0.0.1 Covering Spaces

Definition 0.0.1: Given $p: Y \to X$ continuous and onto, p is a covering map (and Y is a covering space of X) if $\forall x_0 \in X$, $\exists U_{x_0} \in \tau_X$ with $x_0 \in U_{x_0}$ such that

$$p^{-1}(U_{x_0}) = \bigcup_{y \in p^{-1}(x_0)} V_y$$

such that $V_y \in \tau_Y$, and $V_y \cap V_{y'} = \emptyset$ for $y \neq y'$, and moreover, we have that $p|_{V_y} : V_y \to U_{x_0}$ is a homeomorphism.

Terminology: the V_y sets are called "sheets" and X the "base space".

- 1. Let $Y = X \times \{1, 2, ..., n\}$ for some $n \in \mathbb{N}$. Then $p: Y \to X$ defined by $(x, y) \mapsto x$ is a covering, in fact, an "n-sheeted" one.
- 2. $p: \mathbb{R} \to S^1$ by $t \mapsto (\cos(2\pi t), \sin(2\pi t))$ is a covering. For example, pick $x_0 = (1, 0)$. Then $p^{-1}(x_0) = \mathbb{Z}$. We can pick $U_1 = U_{x_0} = S^1 \cap \{x > 0\} \in \tau_{S^1}$ around $x_0 = (1, 0)$, then $p^{-1}(U_{x_0}) = \bigcup_{n \in \mathbb{Z}} (n - 1/4, n + 1/4)$. This is a disjoint union of open sets. One can check that p restricted to each of the open intervals (n - 1/4, n + 1/4) is a homeomorphism onto U_{x_0} .

The same set U_{x_0} works for all points of S^1 with a positive x coordinate.

Using $U_2 = S^1 \cap \{x < 0\}$, $U_3 = S^1 \cap \{y > 0\}$, $U_4 = S^1 \cap \{y < 0\}$ and similar calculations as for $U_1 = U_{x_0}$ one can verify that indeed for every point $(x, y) \in S^1$ one can find an open set in S^1 (namely, U_1, U_2, U_3 or U_4) such that the pre-image of the open set as is required in the definition of a covering.

3. Let $Y = \mathbb{R}^2$ and $X = \mathbb{R}^2 / \sim$, where $(x, y) \sim (x', y')$ if $x - x', y - y' \in \mathbb{Z}$.

If X has the quotient topology, then the quotient map $q: Y \to X$ is continuous and onto. We claim that q is a covering map.

For example, let $x_0 = q((0,0)) \in X$. Then $q^{-1}(x_0) = \{(n,m)\} = \mathbb{Z} \times \mathbb{Z} \subset \mathbb{R}^2$. Consider $U_{x_0} = q(B_{(0,0)}(1/4))$ in X. It contains x_0 and is an open set in the quotient, since

$$q^{-1}(U_{x_0}) = \bigcup_{(n,m)\in\mathbb{Z}\times\mathbb{Z}} B_{(n,m)}(1/4)$$

which is the disjoint union of open sets, so open in \mathbb{R}^2 . Then by the definition of quotient topology U_{x_0} is open in X.

The restriction $q|_{B_{(n,m)}(1/4)}$ is 1-1 and onto U_{x_0} , by construction. It is also continuous, since it is the restriction of a continuous map.

Now, restrict further to a smaller <u>closed</u> ball $\overline{B}_{(0,0)}(1/5)$, that is: consider $W_{x_0} = q(\overline{B}_{(0,0)}(1/5))$. Then over this smaller set we have

$$q^{-1}(W_{x_0}) = \bigcup_{(n,m)\in\mathbb{Z}\times\mathbb{Z}}\overline{B}_{(n,m)}(1/5)$$

and the restrictions

$$q|_{\overline{B}_{(n,m)}(1/5)}:\overline{B}_{(n,m)}(1/5)\to W_{x_0}$$

are still 1-1, onto and continuous, but now $\overline{B}_{(n,m)}(1/5)$ is also compact. W_{x_0} is Hausdorff, since it is a subspace of a Hausdorff space (since X is Hausdorff (why?)). That means $q|_{\overline{B}_{(n,m)}(1/5)}$ is a homeomorphism onto W_{x_0} , for each $(n,m) \in \mathbb{Z} \times \mathbb{Z}$.

Finally, taking $U'_{x_0} = q(B_{(0,0)}(1/6))$ we get an open set around $x_0 = q((0,0)) \in X$ such that

$$q^{-1}(U'_{x_0}) = \bigcup_{(n,m)\in\mathbb{Z}\times\mathbb{Z}} B_{(n,m)}(1/6)$$

is a disjoint union of open sets and the restrictions $q|_{B_{(n,m)}(1/6)}$ are homeomorphisms onto U'_{x_0} . So $B_{(n,m)}(1/6)$ are sheets above U'_{x_0} .

Similar calculations at other points show that q is a covering map.

Note that since $X = \mathbb{R}^2 / \sim$ is homeomorphic to the torus, we have that **the plane** covers the torus. The covering map p = q can be described as $p((x, y)) = [(\{x\}, \{y\})]$ where $\{x\}$ and $\{y\}$ are the fractional parts of x and y, and $[(\{x\}, \{y\})]$ denotes the equivalence class of $(\{x\}, \{y\})$.

4. Let $Y = S^2$ the unit sphere in \mathbb{R}^3 and set $(x, y, z) \sim (-x, -y, -z)$. We claim that the quotient map $q : S^2 \to S^2 / \sim$ is a covering map: pick $x_0 \in S^2 / \sim$. That is: $x_0 = [(x, y, z)] = \{(x, y, z), (-x, -y, -z), \text{ it is the equivalence class of some point} (x, y, z) \in S^2$.

Consider $W = B(x, y, z)(\epsilon) \cap S^2$, which is open in S^2 and let U_0 be its image under q. Then

$$q^{-1}(U_0) = W \cup -W$$

where $-W = \{(-x, -y, -z) | (x, y, z) \in W$. Since both W and -W are open in S^2 , U_0 is open in the quotient. Also, if ϵ is sufficiently small, then W and -W are disjoint.

By a similar argument as in the previous example, we can find subsets $V_0 \subset W$ and $V_1 = -V_0 \subset -W$ open in S^2 such that the restrictions of p = q to V_0 and V_1 are homeomorphisms.

Note that since $S^2/ \sim = \mathbb{R}P^2$, we have that the sphere covers to real projective plane. It is, in fact, a two-sheeted covering.

5. Consider the figure eight $S^1 \vee S^1 =: X$. See the handout of some coverings of this space.

Definition 0.0.2: Given a covering $p: Y \to X$ fix a basepoint $x_0 \in X$. Suppose $\alpha : [0,1] \to X$ is a path such that $\alpha(0) = x_0$. Then a path $\widetilde{\alpha} : [0,1] \to Y$ is a **lift of** α **starting at** y_0 if $p \circ \widetilde{\alpha} = \alpha$. Clearly, $y_0 \in p^{-1}(x_0)$.

Lemma 0.0.3 (Path-lifting lemma): Given a path $\alpha : [0,1] \to X$ with $\alpha(0) = x_0$, fix $y_0 \in p^{-1}(x_0)$. Then α has a *unique* lift starting at y_0 .

We also have the following

Lemma 0.0.4 (Homotopy lifting lemma): Given a homotopy $H : [0,1] \times [0,1] \to X$ with $H(0,0) = x_0$, fix $y_0 \in p^{-1}(x_0)$. Then there exists a unique homotopy $\widetilde{H} : [0,1] \times [0,1] \to Y$ such that $H = p \circ \widetilde{H}$.

The \widetilde{H} is called "the lift of H starting at y_0 ".

Corollary 0.0.5: If $\alpha, \beta : [0, 1] \to X$ are paths such that $\alpha(0) = \beta(0) = x_0$ and $\alpha(1) = \beta(1)$ and $\alpha \cong \beta$, then there exist unique lifts $\tilde{\alpha}, \tilde{\beta} : [0, 1] \to Y$ starting at a fixed $y_0 \in p^{-1}(x_0)$ by the path lifting lemma, moreover $\tilde{\alpha} \cong \tilde{\beta}$ by the homotopy lifting lemma. In particular, we must have $\tilde{\alpha}(1) = \tilde{\beta}(1)$.

Corollary 0.0.6 (Very Important): Given paths $\alpha, \beta : [0, 1] \to X$ such that $\alpha(0) = \beta(0) = x_0$ and $\alpha(1) = \beta(1)$. If there exists a covering such that $\widetilde{\alpha}(1) \neq \widetilde{\beta}(1)$ for some lifts starting at the same $y_0 \in p^{-1}(x_0)$, then α and β are NOT homotopic.

Example 0.0.7: The fundamental group of the figure eight is not abelian.

The "Very Important Corollary" can be used to define a **set map** a sort of "counting function" which helps determine several fundamental groups.

Definition 0.0.8: Given a covering $p: (Y, y_0) \to (X, x_0)$ (i.e. we assume $p(y_0) = x_0$), let $\phi: \pi_1(X, x_0) \to p^{-1}(x_0)$ be the set map defined by $\langle \alpha \rangle \mapsto \widetilde{\alpha}(1)$, where $\widetilde{\alpha}(0) = y_0$. Properties of ϕ :

- (i.) First of all, check that it is well-defined.
- (ii.) If Y is path-connected, then ϕ is surjective. (Why?)
- (iii.) If Y has a trivial fundamental group, then ϕ is injective.

Proof. Assume $\alpha, \beta : [0,1] \to X$ loops are such that $\phi(\langle \alpha \rangle) = \phi(\langle \beta \rangle)$. Then $\widetilde{\alpha}(1) = \widetilde{\beta}(1)$. Then $\widetilde{\alpha} * \widetilde{\beta}^{-1} \in \pi_1(Y, y_0)$. So $\widetilde{\alpha} * \widetilde{\beta}^{-1} \simeq y_0$ and, therefore, $\widetilde{\alpha} \simeq \widetilde{\beta}$. That is to say, there exists a function $H : [0,1] \times [0,1] \to Y$ deforming $\widetilde{\alpha}$ to $\widetilde{\beta}$, then $p \circ H$ is a homotopy, showing that $\alpha \simeq \beta$.

Therefore, if Y is path-connected and $\pi_1(Y, y_0) = 0$, then ϕ is a bijection.

Definition 0.0.9: If (W, τ) is such that W is path-connected and $\pi_1(W) = 0$, then we say that W is **simply-connected**. If a covering $p: Y \to X$ is such that Y is simply-connected, then Y is called a **universal covering**.

There are very many reasons why a simply connected covering space is called a *universal* covering. For example, a universal covering contains "all the information" about the fundamental group of the base space via ϕ .

In particular, using universal covers and ϕ one can show that

- (1.) $\pi_1(\mathbb{R}P^2) = \mathbb{Z}_2.$
- (2.) $\pi_1(S^1) = \mathbb{Z}.$
- (3.) For the torus T, $\pi_1(T) = \mathbb{Z} \times \mathbb{Z}$
- (4.) The fundamental group of the figure eight is the free group on two generators.

However, not all topological spaces have universal covers.