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Abstract

These are informal notes to my talks at the Lie algebras and moduli

spaces seminar of the Eötvös Loránd University of Budapest in March

2007. First, we review some standard facts and constructions about the

moduli space of solutions to Hitchin’s equations, then we outline Fourier

transformation for Higgs bundles on a curve of genus ≥ 1.

I would like to thank Zsolt Szilágyi for his help in typing this document.

1 Hitchin’s equations

Here we define the self-duality equations reduced to dimension 2 following [4].
Denote G = U(r) and let V be an U(r)-vector bundle over R4. Take a DÃ

G-connection on V and consider its curvature F (Ã) = D2
Ã
∈ Ω2(R4, u(r)).

Definition 1. The connection DÃ is self-dual (SD) if

∗F (Ã) = F (Ã), (SD)

where ∗ : Ω2(R4) → Ω2(R4) is the Hodge star operator.

Remark. We can consider the anti-self-dual theory by replacing equation (SD)

with

∗F (Ã) = −F (Ã). (ASD)

The theory we obtain is similar to the self-dual case.

We expand the equation (SD) in local coordinates. Let x1, x2, x3, x4 be
the canonical coordinates on R4 and v1, . . . , vr a trivialization of V . If DÃ =
d+

∑4
i=1Aidxi in this trivialization for matrices Ai ∈ Ω0(R4, u(r)) then F (Ã) =

1



∑
i<j Fijdxi∧dxj , with Fij =

[
∂

∂xi
+Ai,

∂
∂xj

+Aj

]
(i, j = 1, 2, 3, 4). With these

notations the equation (SD) expands to

F12 = F34

F13 = −F24 (SD)
F14 = F23

From now on we suppose that the matrices A1, A2, A3, A4 don’t depend on the
coordinates x3, x4. We define a G-connection DA = d + A := d + A1dx1 +
A2dx2 on V |R2 and denote by FA its curvature. Furthermore, we consider the
endomorphisms φ1 = A3, φ2 = A4 ∈ Ω0(R4, u(r)) called the real Higgs fields
and φ = φ1− iφ2 ∈ Ω0(R2, gl(r,C)) the complex Higgs field. We can rewrite the
equation (SD) in terms of the connection DA and the Higgs fields:

FA =
1
2
i[φ, φ∗] ∈ u(r)

0 =
[(

∂

∂x1
+A1

)
+ i

(
∂

∂x2
+A2

)
, φ

]
∈ gl(r,C).

The first equation is coordinate dependent (on one side there is a 2-form and
on the other side a 0-form). Therefore we introduce the notation Φ = 1

2φdz ∈
Ω1(R2gl(r,C)) to write the (SD) equations in coordinate independent form:

FA = − [Φ,Φ∗]

d0,1
A Φ = 0 (SD’)

The coordinate independent form allow us to investigate this equation on com-
plex curves.

2 Higgs-bundles and self-dual connections

2.1 Dolbeault-theory

From now on C is a complex curve over C (a Riemann-surface) and V is a
GL(r,C)-bundle over C.

Definition 2. A Higgs-bundle on V is a pair (∂̄E , θ) with ∂̄E : V → Ω0,1⊗C∞ V
a holomorphic structure on V and θ ∈ Ω1(C,End∂̄E (V )) an End(V )-valued

∂̄E -holomorphic 1-form (called Higgs-field).

Remark. If (DA,Φ) satiesfies Hitchin’s equations (SD’) then (D0,1
A ,Φ) is a

Higgs-bundle.

Let GC = Γ(C,GL(V )) be the group of complex gauge-transformations of
V , and if there is a Hermitian metric h on V then let G = Γ(C,U(V )) be the
unitary gauge-transformation group.
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Definition 3. The Higgs-bundle (∂̄E , θ) is said to be stable, if for any proper

θ-invariant subbundle E ′ one has the inequality of slopes

deg(E ′)
rk(E ′)

<
deg(E)
rk(E)

.

The Higgs-bundle is semistable if we only have ≤ in this inequality. It is

polystable if it is direct sum of stable Higgs-bundles with same slope.

Theorem 1. (Hitchin)

1. If (DA,Φ) is an irreducible solution of Hitchin’s equations (SD’), then

(D0,1
A ,Φ) is a stable Higgs-bundle.

2. If (∂̄E , θ) is a stable Higgs-bundle, then for every DA with D0,1
A = ∂̄E there

is a g ∈ GC such that g ·DA satisfies Hitchin’s equations. Moreover, g is

unique up to G transformations.

3. The previous constructions are inverse to each other up to G and GC trans-

formations.

Remark. 1. If DA satisfies Hitchin’s equations then so does h ·DA for every

h ∈ G. Hence uniqueness in the second statement can only be up to a G
transformation.

2. Since GL(r,C)/U(r) is isomorphic to the space of Hermitian metrics on

Cr, the second statement in the theorem can be reformulated as follows.

There is a unique metric h (up to C∗) on V such that ∂h + ∂̄E + θ +

θ∗ satisfies Hitchin’s equations, where ∂h + ∂̄E is the Chern-connection

corresponding to h and ∂̄E and θ∗ is the adjoint of θ with respect to h.

This metric h is called the Hermitian-Einstein metric.

3. If instead of GL(V ) and U(V ) we take SL(V ) and SU(V ) respectively,

then uniqueness of h is strict (not just up to C∗).

Corollary 1. There is a bijection between the following two sets

MDol :=

{
Stable Higgs-

bundles over C

}
/GC ↔

{
Solutions of Hitchin’s

equations on C

}
/G =: MHit.

Corollary 2. The moduli space of stable Higgs-bundles is a hyperKähler man-

ifold.
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Proof. Using the previous corollary it is enough to show that MHit is a hy-

perKähler manifold. Gauge-theory implies that the moduli space is a smooth

manifold away from points of a smaller dimensional set.

Let A be the affine space (over Ω0,1(C, gl(V ))) of (0, 1)-connections over V .

Moreover, let Ω be the affine space (over Ω1,0(C, gl(V )) ' Ω0,1(C, gl(V ))) of

Higgs-fields. Choose an arbitrary base point (∂̄E , θ) of A×Ω; then the tangent

space T(∂̄E ,θ)(A× Ω) ' T ∗Ω0,1(C, gl(V )) of A× Ω in this point is clearly a flat

hyperKähler space. Here, the Kähler metric is the L2-metric:

g ((ψ1, φ1), (ψ2, φ2)) = 2i
∫

C

tr(ψ∗1 ∧ ψ2 + φ∗1 ∧ φ2),

and the compex structures are given by:

I(ψ, φ) = (iψ, iφ)

J(ψ, φ) = (iφ∗,−iψ∗)

K(ψ, φ) = (−φ∗, ψ∗).

The gauge-group G acts on A × Ω preserving the hyperKähler structure. The

real and complex moment maps are given respectively by:

µR = FA + [Φ,Φ∗]

µC = D0,1
A Φ

Thus the space of solutions of Hitchin’s equations is the hyperKähler quotient

(µ−1
R (0) ∩ µ−1

C (0))/G = A× Ω////0G (for the hyperKähler quotient construction,

see the Appendix).

2.2 The abelian case

In this subsection we describe the Dolbeault moduli space in rank 1. For details,
see [2].

Let ∂̄E be a holomorphic structure on the trivial line bundle V over C. More-
over, let θ ∈ Ω1(C,End∂̄E (V )) ' Ω1(C) be a Higgs-field. By commutativity,
the gauge action by g ∈ GC = Ω0(C,GL(V )) = Ω0(C,C∗) is given by:

g · θ = g−1θg = θ

g · (∂̄E + ψ) = ∂̄E + (ψ + g−1∂̄g),

with ψ ∈ Ω0,1(C,C). Furthermore, since the rank is 1, every Higgs-bundle is
automatically stable.
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Proposition 1. If Jac(C) = H0,1(C)/H1(C,Z) denotes the Jacobian variety

of C, then MDol(C,U(1)) = T ∗ Jac(C).

Proof. {
Holomorphic

sturctures on V

}/
GC ' Ω0,1(C,C)/GC

0 × π0(GC)

'
(
Ω0,1(C,C)/∂̄Ω0(C,C)

)/
π0(GC) (*)

= H0,1(C,C)
/
π0(GC).

The (∗) holds because every g ∈ GC
0 can be writen as g = exp(f) and then

g · ∂̄E = ∂̄E + ∂̄f . Moreover, π0(GC) ' H1(C,Z) because of the exact sequence

C∞(C,C)
exp // C∞(C,C∗) π1 // H1(C,Z) .

Moreover, as we already remarked, Ω1,0(C) ' Ω0,1(C) and GC acts trivially on

Ω1,0(C,C). Hence

{(∂̄E , θ) : ∂̄Eθ = 0}
/
GC =

(
{∂̄E}/GC)

× {θ : ∂̄Eθ = 0} = T ∗ Jac(C).

3 Fourier-transform for Higgs-bundles over cur-

ves

Here, we are inspired by the article [1], but we proceed slightly differently. In
particular, we do not make use of the Abel-map.

Let C be a compact curve over C of genus g = g(C) ≥ 1. Since Jac(C) is
topologically a torus, it is paralellizable:

T ∗ Jac(C) = Jac(C)×H1(C,OC)∨

' Jac(C)×H0(C,Ω1).

Let (∂̄E , θ) be a stable degree 0 Higgs-bundle on C and (α, β) ∈ T ∗ Jac(C)
(here α ∈ Jac(C) ' Pic0(C), the holomorphic line bundle corresponding to α
is denoted by Lα, and β ∈ H0(C,Ω1)). We twist (E , θ) by (α, β):

(E , θ)(α,β) := (E ⊗ Lα, (θ − βId∂̄E )⊗ IdLα) =: (Eα, θβ).

Definition 4. Let Σ = {(x, (α, β)) ∈ C × T ∗ Jac(C) : det(θβ(x)) = 0} be the

spectral variety.
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Proposition 2. 1. dim Σ = 2g.

2. Σ contains entire fibers of the projection T ∗ Jac(C) 7→ H0(C,Ω1), i.e.

(x, (α, β)) ∈ Σ ⇔ (x, (α′, β)) ∈ Σ for any β ∈ H0(C,Ω1) and α, α′ ∈
Jac(C).

3. If (∂̄E , θ) is stable of degree 0, then the fibers of Σ for the second projection

π2 : C×T ∗ Jac(C) → T ∗ Jac(C) are finite for any (α, β) ∈ T ∗ Jac(C) and

#π−1
2 (α, β) ∩ Σ = (2g − 2)r (counted with multiplicity).

4. For the first projection π1 : C × T ∗ Jac(C) → C and for every x ∈ C we

have dimC(π−1
1 (x) ∩ Σ) = 2g − 1.

Proof. 1. Σ is defined by one non-trivial algebraic equation in the (2g + 1)-

dimensional variety C × T ∗ Jac(C).

2. Tensoring by IdLα
obviously doesn’t change the determinant.

3. The fiber Σ(α,β) = π−1
2 (α, β) ∩ Σ is by definition the set of points in C

where the determinant det(θβ) vanishes. Since θβ is a map from E to

E ⊗Ω1, it follows that its determinant is a map from det(E) to

det(E ⊗Ω1) = det(E)⊗ (Ω1)⊗r,

or in different terms a section of (Ω1)⊗r. It is not the zero-section, because

this would mean that E has a degree 0 invariant subbundle where θ would

agree with β, in contradiction with stability and the degree 0 condition.

Therefore, the section det(θβ) vanishes in exactly deg(Ω1)⊗r = r(2g − 2)

points (counted with multiplicity).

4. This follows from 1. and 3.

Let P be the pullback of the Poincaré bundle to C × T ∗ Jac(C), i.e. the
bundle whose fiber over C × {(α, β)} is Lα → C. Consider H0(C,Ω1) as the
affine part away from infinity in the projective space Pg = P(C ⊕H0(C,Ω1)).
Let (ζ : β) be coordinates in Pg, where ζ ∈ C and β ∈ H0(C,Ω1). Extend every
bundle by pull-back to the product C × Jac(C)× Pg. Define the sheaf-map on
C × Jac(C)× Pg:

Θ : π∗1E ⊗ P −→ π∗1E ⊗ P ⊗Ω1 ⊗OPg (1)
Θ(x,(α,(ζ:β))) = (ζθ(x)− β Id

E
)⊗ Id

Lα(x)
.
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Definition 5. The sheaf M := CokerΘ on C×Jac(C)×Pg is called the spectral

sheaf.

Proposition 3. 1. M is a coherent sheaf with support the compactification

of Σ in C × Jac(C) × Pg. (For simplicity, we continue to denote this

compactification by Σ.)

2. M = M0 ⊗ P, where M0 is the restriction of M to C × {0} ×H0(C,Ω1)

(i.e. if ι : {0} × H0(C,Ω1) 7→ T ∗ Jac(C) denotes the inclusion, then

M0 = ι∗M).

Proof. 1. This is clear by the definitions.

2. Θ only depends on α through tensoring by P, therefore so does its cokernel.

Definition 6. Let Ê be the coherent sheaf Ê = R0π2∗M , i.e. the sheaf on

Jac(C)×Pg satisfying Ê(α,β) = ⊕(x,(α,(ζ:β)))∈ΣM(x,(α,(ζ:β))). We call Ê the trans-

formed bundle.

Proposition 4. 1. Ê is a coherent sheaf on Jac(C)×Pg. Moreover, if (∂̄E , θ)

is stable of degree 0 then Ê is a vector bundle of rank r(2g − 2).

2. There is a natural connection ∇̂ and a Hermitian metric ĥ on the restric-

tion of Ê to the affine part T ∗ Jac(C) which satisfy the generalized ASD

equations.

The generalized ASD equations can be defined on any hyperKähler manifold,
see [3].

Proof. 1. Ê is clearly coherent on T ∗ Jac(C); over an element (0 : β) of the

hyperplane at infinity of Pg, the spectral variety Σ is equal to {x : β(x) =

0}, hence also finite. Finally, if (∂̄E , θ) is stable of degree 0, then Σ is a

finite cover of T ∗ Jac(C).

2. For the construction of the connection and Hermitian metric, we first

have to interpret Ê as L2 harmonic 1-forms of a Dirac operator. Then, we

define the connection by the projection-of-the-trivial-connection formula,

and the Hermitian metric as the L2-metric of harmonic respresentatives.

For details about the construction and the proof that the connection and

metric satisfy the generalized Hermitian ASD-equations, see [3].
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Question 1. 1. Does the connection ∇̂ extend to the hyperplane at infinity?

2. Is the transform invertible? That is, does every equivalence class of gen-

eralized Hermitian ASD-connections on Jac(C)× Pg arise as the Fourier

transform of a Higgs bundle on C?

4 Appendix: the hyperKähler quotient

Let (X,ω) be a symplectic manifold with an action of a Lie group G preserving
the symplectic structure, or (X,ω, g) be a Kähler manifold with a Lie group
action preserving both structures. We suppose that there is a moment map
µ : X → g∗ which satisfies the relation dWµ(ξ) = ω(Vξ,W ) for any ξ ∈ g,
W ∈ Γ(TX) and Vξ ∈ Γ(TX) (the vector field induced by the infinitesimal
G action). Suppose that the action of G on µ−1(0) is free and proper. We
can define the Marsden-Weinstein (respectively Kähler) quotient of X by G as
X//G := µ−1(0)/G. This quotient inherits a symplectic (respectively Kähler)
structure from X.

A manifold X is hyperKähler if there are 3 complex structures I, J,K :
TX → TX satisfing the relations I2 = J2 = K2 = IJK = −1 and moreover
there is a g metric on X such that (X, g, I), (X, g, J), (X, g,K) are Kähler
manifolds. Hence the real dimension satisfies dimR X = 4n (n ∈ N).

Suppose that a Lie group G acts freely on (X, g, I, J,K) compatible with
all structures and there are three moment maps µI , µJ , µK : X → g∗, one for
each of the associated symplectic structures. We use the notations µR = µI and
µC = µJ + iµK . We have (see [5]):

Theorem 2. (Hitchin-Karlhede-Lindström-Roček) The quotient

X////G := µ−1(0)/G

is a hyperKähler manifold.

1. If bothX andG are finite-dimensional, then dimX////G = dimX−4 dimG.

2. The theorem is true even for infinite dimensional X and G, if the quotient

is a finite dimensional manifold.
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