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KnotsTwo fundamental onepts of knotsThe Alexander polynomialFloer homologiesCombinatorial methods Knots and Reidemeister movesDe�nitions
Di�erentiable embeddings of S1 into R3 are alled knots. The twoknots K1 and K2 are regarded to be the same, if one an be movedinto the other, i.e., there is a (di�erentiable) family of knotsparametrized by [1, 2] whih has K1 for t = 1 while K2 for t = 2.(In this ase K1 and K2 are alled isotopi.)
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KnotsTwo fundamental onepts of knotsThe Alexander polynomialFloer homologiesCombinatorial methods Knots and Reidemeister movesAz example: the trefoil knot
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KnotsTwo fundamental onepts of knotsThe Alexander polynomialFloer homologiesCombinatorial methods Knots and Reidemeister movesProjetionsWe use planar projetions of knots to study them. The strandpassing under at a rossing is interrupted, and with this onventionthe projetion determines the knot up to isotopy. (It is not hard tosee that any knot admits a projetion with �nitely many doublepoints.)
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KnotsTwo fundamental onepts of knotsThe Alexander polynomialFloer homologiesCombinatorial methods Knots and Reidemeister movesReidemeister's theoremTheorem (Reidemeister's theorem)Two projetions orrespond to isotopi knots if and only if theprojetions an be onneted by a �nite sequene of modi�ationsR1,R2 and R3.
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KnotsTwo fundamental onepts of knotsThe Alexander polynomialFloer homologiesCombinatorial methods Knots and Reidemeister movesAn example: 3�olorabilityKnot invariants an be de�ned from projetions by showing thatthe invariant does not hange under the Reidemeister moves Ri . Anexample: 3�olorability.De�nitionA projetion is alled 3�olorable if we an olor the ars in theprojetion with three olors R, B and G in suh a way that everyolor appears, and at a rossing either all three or exatly one oloris present.
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KnotsTwo fundamental onepts of knotsThe Alexander polynomialFloer homologiesCombinatorial methods Knots and Reidemeister movesThe 3�olorable propertyTheorem3�olorability is the property of the knot and is independent of thehosen projetion.
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CorollaryThe trefoil knot is di�erent from the unknot. (But this propertydoes not distinuish, for example, the trefoil from its mirror image.)
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KnotsTwo fundamental onepts of knotsThe Alexander polynomialFloer homologiesCombinatorial methodsThe genus of a knot
Fat (Seifert's Theorem)Every knot in R3 is the boundary of an (orientable) surfae.A surfae, in turn, an be haraterized by the number of 'holes' ithas. This number is alled the genus of the surfae.
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KnotsTwo fundamental onepts of knotsThe Alexander polynomialFloer homologiesCombinatorial methodsThe genusDe�nitionThe genus of K is the minimum of the genera of surfaes having Kas boundary, g(K ) = min{g(F ) | F ⊂ R3, ∂F = K}.The genus g(K ) an be viewed as a measure of omplexity of K ,e.g., the trivial knot has genus 0, while the trefoil is of genus 1.There are knots with arbitrarily large genus.András Stipsiz Knot invariants: low dimensional topology and ombinatoris
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KnotsTwo fundamental onepts of knotsThe Alexander polynomialFloer homologiesCombinatorial methodsFibered knotsDe�nitionA knot K is alled �bered if its omplement an be presented as afamily of surfaes, more preisely there is a map
φ : S3 − K → S1suh that for eah t ∈ S1 the �ber φ−1(t) is homeomorphi to a�xed (non�ompat) 2�dimensional surfae. (Informally, theseknots are built from 'lower dimensional piees'.)András Stipsiz Knot invariants: low dimensional topology and ombinatoris



KnotsTwo fundamental onepts of knotsThe Alexander polynomialFloer homologiesCombinatorial methodsThe Alexander polynomialSuppose that V is a given projetion of the knot K . Let Cr(V )denote the set of rossings in the projetion and D0(V ) the set ofdomains (i.e. the onneted omponents of the omplement of theprojetion). Let us hoose a distinguished ar (marked with an X)and let D(V ) denote those domains whih are disjoint from themarked ar.De�nitionA bijetion
σ : Cr(V ) → D(V )is alled a Kau�man state if for all i ∈ Cr(V ) we have i ∈ σ(i ).András Stipsiz Knot invariants: low dimensional topology and ombinatoris
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KnotsTwo fundamental onepts of knotsThe Alexander polynomialFloer homologiesCombinatorial methodsAn exampleThe usual projetion of the trefoil knot admits three Kau�manstates, indiated by the red, green and blue dots on the diagram.
XAndrás Stipsiz Knot invariants: low dimensional topology and ombinatoris



KnotsTwo fundamental onepts of knotsThe Alexander polynomialFloer homologiesCombinatorial methodsLet us �x an oriented, marked projetion of a knot K and onsidera Kau�man state σ. LetM(σ) =
∑i∈Cr(V )

M(σ(i ))and S(σ) =
∑i∈Cr(V )

S(σ(i )),where
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KnotsTwo fundamental onepts of knotsThe Alexander polynomialFloer homologiesCombinatorial methodsDe�ne
∆K (t) =

∑

σ∈Kau� (V )

(−1)S(σ)tM(σ) ∈ Z[t− 12 , t 12 ].TheoremThe Alexander polynomial ∆K (t) is an invariant of the knot.(Idea of the proof: show that the quantity does not hange underthe Reidemeister moves R1,R2,R3. To ahieve this, �nd onvenientorrespondenes between Kau�man states before and after themoves.) András Stipsiz Knot invariants: low dimensional topology and ombinatoris
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KnotsTwo fundamental onepts of knotsThe Alexander polynomialFloer homologiesCombinatorial methodsExample: the trefoil knotS(R) = 0,M(R) = −1;S(G ) = 2,M(G ) = 1;S(B) = 1,M(B) = 0The Alexander polynomial is therefore equal to t − 1 + t−1.For the mirror knot we have (S ,M) = (0, 1), (−2,−1), (−1, 0),hene the Alexander polynomial will be the same. (This is true forany knot and its mirror.)
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KnotsTwo fundamental onepts of knotsThe Alexander polynomialFloer homologiesCombinatorial methodsAn important theorem
TheoremThe Alexander polynomial ∆K (t) of a knot K satis�es

∆K (t) = ∆K (t−1), and so ∆K (t) = a0 +
∑ni=1 ai (t i + t−i)(an 6= 0)n ≤ g(K )for a �bered knot K we have n = g(K ) and an = ±1.
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KnotsTwo fundamental onepts of knotsThe Alexander polynomialFloer homologiesCombinatorial methodsAn example for a non��bered knotFor n odd ∆Tn = n+12 t − n + n+12 t−1, hene Tn is not �bered onen > 1. (Here n indiates n full left twists; for n = 1 the knot T1 isthe trefoil knot, whih is �bered.)
∆P(p,q,r) = Dt − 2D + 1 + Dt−1, whereD = ab + a + b + a + b +  + 1 andp = 2a + 1, q = 2b + 1, r = 2 + 1.E.g. for the pretzel knot K = P(−3, 5, 7) we have ∆K (t) = 1,although the knot is not trivial.
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KnotsTwo fundamental onepts of knotsThe Alexander polynomialFloer homologiesCombinatorial methodsChain omplexesSuppose that Ci (i = 0, . . . , n + 1) are given vetor spaes and
∂i : Ci → Ci−1 linear maps. (Suppose thatdimC0 = dimCn+1 = 0.)De�nitionThe pair (Ci , ∂i ) is a hain omplex if ∂i ◦ ∂i+1 = 0 (that is,im ∂i+1 ≤ ker ∂i) for all i = 1, . . . , n. The fatorHi = ker ∂i/im∂i+1 is alled the i th homology group of the hainomplex.
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KnotsTwo fundamental onepts of knotsThe Alexander polynomialFloer homologiesCombinatorial methodsA simple identity
Fat

∑i (−1)i dimCi =
∑i (−1)i dimHi(For the hain omplex 0 → C1 f

→ C2 → 0 this statement reduesto dimH2 − dimH1 = dim okerf − dim ker f =dimC2 − dim imf − dimker f = dimC2 − dimC1, alled thehomomorphism theorem in basi linear algebra.)
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KnotsTwo fundamental onepts of knotsThe Alexander polynomialFloer homologiesCombinatorial methodsThe generatorsLet Cd (K , s) denote the Z2 vetor spae generated by theKau�man states σ with M(σ) = d and S(σ) = s.Next we would like to de�ne a hain omplex (Cd (K , s), ∂d (K , s))dfor every �xed s.FatSine ∑
(−1)d dimCd(K , s) = as (the sth oe�ient of theAlexander polynomial), therefore for any boundary map we will have

∑d (−1)d dimHd (K , s) = as .Of ourse, the homology groups will be knot invariants only forsuitably hosen boundary maps.András Stipsiz Knot invariants: low dimensional topology and ombinatoris
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KnotsTwo fundamental onepts of knotsThe Alexander polynomialFloer homologiesCombinatorial methodsTo this end, we will need an alternative desription of the Kau�manstates.Suppose that Σ is the boundary of the tubular neighourhood of theprojetion in the 3�spae. (For the trefoil knot, for example, this isa surfae of genus 4.) Let the onturs of the 'inner' domains bealled the α�urves. If the projetion has k double points, thenthere are k + 1 suh urves. At a rossing the diagram shows ourhoie of a β�urve. In addition, at the distinguished edge we addone more β�urve, again as instruted by the diagram.
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Obviously α1 × . . . × αn ⊂ Σ × . . . × Σ = Σn, and similarly for the
β�urves. The order of the urves is based on a hoie � hoosetherefore the tori in the 'symmetri power' Symn(Σ), where weonsider unordered n�tuples of points of Σ.Result: Tα,Tβ ⊂ Symn(Σ) n�dimensional tori (nth powers of theirle) in the 2n�dimensional spae Symn(Σ).

András Stipsiz Knot invariants: low dimensional topology and ombinatoris



KnotsTwo fundamental onepts of knotsThe Alexander polynomialFloer homologiesCombinatorial methods
FatThe Kau�man states of the projetion are in 1-1 orrespondenewith the intersetion points Tα ∩Tβ.Idea: an element of Tα ∩Tβ is an n�tuple {x1, . . . , xn} for whihxi ∈ αi ∩ βπ(i) for some permutation π. We do not have a hoieon the β�irle near the distinguished edge, and on all other
β�irles the hoie of the α�intersetion spei�es a quadrant, andtherefore a Kau�man state.
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Let us �x two points w and v on the two sides of the β�urve nearthe distiguished edge.FatIf we pass from w to v in the omplement of the α�urves (simplyross the β near the distiguished edge), while from v to w in theomplement of the β's, we reover the knot K we started ourproedure with.
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KnotsTwo fundamental onepts of knotsThe Alexander polynomialFloer homologiesCombinatorial methodsThe di�erentialReall that we are looking for a linear map
∂d = ∂d (K , s) : Cd (K , s) → Cd−1(K , s)where Cd (K , s) is generated by the orresponding Kau�man states.Fix generators x ∈ Cd (K , s) and y ∈ Cd−1(K , s); the matrixelement nxy = 〈∂dx , y〉will be de�ned as follows. Consider x , y as elements of theintersetion Tα ∩Tβ. Let S = {z ∈ C | zz ≤ 1} be the unit irle.András Stipsiz Knot invariants: low dimensional topology and ombinatoris



KnotsTwo fundamental onepts of knotsThe Alexander polynomialFloer homologiesCombinatorial methodsLet nxy denote the (mod 2) number of holomorphi (omplexdi�erentiable) maps u : S → Symn(Σ) for whihu({z | zz = 1,Re(z) < 0}) ⊂ Tβu({z | zz = 1,Re(z) > 0}) ⊂ Tαu(i) = xu(−i) = yIf Vv = {v} × Symn−1(Σ), then u(S) ∩ Vv = ∅If Vw = {w} × Symn−1(Σ), then u(S) ∩ Vw = ∅
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KnotsTwo fundamental onepts of knotsThe Alexander polynomialFloer homologiesCombinatorial methodsSome important theoremsThe resulting homology theory: the knot Floer homology of K .Theorem (Ozsváth�Szabó 2003-2005, Yi Ni, Juhász)The homology Hd (K , s) of the resulting hain omplex is aninvariant of the knot (so is independent of the hosenprojetion).
∑d (−1)d dimHd (K , s) = as , and Hd (K , s) is isomorphi toHd−2s (K ,−s).g(K ) = max{s | Hd (K , s) 6= 0 for some d}The knot K is �bered if and only if ∑d Hd (K , g(K )) = Z2,that is, for some d the group is isomorphi to Z2, and vanishesfor all other d 's (with s = g(K )).Problem: omputability.András Stipsiz Knot invariants: low dimensional topology and ombinatoris
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KnotsTwo fundamental onepts of knotsThe Alexander polynomialFloer homologiesCombinatorial methodsAn exampleFor the two trefoils, with the standard three�rossing projetions,simply from the gradings of the Kau�man states the di�erentialvanishes (for any �xed s there is a single d with nontrivialCd (K , s)). Therefore:H0(B ,−1) = H1(B , 0) = H2(B , 1) = Z2H−2(J,−1) = H−1(J, 0) = H0(J, 1) = Z2
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KnotsTwo fundamental onepts of knotsThe Alexander polynomialFloer homologiesCombinatorial methodsResultsThe proofs of the theorems above require deep omplex (andalmost�omplex) geometry, resting on results of Gromov (1985)and Floer (1988) (who introdued Floer homology, aka Lagrangianintersetion homology).Theorem (Manolesu-Ozsváth-Sarkar, and independentlyOzsváth-Stipsiz-Szabó and Ozsváth-Szabó)The homology groups Hd (K , s) an be omputed by purelyombinatorial means.Ozsváth-Stipsiz-Szabó and Ozsváth-Szabó: extend the theory tosingular knots (knots in R3 with transverse self�intersetions).Manolesu-Ozsváth-Sarkar: grid diagrams.András Stipsiz Knot invariants: low dimensional topology and ombinatoris
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KnotsTwo fundamental onepts of knotsThe Alexander polynomialFloer homologiesCombinatorial methodsGrid diagramsObservation: every knot projetion an be slightly modi�ed to haveonly horizontal and vertial segments and suh that the vertial isalways over the horizontal. Suh a diagram, in turn an be depitedby an n × n grid.
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KnotsTwo fundamental onepts of knotsThe Alexander polynomialFloer homologiesCombinatorial methodsThe ombinatorial omplex
Identify bottom and top, and right and left edges, and reover theknot on the resulting torus.The idea is then a simple adaptation of the previous de�nitions:regard the horizontal lines as α� while the vertial ones as
β�urves. With this onvention, elements of Tα ∩Tβ orrespondto permutations of {1, . . . , n} by assigning to i the index of the
β�urve ontaining xi ∈ αi .
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KnotsTwo fundamental onepts of knotsThe Alexander polynomialFloer homologiesCombinatorial methods
De�ne nxy = 0 if the two permutations do not di�er by atransposition.If the di�erene of x and y is a transposition, then they determinefour retangles in the grid. Two of them are from x to y and theother two are from y to x (depending on the indued orientation ofthe α�urves). Now de�ne nxy as the mod 2 number of emptyretangles from x to y . (The degrees d and s admit a similar,slightly more ompliated de�nition.)
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KnotsTwo fundamental onepts of knotsThe Alexander polynomialFloer homologiesCombinatorial methodsTheorem (Manolesu-Ozsváth-Sarkar)The homology of the resulting hain omplex is isomorphi to thevetor spae Hd (K , s) ⊗ (Z2 ⊕ Z2)⊗(n−1), onsequently determinesthe knot Floer homology of the knot K.Theorem (Manolesu-Ozsváth-Szabó-Thurston)The invariane of this homology theory (i.e. the independee of thehosen grid presentation) an be shown by purely ombinatorialmeans.The proof rests on a result of Cromwell, determining moves on griddiagrams whih onnet any two grid presentations of the sameknot (adapting the Reidemeister moves to the urrent situation).András Stipsiz Knot invariants: low dimensional topology and ombinatoris
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KnotsTwo fundamental onepts of knotsThe Alexander polynomialFloer homologiesCombinatorial methodsFurther resultsFurther possible generalizations/modi�ations/variatons:Instead of Z2�oe�ients we use Z�oe�ients. (Thisrequires orientation onventions, whih has been worked outby Manolesu-Ozsváth-Szabó-Thurston.)Instead of onsidering knots in R3, take embedded images ofS1 into arbitrary 3�manifolds. The holomorphi theory hasbeen worked out by Ozsváth�Szabó and Rasmussen(independently). When onsidering the trivial knot (thebounding irle of an embedded disk) we get invariants of3�manifolds, the Ozsváth�Szabó homology groups.Sarkar�Wang (2006): The invariant an be omputedombinatorially.Ozsváth�Stipsiz�Szabó (2009): The theory admits a purelyombinatorial de�nition.András Stipsiz Knot invariants: low dimensional topology and ombinatoris
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KnotsTwo fundamental onepts of knotsThe Alexander polynomialFloer homologiesCombinatorial methodsInstead of Z2 vetor spaes, onsider modules over thepolynomial ring Z2[U] (or over Z[U]). Using this more generaltheory (from whih setting U = 0 the old theory an beomputed), invariants of 4�dimensional manifolds an bede�ned (Ozsváth�Szabó), whih seems to arry the sameamount of di�erential topologial information as theSeiberg�Witten invariants. These more re�ned invariants andthe 4�dimensional invariants annot be omputedombinatorially.The invariants an be used very e�etively in studying ontat3�manifolds and Legendrian knots in ontat 3�manifolds.András Stipsiz Knot invariants: low dimensional topology and ombinatoris
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KnotsTwo fundamental onepts of knotsThe Alexander polynomialFloer homologiesCombinatorial methodsAn additional result
Theorem (Ozsváth�Stipsiz�Szabó, 2008)The theories over the trunated polynomial rings Z2[U]/(U2 = 0)and Z2[U]/(U3 = 0) an be omputed ombinatorially.
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