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0.1 Classification of Surfaces

Our ”longterm” aim for this semester is to discuss the classification of compact, connected
surfaces. Recall that S is a surface if S ⊂ RM for some M > 0 integer such that, for all p ∈ S,
there exists U ∈ τS, p ∈ U which is homeomorphic to R2 or, equivalently, to the open disk D2.

We are already familiar with some compact, connected surfaces: the sphere, the torus, Klein
bottle, real projective plane.

Here is a method to make new surfaces.

Definition 0.1.1: Given surfaces M and N , their connected sum M#N is the surface
which is obtained by the following procedure:

Step 1: Cup out open disks from M and N . Each of the resulting spaces have boundaries
homeomorphic to S1.

Step 2: Glue M \D2 and N \D2 along their S1 boundaries.

Notation: M#N = (M \D2) ∪S1 (N \D2).

Illustration 1. shows T#T viewed in R3
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Note that this operation is independent of the actual size of disks cut out (up to homeomor-
phism).

Convince yourself that all points of the connected sum of M#N – so those too that
”come from” identifying pairs of points on the bounding circles of M \ D2 and N \ D2 –
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have open sets around them that are homeomorphic to D2, the open unit disk centered at
the origin, in R2.

Illustration 2. shows the same operation on identification diagrams.
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Thus T#T can be given as the quotient space of an octagon whose edges are identified
according to the word aba−1b−1cdc−1d−1.
Similarly, by induction, we can build an infinite family of surfaces gluing n tori together to
obtain #nT = T#T#...#T . These surfaces can be obtained as quotients of a 4n-gon with
edges identified according to a1b1a

−1
1 b−11 ...anbna

−1
n b−1n .
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Another family is obtained by gluing real projective planes together.
Illustration 3 shows how to get a diagram for RP 2#RP 2
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By induction, #mRP 2 can be given as the identification space of a 2m-gon with edges
identified according to a1a1...amam.

Since the surfaces #nT and #mRP 2 are each obtained as quotients of compact, connected
polygons, they themselves are compact, connected.

The classification of compact, connected surfaces is:

Theorem 0.1.2: Any compact, connected surface is homeomorphic to exactly one of

(a) S2

(b) #nT ∀n ∈ N

(c) #mRP2 ∀m ∈ N.

Recall that, by definition, a surface is non-orientable if it contains a Mobius strip. Thus
the surfaces in (c) are non-orientable and the surfaces in (b) and S2 are orientable.

We have:

Exercise 0.1.3: Orientability is a topological invariant of surfaces. That is: if X and Y are
homeomorphic surfaces then X is non-orientable if and only if Y is non-orientable.

Thus no surface in the (c) family is homeomorphic to a surface in (b) or S2.

In order to distinguish the surfaces given in family (b) or (c) we will use a combinatorial
invariant, called the Euler characteristic or Euler number.

In order to define the Euler characteristic we need the following:

Definition 0.1.4: Given a surface M , a finite triangulation of M is the set {T1, T2, ..., Tn}
such that

• Ti ⊂M is closed ∀i

• ∀i Ti is homeomorphic to a regular triangle in R2

• if i 6= j then Ti ∩ Tj is either empty or a single vertex or an entire edge

• M = ∪ni=1T

Definition 0.1.5: Given a finite triangulation of M , the Euler characteristic of M is
defined as χ(M) = V − E + F , where V is the number of vertices (up to identification) in
the triangulation, E is the number of edges (up to identification), and F is the number of
faces (i.e. the number of triangles).

We have the following facts:

1. The Euler characteristic of a surface M is independent of the triangulation of M .

2. The Euler characteristic is a topological invariant.

Furthermore, χ together with orientation distinguish the surfaces in the classification
theorem: as a consequence of a crucial theorem of T. Radó from 1925, every compact
connected surface is finitely triangulable and thus they each have an Euler characteristic.
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Lemma 0.1.6: Let S1 and S2 be two different compact connected surfaces in the list given
in the classification theorem. Then they are non-homeomorphic because either their Euler
characteristic or their orientability is different.

Proof: We already discussed that orientability distinguishes the surfaces that are con-
nected sums of projective planes from surfaces that are connected sums of tori or S2.

Now, suppose S1 and S2 are finitely triangulated. In step 1 of forming the connected
sum of S1 and S2, remove open faces of a triangle in each, instead of open disks. Then
glue the edges of the triangles pairwise, instead of the circle boundaries of disks. Up to
homeomorphism, you still get S1#S2. and the following very useful formula which relates
the Euler characteristic of the connected sum of surfaces:

χ(S1#S2) = χ(S1) + χ(S2)− 2

As a consequence, using induction, the following is a table of the Euler characteristics of
compact surfaces.

Surface Euler Characteristic
Sphere 2
Torus 0
RP2 1
#n-tori 2− 2n ∀n ∈ N
#m-RP2 2−m ∀m ∈ N

Definition 0.1.7: When referring to #nT or #mRP2, we call n or m the genus of the
surface.

0.1.1 Working with cell-decompositions

Note that instead of using finite triangulations of compact, connected surfaces, one can cal-
culate the Euler number using ”cell-decompositions” of surfaces, which simplify calculations
in many examples. A cell-decomposition may be defined recursively:

Definition 0.1.8: Given a compact, connected surface M , its finite cell-decomposition con-
sists of

• 0-cells C0 = {C0
1 , ..., C

0
k} which are merely points C0

i ∈M , i = 1, .., k;

• 1-cells C1 = {C1
1 , ..., C

1
m} where each C1

i ⊂M , i = 1, ..,m is closed, and
C1

i \ [{C0
j }kj=1 ∪ {C1

j }j 6=i] is homeomorphic to (0, 1);

• 2-cells C2 = {C2
1 , ..., C

2
l } where each C2

i ⊂M , i = 1, .., l is closed, and
C2

i \ [{C0
j }kj=1 ∪ {C1

j }mj=1 ∪ {C2
j }j 6=i] is homeomorphic to D2 (the open unit disk in R2);

• and M = ∪C0 ∪ ∪C1 ∪ ∪C2

Note that the above conditions imply that two different cells of the same dimension
should be disjoint or intersect in lower dimensional cells only.
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Clearly, every compact, connected surface has a finite cell-decomposition, since any of
their finite triangulations provide a cell-decomposition.

Lemma 0.1.9: For every compact connected surface M , we have χ(M) = V −E+F where
V =number of 0-cells; E =number of 1-cells; F =number of 2-cells.

Proof (outline): Show that each of the following moves (and their inverses) on a given
cell decomposition leaves the alternating sum V − E + F invariant:

1. Subdividing an edge by adding a vertex.
2. Subdividing a face by connecting two vertices with a new edge.
3. Introducing a new vertex in the interior of a face and a new edge connecting that

vertex to an existing vertex adjacent to that face.
Since any cell decomposition can be turned into a triangulation by moves 1-3 and/or

their inverses, we must have χ(M) = V − E + F .

Remark 0.1.10: Moves 1-3 can also be used to show that χ is independent of triangulation.

Example 0.1.11: Let M = S2 the unit sphere in R3.
Consider the cell decomposition of S2 which consists of one 0-cell C0 = p = (1, 0, 0), one

1-cell that is the great circle S2 ∩ xy−plane and two 2-cells that are the upper and lower
hemispheres of S2. Then χ(M) = 1− 1 + 2 = 2.

Consider the cell decomposition of S2 which consists of one 0-cell C0 = p = (1, 0, 0), and
one 2-cell that is S2. Then χ(M) = 1− 0 + 1 = 2.

Example 0.1.12: Consider the torus. Note that its diagram aba−1b−1 determines a cell-
decomposition that consists of one 0-cell which is the equivalence class of a vertex of the
square; two 1-cells which are the edges a and b and finally, one 2-cell, which is the torus
itself. Then χ(T ) = 1− 2 + 1 = 0.


