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Knots and Reidemeister moves

Definitions

Differentiable embeddings of S! into R® are called knots. The two
knots Ky and K, are regarded to be the same, if one can be moved
into the other, i.e., there is a (differentiable) family of knots
parametrized by [1,2] which has K; for t = 1 while K for t = 2.
(In this case K; and K> are called isotopic.)
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Knots and Reidemeister moves

Az example: the trefoil knot
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Knots and Reidemeister moves

Projections

We use planar projections of knots to study them. The strand
passing under at a crossing is interrupted, and with this convention
the projection determines the knot up to isotopy. (It is not hard to

see that any knot admits a projection with finitely many double
points.)
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Knots and Reidemeister moves

Reidemeister’'s theorem

Theorem (Reidemeister’s theorem)

Two projections correspond to isotopic knots if and only if the

projections can be connected by a finite sequence of modifications
Rl, R2 and R3.
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Knots and Reidemeister moves

An example: 3—colorability

Knot invariants can be defined from projections by showing that
the invariant does not change under the Reidemeister moves R;. An
example: 3—colorability.
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Knots and Reidemeister moves

An example: 3—colorability

Knot invariants can be defined from projections by showing that
the invariant does not change under the Reidemeister moves R;. An
example: 3—colorability.

Definition

A projection is called 3—colorable if we can color the arcs in the
projection with three colors R, B and G in such a way that every
color appears, and at a crossing either all three or exactly one color

is present.
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Knots and Reidemeister moves

The 3—colorable property

3—colorability is the property of the knot and is independent of the
chosen projection.
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Knots and Reidemeister moves

The trefoil knot is different from the unknot. (But this property
does not distinuish, for example, the trefoil from its mirror image.)

Andras Stipsicz i i : low dimensional topology and combinatori



Two fundamental concepts of knots

The genus of a knot

Fact (Seifert's Theorem)
Every knot in R3 is the boundary of an (orientable) surface.

A surface, in turn, can be characterized by the number of "holes’ it
has. This number is called the genus of the surface.
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Two fundamental concepts of knots

The genus

Definition
The genus of K is the minimum of the genera of surfaces having K
as boundary,

g(K)=min{g(F) | FC R}, OF =K}.
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Two fundamental concepts of knots

The genus

Definition
The genus of K is the minimum of the genera of surfaces having K
as boundary,

g(K)=min{g(F) | FC R}, OF =K}.

The genus g(K) can be viewed as a measure of complexity of K,
e.g., the trivial knot has genus 0, while the trefoil is of genus 1.
There are knots with arbitrarily large genus.
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Two fundamental concepts of knots

Fibered knots

Definition
A knot K is called fibered if its complement can be presented as a
family of surfaces, more precisely there is a map

$: S - K — St

such that for each t € S! the fiber ¢~1(t) is homeomorphic to a
fixed (non—compact) 2-dimensional surface. (Informally, these
knots are built from 'lower dimensional pieces’.)
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The Alexander polynomial

The Alexander polynomial

Suppose that V is a given projection of the knot K. Let Cr(V)
denote the set of crossings in the projection and Dy(V/) the set of
domains (i.e. the connected components of the complement of the
projection). Let us choose a distinguished arc (marked with an X)
and let D(V) denote those domains which are disjoint from the
marked arc.
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The Alexander polynomial

The Alexander polynomial

Suppose that V is a given projection of the knot K. Let Cr(V)
denote the set of crossings in the projection and Dy(V/) the set of
domains (i.e. the connected components of the complement of the
projection). Let us choose a distinguished arc (marked with an X)
and let D(V) denote those domains which are disjoint from the
marked arc.

Definition

A bijection
o: Cr(V)— D(V)

is called a Kauffman state if for all c; € Cr(V') we have ¢; € o(c;).
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The Alexander polynomial

An example

The usual projection of the trefoil knot admits three Kauffman
states, indicated by the red, green and blue dots on the diagram.
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The Alexander polynomial

Let us fix an oriented, marked projection of a knot K and consider
a Kauffman state 0. Let

Mo)= 3 M(o(a))

ceCr(V)
and
Se)= > S(o(c)),
ceCr(V)
where

N RN N

M: 0>/ o 0 0 S: 0/ o NG

1/2\ e l 0\ o
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The Alexander polynomial

Define

oeKauff (V)
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The Alexander polynomial

Define

Ax(t)= > (-1)5@M) ¢ Z[172 ¢2].
oeKauff (V)

The Alexander polynomial Ak(t) is an invariant of the knot.

(Idea of the proof: show that the quantity does not change under
the Reidemeister moves Ry, R», R3. To achieve this, find convenient
correspondences between Kauffman states before and after the
moves.)
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The Alexander polynomial

Example: the trefoil knot

S(R) =0, M(R) = —1;S(G) = 2, M(G) = 1;S(B) = 1, M(B) = 0

The Alexander polynomial is therefore equal to t — 1 4 t1.
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The Alexander polynomial

Example: the trefoil knot

S(R)=0,M(R) =-1;5(G) =2,M(G)=1;5(B) =1,M(B) =0
The Alexander polynomial is therefore equal to t — 1 4 t1.

For the mirror knot we have (S, M) = (0,1),(—2,—1),(—1,0),
hence the Alexander polynomial will be the same. (This is true for
any knot and its mirror.)
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The Alexander polynomial

An important theorem

(Theoremn |

The Alexander polynomial Ak (t) of a knot K satisfies
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The Alexander polynomial

An important theorem

(Theoremn |

The Alexander polynomial Ak (t) of a knot K satisfies
o Ax(t) = Ak(t™h), and so Ak(t) =ap+ > " ai(t +t77)
(an = 0)
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The Alexander polynomial

An important theorem

(Theoremn |

The Alexander polynomial Ak (t) of a knot K satisfies
o Ax(t) = Ak(t™h), and so Ak(t) =ap+ > " ai(t +t77)
(an #0)
e n < g(K)
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The Alexander polynomial

An important theorem

The Alexander polynomial Ak (t) of a knot K satisfies
o Ax(t) = Ak(t™h), and so Ak(t) =ap+ > " ai(t +t77)
(an #0)
e n < g(K)
o for a fibered knot K we have n = g(K) and a, = +1.
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The Alexander polynomial

An example for a non—fibered knot

For nodd A1, = ”THt —n+ %lt_l, hence T, is not fibered once
n > 1. (Here n indicates n full left twists; for n = 1 the knot T7 is
the trefoil knot, which is fibered.)
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The Alexander polynomial

An example for a non—fibered knot

For nodd Ar, = ”THt —n+ %lt_l, hence T, is not fibered once
n > 1. (Here n indicates n full left twists; for n = 1 the knot T7 is
the trefoil knot, which is fibered.)

Ap(pgr) = Dt —2D + 1+ Dt1, where
D=ab+ac+bc+a+b+c+1and
p=2a+1,g=2b+1,r=2c+1.
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The Alexander polynomial

An example for a non—fibered knot

For nodd Ar, = ”THt —n+ %lt_l, hence T, is not fibered once
n > 1. (Here n indicates n full left twists; for n = 1 the knot T7 is
the trefoil knot, which is fibered.)

Ap(pgr) = Dt —2D + 1+ Dt1, where
D=ab+ac+bc+a+b+c+1and
p=2a+1,g=2b+1,r=2c+1.

E.g. for the pretzel knot K = P(—3,5,7) we have Ak(t) =1,
although the knot is not trivial.

)
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Floer homologies

Chain complexes

Suppose that C; (i =0,...,n+ 1) are given vector spaces and
Oi: Ci — Cj_1 linear maps. (Suppose that
dim Co =dim Cn+1 = 0)

Definition

The pair (C;, 0;) is a chain complex if 0j o 0j11 = 0 (that is,

im Oj41 < ker ;) for all i =1,...,n. The factor

H; = ker 0; /imd;1 is called the ith homology group of the chain
complex.
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Floer homologies

A simple identity
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Floer homologies

A simple identity

1

D (-1 dim G =Y (~1)/ dim H;

(For the chain complex 0 — G LA C> — 0 this statement reduces
to dim Hy — dim H; = dim cokerf — dimker f =

dim G — dimimf — dimker f = dim G, — dim (i, called the
homomorphism theorem in basic linear algebra.)
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Floer homologies

The generators

Let Cy4(K,s) denote the Z; vector space generated by the
Kauffman states o with M(0) = d and S(0) = s.

Next we would like to define a chain complex (C4(K,s),04(K,s))a
for every fixed s.
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Floer homologies

The generators

Let Cy4(K,s) denote the Z; vector space generated by the
Kauffman states o with M(0) = d and S(0) = s.

Next we would like to define a chain complex (C4(K,s),04(K,s))a
for every fixed s.

Since 3_(—1)?dim C4(K,s) = as (the st coefficient of the
Alexander polynomial), therefore for any boundary map we will have

> (1) dim Hy(K, s) = as.
d

Of course, the homology groups will be knot invariants only for
suitably chosen boundary maps.
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Floer homologies

To this end, we will need an alternative description of the Kauffman
states.
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Floer homologies

To this end, we will need an alternative description of the Kauffman
states.

Suppose that X is the boundary of the tubular neighourhood of the
projection in the 3—space. (For the trefoil knot, for example, this is
a surface of genus 4.) Let the conturs of the ‘inner’ domains be
called the a—curves. If the projection has k double points, then
there are k + 1 such curves. At a crossing the diagram shows our
choice of a f—curve. In addition, at the distinguished edge we add
one more (3—curve, again as instructed by the diagram.
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Floer homologies

-

/A
/Y%
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Floer homologies
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Floer homologies

Obviously a1 X ... X ap CL X ...x X =1X" and similarly for the
(B—curves. The order of the curves is based on a choice — choose
therefore the tori in the 'symmetric power’ Sym”(X), where we
consider unordered n—tuples of points of X.

Result: T, Ts C Sym"(X) n-dimensional tori (n" powers of the
circle) in the 2n—dimensional space Sym"(X).
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Floer homologies

The Kauffman states of the projection are in 1-1 correspondence
with the intersection points T, N Tg.

Idea: an element of T, N Ty is an n-tuple {xi,...,x,} for which
Xj € aj N Br(jy for some permutation 7. We do not have a choice
on the J—circle near the distinguished edge, and on all other
(B—circles the choice of the a—intersection specifies a quadrant, and
therefore a Kauffman state.
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Floer homologies

Let us fix two points w and v on the two sides of the S—curve near
the distiguished edge.

If we pass from w to v in the complement of the a—curves (simply
cross the 3 near the distiguished edge), while from v to w in the
complement of the (3’s, we recover the knot K we started our
procedure with.
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Floer homologies
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Floer homologies
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Floer homologies

The differential

Recall that we are looking for a linear map
ad = ad(K7S): Cd(K,S) - Cd_l(K,S)

where C4(K,s) is generated by the corresponding Kauffman states.
Fix generators x € Cy(K,s) and y € Cy_1(K,s); the matrix
element

Nxy = (Dax,y)

will be defined as follows. Consider x, y as elements of the
intersection T, NTg. Let S = {z € C| zZ < 1} be the unit circle.
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Floer homologies

Let ny, denote the (mod 2) number of holomorphic (complex
differentiable) maps u: S — Sym"(X) for which

o u({z]zz=1,Re(z) <0}) C Ty
° ({z\zz—l Re(z) > 0}) C T,
u(i) =

=y
If V, = {v} x Sym""1(X), then u(S) NV, =0
If Vyy = {w} x Sym""}(X), then u(S)NV,, =0

e © ¢ ¢
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Floer homologies

Sym
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Floer homologies

Some important theorems

The resulting homology theory: the knot Floer homology of K.
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Floer homologies

Some important theorems

The resulting homology theory: the knot Floer homology of K.
Theorem (Ozsvath—Szabo 2003-2005, Yi Ni, Juhasz)

@ The homology Hy4(K,s) of the resulting chain complex is an
invariant of the knot (so is independent of the chosen
projection).
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Floer homologies

Some important theorems

The resulting homology theory: the knot Floer homology of K.
Theorem (Ozsvath—Szabo 2003-2005, Yi Ni, Juhasz)

@ The homology Hy4(K,s) of the resulting chain complex is an
invariant of the knot (so is independent of the chosen
projection).

o Y (-1)¥dim Hy(K,s) = as, and Hy(K,s) is isomorphic to
Hd—2s(K7 _5)'
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Floer homologies

Some important theorems

The resulting homology theory: the knot Floer homology of K.
Theorem (Ozsvath—Szabo 2003-2005, Yi Ni, Juhasz)

@ The homology Hy4(K,s) of the resulting chain complex is an
invariant of the knot (so is independent of the chosen
projection).

o Y (-1)¥dim Hy(K,s) = as, and Hy(K,s) is isomorphic to
Hd—2s(K7 _5)'

g(K) =max{s | Hy(K,s) #0 for some d}
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Floer homologies

Some important theorems

The resulting homology theory: the knot Floer homology of K.
Theorem (Ozsvath—Szabo 2003-2005, Yi Ni, Juhasz)

@ The homology Hy4(K,s) of the resulting chain complex is an
invariant of the knot (so is independent of the chosen
projection).

o Y (-1)¥dim Hy(K,s) = as, and Hy(K,s) is isomorphic to
Hd—2s(K7 _5)'

g(K) =max{s | Hy(K,s) #0 for some d}

@ The knot K is fibered if and only if ), Hq(K, g(K)) = Z>,
that is, for some d the group is isomorphic to Z,, and vanishes
for all other d’s (with s = g(K)).

.
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Floer homologies

Some important theorems

The resulting homology theory: the knot Floer homology of K.
Theorem (Ozsvath—Szabo 2003-2005, Yi Ni, Juhasz)

@ The homology Hy4(K,s) of the resulting chain complex is an
invariant of the knot (so is independent of the chosen
projection).

o Y (-1)¥dim Hy(K,s) = as, and Hy(K,s) is isomorphic to
Hd—2s(K7 _5)'

g(K) =max{s | Hy(K,s) #0 for some d}

@ The knot K is fibered if and only if ), Hq(K, g(K)) = Z>,
that is, for some d the group is isomorphic to Z,, and vanishes
for all other d’s (with s = g(K)).

.
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Floer homologies

An example

For the two trefoils, with the standard three—crossing projections,
simply from the gradings of the Kauffman states the differential
vanishes (for any fixed s there is a single d with nontrivial
Cy(K,s)). Therefore:

H0(87 _1) = HI(B7O) = H2(B7 1) =12,

H_p(J,—1) = H_1(J,0) = Ho(J, 1) = Z;

Knot invariants: low dimensional topology and combinatori
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Combinatorial methods

Results

The proofs of the theorems above require deep complex (and
almost—complex) geometry, resting on results of Gromov (1985)
and Floer (1988) (who introduced Floer homology, aka Lagrangian
intersection homology).
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Combinatorial methods

Results

The proofs of the theorems above require deep complex (and
almost—complex) geometry, resting on results of Gromov (1985)
and Floer (1988) (who introduced Floer homology, aka Lagrangian
intersection homology).

Theorem (Manolescu-Ozsvath-Sarkar, and independently

Ozsvath-Stipsicz-Szab6 and Ozsvath-Szabd)

The homology groups Hy(K,s) can be computed by purely
combinatorial means.
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Combinatorial methods

Results

The proofs of the theorems above require deep complex (and
almost—complex) geometry, resting on results of Gromov (1985)
and Floer (1988) (who introduced Floer homology, aka Lagrangian
intersection homology).

Theorem (Manolescu-Ozsvath-Sarkar, and independently

Ozsvath-Stipsicz-Szab6 and Ozsvath-Szabd)

The homology groups Hy(K,s) can be computed by purely
combinatorial means.

Ozsvath-Stipsicz-Szabé and Ozsvath-Szabé: extend the theory to
singular knots (knots in R® with transverse self-intersections).
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Combinatorial methods

Results

The proofs of the theorems above require deep complex (and
almost—complex) geometry, resting on results of Gromov (1985)
and Floer (1988) (who introduced Floer homology, aka Lagrangian
intersection homology).

Theorem (Manolescu-Ozsvath-Sarkar, and independently

Ozsvath-Stipsicz-Szab6 and Ozsvath-Szabd)

The homology groups Hy(K,s) can be computed by purely
combinatorial means.

Ozsvath-Stipsicz-Szabé and Ozsvath-Szabé: extend the theory to
singular knots (knots in R® with transverse self-intersections).
Manolescu-Ozsvath-Sarkar: grid diagrams.
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Combinatorial methods

Grid diagrams

Observation: every knot projection can be slightly modified to have
only horizontal and vertical segments and such that the vertical is
always over the horizontal. Such a diagram, in turn can be depicted

by an n x n grid.
S Al
S el

o

Q
<
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Combinatorial methods

The combinatorial complex

Identify bottom and top, and right and left edges, and recover the
knot on the resulting torus.
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Combinatorial methods

The combinatorial complex

Identify bottom and top, and right and left edges, and recover the
knot on the resulting torus.

The idea is then a simple adaptation of the previous definitions:
regard the horizontal lines as a— while the vertical ones as
B—curves. With this convention, elements of T, N T3 correspond
to permutations of {1,...,n} by assigning to / the index of the
[B—curve containing x; € «;.
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Combinatorial methods

Define n,, = 0 if the two permutations do not differ by a
transposition.

If the difference of x and y is a transposition, then they determine
four rectangles in the grid. Two of them are from x to y and the
other two are from y to x (depending on the induced orientation of
the a—curves). Now define n,, as the mod 2 number of empty
rectangles from x to y. (The degrees d and s admit a similar,
slightly more complicated definition.)
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Combinatorial methods

Andras Stipsicz Knot invariants: low dimensional topology and combinatori



Combinatorial methods
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Combinatorial methods
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Combinatorial methods
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Combinatorial methods

Theorem (Manolescu-Ozsvath-Sarkar)

The homology of the resulting chain complex is isomorphic to the
vector space Hy(K,s) ® (Z» @ Z»)®("~1), consequently determines
the knot Floer homology of the knot K.
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Combinatorial methods

Theorem (Manolescu-Ozsvath-Sarkar)

The homology of the resulting chain complex is isomorphic to the
vector space Hy(K,s) ® (Z» @ Z»)®("~1), consequently determines
the knot Floer homology of the knot K.

Theorem (Manolescu-Ozsvath-Szabé-Thurston)

The invariance of this homology theory (i.e. the independece of the
chosen grid presentation) can be shown by purely combinatorial
means.
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Combinatorial methods

Theorem (Manolescu-Ozsvath-Sarkar)

The homology of the resulting chain complex is isomorphic to the
vector space Hy(K,s) ® (Z» @ Z»)®("~1), consequently determines
the knot Floer homology of the knot K.

Theorem (Manolescu-Ozsvath-Szabé-Thurston)

The invariance of this homology theory (i.e. the independece of the
chosen grid presentation) can be shown by purely combinatorial
means.

The proof rests on a result of Cromwell, determining moves on grid
diagrams which connect any two grid presentations of the same
knot (adapting the Reidemeister moves to the current situation).
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Combinatorial methods

Further results

Further possible generalizations/modifications/variatons:

@ Instead of Zy—coefficients we use Z—coefficients. (This
requires orientation conventions, which has been worked out
by Manolescu-Ozsvath-Szabé-Thurston.)

Andras Stipsicz Knot invariants: low dimensional topology and combinatori



Combinatorial methods

Further results

Further possible generalizations/modifications/variatons:

@ Instead of Zy—coefficients we use Z—coefficients. (This
requires orientation conventions, which has been worked out
by Manolescu-Ozsvath-Szabé-Thurston.)

@ Instead of considering knots in R3, take embedded images of
S into arbitrary 3-manifolds. The holomorphic theory has
been worked out by Ozsvath—-Szabé and Rasmussen
(independently). When considering the trivial knot (the
bounding circle of an embedded disk) we get invariants of
3-manifolds, the Ozsvath-Szabé homology groups.

Andras Stipsicz Knot invariants: low dimensional topology and combinatori



Combinatorial methods

Further results

Further possible generalizations/modifications/variatons:

@ Instead of Zy—coefficients we use Z—coefficients. (This
requires orientation conventions, which has been worked out
by Manolescu-Ozsvath-Szabé-Thurston.)

@ Instead of considering knots in R3, take embedded images of
S into arbitrary 3-manifolds. The holomorphic theory has
been worked out by Ozsvath—-Szabé and Rasmussen
(independently). When considering the trivial knot (the
bounding circle of an embedded disk) we get invariants of
3-manifolds, the Ozsvath-Szabé homology groups.
Sarkar-Wang (2006): The invariant can be computed
combinatorially.

Ozsvath—Stipsicz—Szab6 (2009): The theory admits a purely
combinatorial definition.
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Combinatorial methods

@ Instead of Z, vector spaces, consider modules over the
polynomial ring Z5[U] (or over Z[U]). Using this more general
theory (from which setting U = 0 the old theory can be
computed), invariants of 4-dimensional manifolds can be
defined (Ozsvath-Szabéd), which seems to carry the same
amount of differential topological information as the
Seiberg—Witten invariants. These more refined invariants and
the 4—dimensional invariants cannot be computed
combinatorially.
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Combinatorial methods

@ Instead of Z, vector spaces, consider modules over the
polynomial ring Z5[U] (or over Z[U]). Using this more general
theory (from which setting U = 0 the old theory can be
computed), invariants of 4-dimensional manifolds can be
defined (Ozsvath-Szabéd), which seems to carry the same
amount of differential topological information as the
Seiberg—Witten invariants. These more refined invariants and
the 4—dimensional invariants cannot be computed
combinatorially.

@ The invariants can be used very effectively in studying contact
3-manifolds and Legendrian knots in contact 3—-manifolds.
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Combinatorial methods

An additional result

Theorem (Ozsvath—Stipsicz-Szabo, 2008)

The theories over the truncated polynomial rings Z,[U]/(U? = 0)
and Z,[U]/(U® = 0) can be computed combinatorially.
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