
1

Interior, closure, boundary

Definition 0.0.1: Given (X, τX) and A ⊂ X,
the interior of A is

int(A) =
⋃
{U |U ∈ τX , U ⊂ A}

the closure of A is

cl(A) =
⋂
{V |X \ V ∈ τX , A ⊂ V }

and the boundary of A is

∂A = cl(A) \ int(A)

From the definitions it is immediate that

a.) int(A) is an open set

b.) int(A) ⊂ A

c.) A is open if and only if int(A) = A

d.) int(A) is the ”largest open subset of A” in the sense that if M ∈ τX and
int(A) ⊂M ⊂ A, then int(A) = M

e.) For x ∈ X we have x ∈ int(A) if and only if ∃u ∈ τX such that x ∈ U ⊂ A.

Similarly,

a.) cl(A) is a closed set

b.) cl(A) ⊃ A

c.) A is closed if and only if A = cl(A)

d.) cl(A) is the ”smallest closed set containing A” meaning that if Z is a closed set in X
s.t. A ⊂ Z ⊂ cl(A) then Z = cl(A)

In addition,

e.) x ∈ cl(A) if and only if ∀U ∈ τX , x ∈ U , we have U ∩ A 6= ∅.

This is not immediate. We prove e.), by proving its contrapositive, that is, x 6∈ cl(A) if
and only if ∃U ∈ τX such that U ∩ A = ∅ and x ∈ U .
By the definition of closure, if x 6∈ cl(A), then there exists some closed V such that A ⊂ V
and x 6∈ V . Let U = X \ V ∈ τX . Then x ∈ U but A ∩ U = ∅.
On the other hand, if there is some open set U ∈ τX such that U ∩ A = ∅ and x ∈ U , then
take the closed set V = X \ U . Then A ⊂ V , but x 6∈ V , so x 6∈ cl(A).

Finally,

a.) since ∂A = cl(A) \ int(A), we have ∂A = cl(A) ∩ (X \ int(A)), so ∂A is a closed set.
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b.) Also, for x ∈ X we have x ∈ ∂A if and only if ∀U ∈ τX , x ∈ U , we have U ∩ A 6= ∅
and U ∩ (X \ A) 6= ∅.

Exercise 0.0.2: What are int(A), cl(A), ∂A
a. if X = R with the usual topology and A = [0, 1), A = Q, A = [0, 1) ∩Q?
b. if X = R2 with the usual topology and A = [0, 1)× {1

2
}?

Exercise 0.0.3: Let X = R and A = [0, 1). What are int(A), cl(A), ∂A if τX is the
discrete, anti-discrete, co-finite topology?

Exercise 0.0.4: Are the following statements true or false?

1. int(A ∪B) = int(A) ∪ int(B) and
int(A ∩B) = int(A) ∩ int(B)

2. cl(A ∪B) = cl(A) ∪ cl(B) and
cl(A ∩B) = cl(A) ∩ cl(B)

3. B is closed ⇐⇒ ∂B ⊂ B

4. cl(A) = X \ int(X \ A)

5. ∂(∂(A) = ∂(A)

6. intB = B \ ∂B

7. ∂(cl(A)) = ∂A

8. If A is open then ∂A ⊂ (X \ A)

9. ∂(intA)) = ∂A

Exercise 0.0.5: What is wrong with the following argument?
We show that

cl(∪Aα) ⊂ ∪cl(Aα) :

(i.e. find the mistake in the following argument)
If {Aα} is a collection of sets in X and if x ∈ cl(∪Aα), then every open set U that contains
x intersects ∪Aα. Thus U must intersect some Aα, so that x must belong to the closure of
some Aα. Therefore, x ∈ cl(Aα).

Is the statement nevertheless true?

Exercise 0.0.6: What is wrong with the following argument?
In a metric space (X, d) a unit ball S1 around a point p (i.e. S1 = {q ∈ X | d(p, q) = 1})
is closed, since it is the boundary of the open unit ball, and boundaries are always closed
sets, as for any set A, one can show that ∂A = cl(A) ∩ cl(X \ A) (i.e. any boundary is the
intersection of two closed sets).
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The Hausdorff property

Definition 0.0.7: A topological space (X, τX) has the Hausdorff property if ∀x 6= y in
X, there exist Ux, Uy ∈ τX containing x and y, respectively, such that Ux ∩ Uy = ∅.

Example 0.0.8: a.) Rn with the usual topology is Hausdorff.
b.) Rn with the co-finite topology is not Hausdorff.
c.) Any set with the discrete topology is Hausdorff.
d.) Any set with the anti-discrete topology is not Hausdorff.

A non-Hausdorff space is “pathological” in many ways. For example, in a non-Hausdorff
space, limits of sequences may not be unique. But what is convergence, in general?

Definition 0.0.9: Given any sequence of points (xn) ⊂ X, we say that limn→∞xn = x ∈ X
if, for all open sets U with x ∈ U , there exists some N ∈ N such that ∀n ≥ N , xn ∈ U .

Example 0.0.10: Consider X = {a, b, c} with τX = {∅, {a}, {a, b}, {a, b, c}}. The constant
sequence {a, a, a, a, a, a, a, ...} converges to a. However, it also converges to b and c. Note
that τX is not Hausdorff.

Exercise 0.0.11: Consider X = R and the sequence xn = 1
n
. Where does xn converge (if

at all), if R has the discrete, anti-discrete, co-finite topology?

The Hausdorff property can be used to distinguish between topological spaces, as we have
the following fact.

Proposition 0.0.12: The Hausdorff property is a topological invariant

Proof: Let f : X → Y be a homeomorphism. Suppose Y is Hausdorff. Then f is a
continuous bijection. Then for x 6= y in X, f(x) 6= f(y) in Y . Since Y is Hausdorff, there
exist U ∈ τY and V ∈ τY , disjoint, such that f(x) ∈ U and f(y) ∈ V . Hence, x ∈ f−1(U)
and y ∈ f−1(V ). These two sets are open in X, since f is continuous. Also, since f is a
bijection, they do not intersect. So X is Hausdorff.

Example 0.0.13: R with the usual topology is not homeomorphic to R with the arrow
topology, since the first one is Hausdorff, while the second is not. (In the second one, any
two non-empty open sets intersect.)

Compactness

Definition 0.0.14: Given a topological space (X, τ), a subset K ⊂ X is compact if every
open cover of K has a finite subcover.

What do the terms ”open cover” and ”subcover” mean?

Definition 0.0.15: A cover of K is a collection {Uλ}λ ⊂ P(X) such that
⋃
λ Uλ ⊃ K. We

have a finite cover of K if the number of sets in this collection is finite. An open cover
of K is a cover such that every set within the cover is open in X. A collection of subsets of
X, {Wβ}β, is a subcover of a given cover {Uλ}λ, if it itself is a cover and such that ∀ β,
∃λ with Wβ = Uλ.
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Example 0.0.16: Consider A = R with the usual topology.

1. The collection {(−∞, 1], (0,∞)} is a finite, but not open cover of A.

2. The collection {(−∞, 1), (0,∞)} is a finite, open cover of A.

3. The collection {(−n, n)}∞n=1 is an (infinite) open cover of A.

Exercise 0.0.17: The following sets are not compact. Show this by finding an open cover
for each that has no finite subcover.

a.) R, (0, 1), { 1
n
}, n = 1, 2... – in R with the usual topology;

b.) any infinite subset of X, itself an infinite set, with the discrete topology.

Example 0.0.18: The following sets are all compact:
a.) any subset of a set X with the anti-discrete topology
b.) any subset of X with a topology if X is finite
c.) any subset of a set X with the co-finite topology

We get a vast amount of examples of compact sets recalling the well-known Heine-Borel
theorem from real analysis.

Theorem 0.0.19 (Heine-Borel): In Rn a set K is compact if and only if it is closed and
bounded.

(Recall that a set K is bounded if you can put it in a ball i.e. ∃Bx(r) (open) ball around
a point x ∈ K such that K ⊂ Bx(r). Equivalently, ∃M > 0 such that ∀x, y ∈ K we have
d(x, y) < M .)

Thus the following are also examples of compact sets:

Example 0.0.20: a.) in R with the usual topology: a point, finite many points, [0, 1]
b.) in R2 with the usual topology: the closed unit disk D2, the square [0, 1]× [0, 1], the

unit circle S1

We get even more examples of compact sets using the following observation:

Proposition 0.0.21: If f : X → Y is continuous and onto with X compact, then Y is
compact.

Proof. Indeed, let {Uα}α ⊂ τY be an open cover of Y . So
⋃
α Uα ⊃ Y . Consider {f−1(Uα)}α.

Since f is continuous, each set in this collection is in τX . Also,
⋃
α f
−1(Uα) = X so

{f−1(Uα)}α is an open cover of X. We know X is compact, so there is some finite sub-
cover {f−1(Uαi

)}αi
, i = 1, ..., n; that is,

⋃n
i=1 f

−1(Uαi
) = X.

Correspondingly we have for {Uαi
}αi

that
⋃n
i=1 Uαi

= Y , so {Uαi
}αi

is a finite subcover
of the original open cover of Y , so Y is compact. �

In other words, the image of a compact set with respect to a continuous function is also
compact. Thus we have more examples of compact sets:
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Example 0.0.22: Recall that the torus, Mobius strip, the Klein bottle were all defined
as quotients [0, 1] × [0, 1]/ ∼ of the square [0, 1] × [0, 1], which is a compact set in R2 by
the Heine-Borel theorem. Recall also, that the quotient topology is defined such that the
quotient map

q : [0, 1]× [0, 1]→ [0, 1]× [0, 1]/ ∼

q(x) = [x] = the equivalence class of x, is automatically continuous and q is an onto map.
By the proposition above, the torus, Mobius strip and the Klein bottle are all compact.
Similarly, RP 2 is compact as it is defined as a quotient of the closed unit disk which is

compact.

In addition, as a direct consequence of the proposition we have

Proposition 0.0.23: Compactness is a topological invariant. That is: if X ∼ Y (X and Y
are homeomorphic, then X is compact if and only if Y is compact.

We can now use compactness to distinguish between topological spaces.

Example 0.0.24: [0, 1] and [0,1) are not homeomorphic.

This is because [0, 1] is compact (by the Heine-Borel theorem, since it is closed and
bounded), but [0, 1) is not compact (by the Heine-Borel theorem, since it is not closed).

Let us consider the Heine-Borel theorem again. Recall that it only holds in Rn.
Already in metric spaces there are closed and bounded sets that are not compact. One
example of such is an infinite set with the discrete topology (why?).

Here is another one:

Exercise 0.0.25: Let K = [0, π] ∩ Q in X = Q with the subspace topology of R. This is
a closed set (why?) and bounded (why?), but it has an open cover that does not contain a
finite subcover (provide one) and thus K is not compact.

What about the other direction? If K is compact in a general topological space, does it
follow that K is closed? (Note that ”boundedness” makes no sense in general as it assumes
distance.)

The answer is ”no”.

Example 0.0.26: Let X = {a, b, c} and τX = {∅, {a}, {a, b}, {a, b, c}}. In this topology
every set is compact since we have only finite many open sets to use for covers to begin with.

However, e.g. {b} is not a closed set, since its complement is not open.

Note that in this example the topology is not Hausdorff - and that is a crucial fact as we
have the following lemma:

Lemma 0.0.27: If (X, τX) is Hausdorff and K ⊂ X is compact then K is closed.

Proof. We want to show that X \ K is open. This can be done by showing that for every
x ∈ X \K there is an open set U around it which lies entirely in X \K. Thus X \K is the
union of such open sets and is therefore itself open.
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So pick x ∈ X \K. Since X is Hausdorff, to each y ∈ K there are disjoint open sets Uy
containing x and Vy containing y. The collection

{Vy : y ∈ K,Vy ∩ Uy = ∅}

is clearly an open cover of K.
K is compact, so there exist y1, ..., yn ∈ K such that

⋃n
i=1 Vyi ⊃ K. Let U = ∩ni=1Uyi . U

is open since it is a finite intersection of open sets. Clearly, x ∈ U .
Finally, [

⋃n
i=1 Vyi ] ∩ [∩ni=1Uyi ] = ∅. Since if z is in this intersection then, in particular, it

is in the first set and so z ∈ Vyi for some i. On the other hand, z ∈ Uyj for all j = 1, .., n so,
in particular, z ∈ Uyi for the same i as well. But then Vyi ∩ Uyi = ∅.

�

Note that in fact, we proved

Corollary 0.0.28: If K ⊂ X, X Hausdorff, K compact, and x /∈ K, then ∃U, V open sets
such that K ⊂ U , x ∈ V and U ∩ V = ∅.

We have the following very important theorem which is an important tool in showing
that two spaces are homeomorphic. We will use it to show that ”if you glue the endpoints
of an interval, you get a circle”.

Theorem 0.0.29: Suppose f : X → Y is continuous and bijective. Also assume X compact
and Y is Hausdorff. Then f is a homeomorphism.

Proof. We must show that f−1 : Y → X is continuous. We will use an equivalent statement
that g : A→ B is continuous if and only if ∀ V closed in B, g−1(V ) is closed in A. That is,
we must check that, ∀ V closed in X, f(V ) = (f−1)−1(V ) is closed in Y .

Let V ⊂ X be closed. We claim that V is compact since X is compact. We see this since,
taking {Uα} as an arbitrary open cover of V , we have that {Uα}∪{X \V } is an open cover of
X. Hence there exists a finite subcover of X, denoted by {Uαi

}ni=1∪{X \V }. Then {Uαi
}ni=1

is a finite open subcover of V , so V is compact.

Thus, since V is compact and f is continuous, f(V ) is compact. But Y is Hausdorff and we
just proved that a compact set in a Hausdorff space is closed. Hence f(V ) is closed.

�

Corollary 0.0.30: Let X = [0, 1] with the subspace topology of the usual topology of R.
Then X/ ∼= [0, 1]/0 ∼ 1 is homeomorphic to S1

Proof. Consider f : [0, 1] −→ S1, f(t) = (cos(2πt), sin(2πt)). The map f is continuous (by
calculus), onto, but not 1-1 as f(0) = f(1).

Let q : [0, 1] −→ [0, 1]/0∼1 be the quotient map i.e. q(t) = [t] = the equivalence class of
t. Recall that q is continuous.

Let F : [0, 1]/0∼1 −→ S1 be defined by F ([t]) = f(t) = (cos(2πt), sin(2πt)) so that
F ◦ q = f i.e. the following diagram commutes.
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[0, 1] S1

[0, 1]/ ∼

f

q F

Then we need to verify that

• F is well-defined: one can check directly that F ([0]) = F ([1]) i.e. F does not depend
on the representative of an equivalence class.

• F is bijective: F is onto, since f is onto; F is 1-1 by construction: f is not 1-1 at t = 0
and 1, however, those are in one equivalence class in [0, 1]/ ∼

• F is continuous: we showed before that F : X/ ∼−→ Y is continuous if and only if
F ◦ q : X → Y is continuous. But F ◦ q = f which is continuous ”by calculus”.

• [0, 1]/ ∼ is compact: it is the image of a compact set, namely [0, 1] under a continuous
map, namely q. (Note that [0, 1] is compact, since it is closed and bounded in R.)

• S1 is Hausdorff: it is a subspace of R2 which itself is Hausdorff. (Every subspace of a
Hausdorff space is Hausdorff.)

�


