Intro to Topology – HW 5.

- 1. Show that in a Hausdorff space (X, τ_X) limits are unique. That is, if for a sequence of points $x_n \in X$, n = 1, 2...we have $x_n \to a$ and $x_n \to b$, then a = b.
- 2. a.) In real analysis one often finds points of a closure using convergence, since in \mathbb{R}^n we have $x \in cl(A)$ if and only if \exists a sequence $x_n \to x$ with $x_n \in A$. Verify that the same is true in any metric space.

(Hint: Think through the \mathbb{R}^n case and generalize for any metric. Recall that $x \in cl(A)$ if and only if $\forall U$ open sets s.t. $x \in U$ we have $U \cap A \neq \emptyset$.) b.) However, in general this is not true! That is, cl(A) and the set of limit points of A, for $A \subset X$ in a topological space (X, τ_X) , may be different.

Explain why by working out the following example:

let $X = \mathbb{R}$, and let $\tau_X = the \ co-countable \ topology$ on X, where the open sets are the \emptyset , X and those sets whose complement is countable (possibly countably infinite). Take $A = \mathbb{R} \setminus \{p\}$ for some $p \in \mathbb{R}$.

What is cl(A) and why?

What is the set of limit points of A and why? (A point $x \in X$ is a limit point if $\exists (x_n)$ sequence in X such that $x_n \to x$.)

Conclude that the set of limit points of A is not the same as cl(A).

3. Let (X, d) be a metric space and τ_d = the topology generated by d.

Prove that if $K \subset X$ is compact then K is closed.

Here is how you can start: if a set in a metric space (X, d) is not closed, then it cannot be compact, because it has an open cover with no finite subcover.

Specifically, if a set K is not closed, then K is a proper subset of its closure, so $\exists x \in cl(K)$ such that $x \notin K$. Then consider

$$A_n = \{ y \in X \mid d(x, y) > \frac{1}{n} \} \quad \forall n \in \mathbb{N}$$

Prove that the collection $\{A_n\}$ is a cover of K that has no finite subcover.

Also, A_n must be open $\forall n \in \mathbb{N}$ - why?

Thus K is not compact.

EXTRA CREDIT Let X have the τ_X =co-finite topology.

Prove that a sequence (x_n) $n \in \mathbb{N}$ in this space is divergent if and only if it has at least two eventually constant subsequences.

Prove that