
calculating the roots numerically. If the roots of R(u) in (0, 1) are u1, . . . , up and the roots in (1,∞)
are v1, . . . , vq, then a solution of (7.12)–(7.13) with 0 < u < 1 < v has to be one of (ui, vj); hence,
if we check the pairs (ui, vj) one by one and find that none satisfies both (7.12) and (7.13), then F is
good. (Assuming that the computer calculations are done with enough accuracy. It might be possible
to find an algorithm using exact arithmetic to test whether (7.12) and (7.13) have a common solution
in (0, 1)× (1,∞), but we have not investigated that.)

We give some explicit examples where this method succeeds.

Example 7.5 (Paths). The path P2 = K2 is bad, and the path P3 = K1,2 is good by Example 7.2. For
F = P4 we have m = 4, e(F) = 3 and the degree sequence 1, 2, 2, 1. The equations (7.12)–(7.13) are
2u + 2u2

= 3u3
+ v3 and 2v + 2v2 = u3

+ 3v3, and the resultant R(u) = −512 u9
+ 1152 u8

+

288 u7
− 1872 u6

+ 288 u5
+ 976 u4

− 112 u3
− 192 u2

− 16 u. In this case, R(u) has no roots in (0, 1),
so P4 is good.

For P5, the resolvent R(u) (now of degree 16) has a single root in (0, 1), but no root in (1,∞), so P5
is good. (As an illustration, the root in (0, 1) is u = 0.23467 . . .; for this root, (7.12) and (7.13) have a
common root v = −0.65039 . . ., but no common root in (1,∞).)

We have investigated Pm for 4 6 m 6 20, and the same pattern holds: For even m, the resolvent
has no root in (0, 1) (but one root in (0,∞)). For oddm, the resolvent has no root in (1,∞) (but one
root in (0, 1)). In both cases, Pm is good.

We conjecture that this pattern holds for allm > 4.

Example 7.6 (Graphs of Size |F | = 4). Of the 9 graphs with m = |F | = 4 and e(F) > 1, 3 are
disconnected (Example 7.3), 2 more are regular (Example 7.1), 1 is a star (Example 7.2) and 1 is a
path (Example 7.5). The two remaining ones have degree sequences (3, 2, 2, 1) and (3, 3, 2, 2). In
both cases, the resolvent R(u) has no root in (0, 1). Thus every F with |F | = 4 and e(F) > 1 is
good.

Example 7.7 (Complete Bipartite Graphs).We have used the method in Example 7.4 to verify that the
complete bipartite graphs K2,n (n 6 8), K3,n (n 6 7), K4,n (n 6 5) are good. In all cases, the resolvent
R(u) lacks roots in either (0, 1) or (1,∞), and sometimes in both. (For example, for K2,n, there is no
root in (1,∞) for any n 6 8, and a root in (0, 1) only for n = 4 and n = 8. It is not clear whether this
extends to larger n.)

Remark 7.8. We have so far not found any example with e(F) > 1 where the method in Example 7.4
fails. We thus guess that if e(F) > 1, then (7.12)–(7.13) have no common root with 0 < u < 1 and
1 < v < ∞. (Equivalently, (6.9)–(6.11) have no common root with 0 < u < s < v.) However, note
that even if there is a graph F for which this fails, F still may be good since, if m > 3, there are m − 3
more equations (6.4) that have to be satisfied, which seems very unlikely. In Examples 7.4–7.7 we
consider only the equations that only depend on the degree sequence.

8. More parts than vertices

Shapira and Yuster [14] and Huang and Lee [6] considered also (for F = Km) the case of a partition
U1, . . . ,Ur of V (Gn)with r > m, where they count the number of copies of Km with atmost one vertex
in each part Ui.

We can extend this to arbitrary graphs F (as in [6, Question 5.1]). In our notation this is the same
as considering (counting labelled copies and dividing bym!, where m = |F |)

i1<···<im6r

N(F ,G;Ui1 , . . . ,Uim), (8.1)
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and we define the property P (F;α1, . . . , αr) for a sequence (Gn) to mean
i1<···<im6r

N(F ,Gn;Ui1 , . . . ,Uim) = pe(F)


i1<···<im6r

m
j=1

|Uij | + o

|Gn|

m
(8.2)

for all disjoint subsets U1, . . . ,Ur of V (Gn)with |Ui| = ⌊αi|Gn|⌋, 1 6 i 6 r . (For r = m, this yields the
same property as before.)

In the case 0 < p < 1, r > m > 3, F = Km and
r

i=1 αi = 1. Shapira and Yuster [14]
((α1, . . . , αr) ≠ (1/r, . . . , 1/r)) and Huang and Lee [6] ((α1, . . . , αr) = (1/r, . . . , 1/r)) showed
that this property is p-quasi-random. We can extend this as follows.

Theorem 8.1. Let F be a graph with e(F) > 0, and let 0 < p 6 1. Further, let (α1, . . . , αr) be a vector of
positive numbers of length r > m = |F | with

r
i=1 αi 6 1. If either (α1, . . . , αr) ≠ (1/r, . . . , 1/r) or F

is as in Theorem 2.12, then P (F;α1, . . . , αr) is a p-quasi-random property.

Proof. The case (α1, . . . , αr) = (1/r, . . . , 1/r) is simple; in this case (and more generally when
all αi are equal), it is easy to see that P (F;α1, . . . , αr) is the same as P (F∗;α1, . . . , αr), where F∗

is the graph with r vertices obtained by adjoining r − m isolated vertices to F ; by Lemma 6.3 and
Remark 6.5, this property is p-quasi-random if and only if P (F; 1/m, . . . , 1/m) is, so the result in this
case is equivalent to Theorem 2.12.

In general, we note first that Lemmas 3.1 and 3.4 extend (with the same proofs) and show that it
is equivalent to consider the property of graphons

i1<···<im


Ai1×···×Aim

ΨF ,W (xi1 , . . . , xim) = pe(F)


i1<···<im

m
j=1

λ(Aij) (8.3)

for all disjoint subsets A1, . . . , Ar of [0, 1] with λ(Ai) = αi.
Assume this and defineΨ ∗

F ,W (x1, . . . , xr) :=


i1<···<im

ΨF ,W (xi1 , . . . , xim)


k∉{i1,...,im}

αk
−1. (8.4)

Then (8.3) can be written as
A1×···×Ar

Ψ ∗

F ,W (x1, . . . , xr) = pe(F)


i1<···<im

m
j=1

αij (8.5)

for all such subsets A1, . . . , Ar . Suppose now (α1, . . . , αr) ≠ (1/r, . . . , 1/r). Then Lemma 4.6 applies
(to Ψ ∗

F ,W − γ for a suitable constant γ ) and shows that Ψ ∗

F ,W (x1, . . . , xr) is a.e. constant. Hence, if
n1, . . . , nm are integers, not all 0, then thus the Fourier coefficient

Ψ ∗

F ,W

̂
(n1, . . . , nm, 0, . . . , 0) = 0.

However, it follows easily from (8.4) and symmetry that this Fourier coefficient is a positive multiple
of the Fourier coefficient

ΨF ,W
̂
(n1, . . . , nm). Hence

ΨF ,W
̂
(n1, . . . , nm) = 0 when (n1, . . . , nm) ≠

(0, . . . , 0), and thus ΨF ,W is a.e. constant; it follows from (8.3) that the constant must be pe(F).
By the proof of Theorem 2.11 (or by Lemma 4.9 and Theorem 2.11), this implies W = p a.e.
Consequently, (8.3) for disjoint A1, . . . , Ar with λ(Ai) = αi is a p-quasi-random property, and thus
so is P (F;α1, . . . , αr). �

Example 8.2 (Multicuts). Consider the case F = K2. Then the sum (8.1) is the number of edges with
endpoints in two different sets Ui and Uj; we can call this a multicut. By Theorem 8.1, as proved
already by Shapira and Yuster [14] (see also Huang and Lee [6]), the corresponding multicut propertyP (K2;α1, . . . , αr) is a p-quasi-random property for any (α1, . . . , αr) ≠ (1/r, . . . , 1/r). However,P (K2; 1/r, . . . , 1/r) is not p-quasi-random, which is shown by the same counterexamples as for the
case r = 2 in Example 6.6.

If Conjecture 2.13 holds, then P (K2; 1/r, . . . , 1/r) is essentially the only case when P (F;α1,
. . . , αr) is not p-quasi-random.
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9. Fewer parts than vertices

As said in Remark 2.20, it is interesting to study the subgraph counts N(F ,Gn;U1, . . . ,Um) andN(F ,Gn;U1, . . . ,Um) also in situations with other restrictions on the subsets U1, . . . ,Um than the
ones considered above. In particular, wemay consider the case when the sets Ui may be repeated, but
otherwise are disjoint. (Wemay also consider evenmore general situations when sets Ui may overlap
partly in some prescribed ways, but that will not be treated here.) This suggests the following general
formulation:

Let r > 1 and let m1, . . . ,mr be given non-negative integers with m1 + · · · + mr = m = |F |, and
consider for a sequence of disjoint subsets U1, . . . ,Ur of V (G), the following three subgraph counts:
(i) N(F ,G;Um1

1 , . . . ,Umr
r ), defined as N(F ,G;U1, . . . ,Ur)where the subset Ui is repeated mi times.

(For a given labelling of F .)
(ii) N(F ,G;Um1

1 , . . . ,Umr
r ), defined as the average of N(F ,G;Um1

1 , . . . ,Umr
r ) over all labellings of F .

This equals, up to the constant symmetry factor |aut(F)|


i mi!/m!, the number of copies of F in
G that have exactly mi vertices in Ui. (For each such copy of F , there are


i mi! labellings of F for

which it is counted, and the total number of labellings of F is m!/|aut(F)|.)
(iii) N(F ,G;U1, . . . ,Ur;m1, . . . ,mr) defined as the further average ofN(F ,G;Um1

1 , . . . ,Umr
r ) over all

permutations ofm1, . . . ,mr .

We then define properties Pm1,...,mr (F;α1, . . . , αr), Pm1,...,mr (F;α1, . . . , αr) and Pm1,...,mr (F;α1,
. . . , αr) in analogy with Definition 2.8, considering all families of disjoint U1, . . . ,Ur with |Ui| =

⌊αi|Gn|⌋. If F = Km, then N = N and thus Pm1,...,mr = Pm1,...,mr , but in general we do not know
any implication, cf. Remark 2.14.

Example 9.1. Note first that this formulation includes the problems studied earlier in the paper:
(a) For r = m and m1 = · · · = mr = 1, we recover the main subject of the paper, see Section 2. (In

this case,N = N .)
(b) For r > m and mi = 1 for 1 6 i 6 m, mi = 0 for m + 1 6 i 6 r , N equals, up to an

unimportant constant factor, the sum (8.1) studied in Section 8. Thus Pm1,...,mr (F;α1, . . . , αr) =P (F;α1, . . . , αr).
(c) For r = 1 (and thusm1 = m), we considerN(F ,G;U, . . . ,U) as in Simonovits and Sós [15] (where

|U| is unspecified, see Theorem 2.5), Shapira [12] and Yuster [20].

The new case of main interest in the formulation above is thus 1 < r < m, with 2 6 mi < m for
some i; thus some setUi is repeated, but all are not equal. In the remainder of this section, we consider
a simple, but hopefully typical, example of this, viz.m = 3, r = 2 and (m1,m2) = (2, 1).

Thus, assume that m = |F | = 3. For α, β > 0 with α + β 6 1, the properties P2,1(F;α, β) andP2,1(F;α, β)mean that (2.3) and (2.4), respectively, hold for all U1,U2,U3 with U1 = U2 but disjoint
from U3, and |U1| = ⌊α|Gn|⌋, |U3| = ⌊β|Gn|⌋. In the case α+ β = 1, we can equivalently assume that
U1 = U2 = U andU3 = V (Gn)\U with |U| = ⌊α|Gn|⌋. (For F = K3, this means that we count triangles
crossing the cut (U, V (Gn)\U), with exactly two vertices inU .) Are these properties p-quasi-random?

The analogue of Lemma 3.1 holds, and thus we can as in Lemma 3.4 transfer the problem to
graphons and the properties defined by (3.5) or (3.6) for all A1, A2, A3 with A1 = A2 and disjoint from
A3, and λ(A1) = α, λ(A3) = β .

Consider first P2,1(F;α, β). In the case α + β < 1, we have the following results, similar to the
ones above.

Lemma 9.2. Let α, β > 0 with α + β < 1. Suppose that f : [0, 1]3 → C is a symmetric integrable
function such that

A×A×B
f = 0 (9.1)

for all disjoint subsets A and B of [0, 1] such that λ(A) = α and λ(B) = β . Then

f (x1, . . . , xm) = 0 a.e. (9.2)
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Proof. Aminor variation of the proof of Lemma 4.6, using Janson [7, Lemma 7.6]. We omit the details.

Theorem 9.3. Let F be a graph with |F | = 3 and e(F) > 0, let α, β > 0 with α + β < 1 and let
0 < p 6 1. Then P2,1(F;α, β) is a quasi-random property.

Proof. Using Lemma 9.2, we argue as in the proof of Theorem 2.11 in Section 6.

The case α + β = 1, and thus B = Ac in (9.1), is more intricate, and therefore more interesting.
We note first that the counterexample in Lemma 4.2 shows that Lemma 9.2 does not hold for α =

1 − β = 2/3. In fact, if f (x1, x2, x3) = g(x1)+ g(x2)+ g(x3)with
 1
0 g = 0 and |A| = α, then

A×A×Ac
f (x1, x2, x3) = 2α(1 − α)


A
g + α2


Ac

g

= 2α(1 − α)


A
g − α2


A
g = α(2 − 3α)


A
g, (9.3)

which vanishes for every such A if α = 2/3.
Moreover, there is another counterexample for α = 1 − β = 1/3: Now consider f (x1, x2, x3) =

g(x1, x2)+ g(x1, x3)+ g(x2, x3) for a symmetric function g on [0, 1]2 such that
 1
0 g(x, y) dy = 0 for

every x. Then
A×A×Ac

f (x1, x2, x3) = (1 − α)


A2

g + 2α

A×Ac

g

= (1 − α)


A2

g − 2α

A2

g = (1 − 3α)

A2

g, (9.4)

which vanishes if α = 1/3.
We conjecture that these are the only counterexamples.

Conjecture 9.4. Let α ∈ (0, 1) and suppose that f : [0, 1]3 → C is a symmetric integrable function such
that


A×A×Ac f = 0 for every A ⊂ [0, 1] with λ(A) = α.

(i) If α ∉ {
1
3 ,

2
3 }, then f = 0 a.e.

(ii) If α =
1
3 , then f (x1, x2, x3) = g(x1, x2) + g(x1, x3) + g(x2, x3) a.e. for a symmetric function g on

[0, 1]2 such that
 1
0 g(x, y) dy = 0 for every x.

(iii) If α =
2
3 , then f (x1, x2, x3) = g(x1) + g(x2) + g(x3) a.e. for a function g on [0, 1] such that 1

0 g(x) dx = 0.

Note that if this conjecture holds, then Theorem 9.3 holds also for α + β = 1, provided α ≠
1
3 ,

2
3 ,

by the same proof as above. For α = 1 − β =
2
3 we would have the same situation as in Lemmas 4.3

and 6.3; from the discussion in Section 7 follows that Theorem 9.3 would hold if e(F) > 2 (P2 or K3),
but not for e(F) 6 1 (K2 ∪ K1 and the trivial empty graph K1 ∪ K1 ∪ K1). (Recall that we only consider
m = 3, as an example.)

For α = 1 − β =
1
3 , even if the conjecture holds, it would lead to further open problems: First,

is there an analogue of Theorems 5.2 and 5.3 for this case, showing that if the property is not quasi-
random, then there is a 2-type graphon counterexample? (This seems likely if Conjecture 9.4 holds,
using a suitable analogue of Lemma 5.8 for this case.) Secondly, analysis of a possible 2-type graphon
counterexample would lead to a different algebraic problem than the one in Section 6; we leave the
formulation and investigations of this as another open problem.

Problem 9.5. Solve these problems for the case β = 1 − α, with particular attention to the cases
α =

1
3 and 2

3 , in particular for F = K3 (crossing triangles). Moreover, consider extensions form > 3.
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Remark 9.6. Note that the set of functions satisfying the condition of Lemmas 4.1, 4.3 or 9.2, or
Conjecture 9.4, is invariant under allmeasure preserving bijections of [0, 1]. This suggest the following
approach,wherewe consider only square integrable functions so thatwe can useHilbert space theory.
Let, for 0 6 k 6 m,Hm,k be the subspace of L2([0, 1]m) consisting of all functions f such that the Fourier
coefficientf (n1, . . . , nm) vanishes unless exactly k indicesn1, . . . , nm are non-zero. (In particular,Hm,0

is the space of constant functions.) Let further L2s([0, 1]
m) be the subspace of symmetric functions in

L2([0, 1]m), and let Hm,k
s := Hm,k

∩ L2s([0, 1]
m). Then

L2s([0, 1]
m) =

m
k=0

Hm,k
s (9.5)

and each subspace Hm,k
s is invariant under measure preserving bijections of [0, 1]. We conjecture that

every closed subspace of L2s([0, 1]
m) invariant under all measure preserving bijections of [0, 1] is of

the form


k∈A H
m,k
s for some set A ⊆ {0, . . . ,m}.

If this holds, it is easy to verify Conjecture 9.4.
In support of this conjecture, note that a discrete analogue holds: Let N > m > 0 and consider

the set XN,m of m-tuples of distinct elements of [N]. If N > 2m, then the natural representation
of the symmetric group SN in the

N
m


-dimensional space of all symmetric functions on XN,m has

m + 1 irreducible components, which correspond to the sets Hm,k
s above. (This is easily verified by

a calculation with the characters of these representations. We omit the details.)

Finally, for the property P2,1(F;α, β), for a directed graph F with |F | = 3, we have the same
problems as before (unless F = K3), see Remark 2.14. Consider for example F = P3. Wemay note that
in Lemma 9.2, it suffices that f is symmetric in the first two variables; this implies by the argument
above that if F = P3 with the central vertex labelled 3, then P2,1(F;α, β) is quasi-random (since then
ΨF ,W is symmetric in the first two variables). However, this argument fails for the other labellings of
P3. The case α + β = 1 seems even more complicated.

Problem 9.7. Is P2,1(P3;α, β) a quasi-random property for any α, β > 0 with α + β < 1, for any
labelling of P3? Does this hold for α + β = 1?

Added note. Since this paper was written, Hatami, Hatami and Li [5] have solved our Problems 2.19
and 4.5 and Conjecture 9.4.
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