
1

Connectedness

Definition 0.0.1: (X, τ) is disconnected if there exist nonempty open sets U, V such that
U ∩ V = ∅ and X = U ∪ V .

Also, a space is connected if it is not disconnected.

Exercise 0.0.2: Show that (X, τ) is disconnected if and only if
a.) there exist nonempty closed sets U, V such that U ∩ V = ∅ and X = U ∪ V ;
b.) there exists a proper subset U ⊂ X which is both open and closed in X.

Exercise 0.0.3: Think through: any X with the anti-discrete topology is connected. Any
X (that has at least two points) with the discrete topology is disconnected.

Definition 0.0.4: Given (X, τ), a subset A ⊂ X is disconnected if the topological space
(A, τA) is disconnected, where τA is the subspace topology on A.

Also, a A is connected if it is not disconnected.

Example 0.0.5: a.) Let X = [0, 1]∪ [2, 3] (with the subspace topology of the usual topology
of R). Then U = [0, 1] and V = [2, 3] are open in X, disjoint, whose union is X, so X is
disconnected.

b.) Let X = Q (again with the subspace topology of the usual topology of R). Then
clearly,

X = [(−∞,
√

2) ∩Q] ∪ [(
√

2,∞) ∩Q]

where U = (−∞,
√

2) ∩ Q and V = (
√

2,∞) ∩ Q are open and disjoint in Q, so Q is
disconnected.

Note that U = (−∞,
√

2)∩Q = (−∞,
√

2]∩Q so that U is also closed in Q (and similarly
V is closed in Q as well.)

To get many examples of connected sets, next we will show that every interval I is connected
in R (if R has the usual topology). So here I is one of

(a, b) where ∞ ≤ a < b ≤ ∞ or
(a, b] where ∞ ≤ a < b <∞ or
[a, b) where ∞ < a < b ≤ ∞ or
[a, b] where ∞ < a < b <∞ where, by definition
I = (a, b) = {z ∈ R | a < z < b} with the other cases defined similarly.

Lemma 0.0.6: Every interval I of R is connected.

Proof: This proof is for I = (−∞,∞). The other cases can be proved similarly.
Assume, by contradiction, that I = R = (−∞,∞) is not connected (i.e. disconnected).

We will use that this means there exist non-empty, disjoint, closed sets U, V in R such that
R = U ∪ V .

Since U, V are non-empty, there exist a0 ∈ U and b0 ∈ V . Consider z = a0+b0
2

. Clearly,
a0 < z < b0, so z ∈ I and thus either z ∈ U or z ∈ V .

Case 1: If z ∈ U , then let a1 = z and b1 = b0.
Case 2: If z ∈ V , then let a1 = a0 and b1 = z.
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Note that with this notation we have a0 ≤ a1 < b1 ≤ b0.
By induction, for each n ∈ N, given an < bn such that an ∈ U and bn ∈ V , consider

z = an+bn
2

. Clearly, an < z < bn, so z ∈ I and thus either z ∈ U or z ∈ V .
Case 1: If z ∈ U , then let an+1 = z and bn+1 = bn.
Case 2: If z ∈ V , then let an+1 = an and bn+1 = z.

Note that with this notation we have two sequences

a0 ≤ a1 ≤ ... ≤ an ≤ ...

and

b0 ≥ b1 ≥ b2 ≥ ... ≥ bn ≥ ...

where ai ∈ U and bi ∈ V ∀i ∈ N and also ai < bj ∀i, j ∈ N.
Since (ai) is monotone increasing and bounded from above by e.g. b1, it is convergent,

moreover lim
→i→∞

ai = supi{ai}. Denote this number by L.

Also, since (bi) is monotone decreasing and bounded from below by e.g. a1, it is conver-
gent, moreover lim

→i→∞
bi = inf

i
{bi}. Denote this number by M .

In addition, bi − ai = b0−a0
2i

so that lim
→i→∞

(bi − ai) = 0. Since the (ai), (bi) sequences are

convergent, we have 0 = lim
→i→∞

(bi − ai) = lim
→i→∞

bi − lim
→i→∞

ai = M − L so L = M .

But ai ∈ U∀i and U is closed in I = R, so L = M ∈ U . Similarly, bi ∈ V ∀i and V is
closed in I = R M = L ∈ V . But then U ∩ V 6= ∅ and that is a contradiction. �

Connectedness is a topological invariant, so it helps distinguish topological spaces. That
it is a topological invariant follows from the next lemma.

Lemma 0.0.7: If f : X → Y is continuous and onto andX is connected, then Y is connected
as well.

Proof: Assume by contradiction that Y is disconnected, that is, there exist non-empty,
disjoint open sets U, V such that Y = U ∪ V .

Since f is continuous, we have W = f−1(U) ∈ τX and Z = f−1(V ) ∈ τX .
The assumptions on U, V imply that W,Z are non-empty and disjoint with X = W ∪Z,

so X is disconnected. But that is a contradiction. �

Example 0.0.8: Classify the intervals [0, 1], [0, 1) and (0, 1) up to homeomorphism. That
is, decide which are homeomorphic and which are not.

Solution: Let A = [0, 1], B = [0, 1) and C = (0, 1).
A = [0, 1] is compact, since it is a closed and bounded set in R. (Since we are in R the

Heine-Borel theorem applies.)
The sets B,C are not closed, so they are not compact. Compactness is a topological

invariant, so A is not homeomorphic to either B or C.
Now, we claim that B is not homeomorphic to C either. Since, suppose ∃f : B → C

homeomorphism. Then the restriction

f |(0,1) : (0, 1)→ (0, 1) \ {f(0)}
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would be a homeomorphism too. (We showed in a homework that the restriction of a
homeomorphism is a homeomorphism.)

However, (0, 1) is connected, while (0, 1) \ {f(0)} is not connected. This is because

(0, 1) \ {f(0)} = (0, f(0)) ∪ (f(0), 1)

provides (0, 1) as a disjoint union of its two non-empty open subsets U = (0, f(0)) and
V = (f(0), 1). (The point is that these U and V are open in X = (0, 1).)

Path-connectedness

Definition 0.0.9: A path is a continuous mapping γ : [0, 1]→ X.
We say that the path γ begins at γ(0) = a and ends at γ(1) = b.

Note that, since [0, 1] is compact and connected in R and γ is continuous, we have that
the image Im(γ) ⊂ X is also compact and connected.

Definition 0.0.10: (X, τ) is path connected if ∀ a, b ∈ X, there exists a path γ : [0, 1]→
X such that γ(0) = a and γ(1) = b.

Theorem 0.0.11: If a topological space (X, τX) is path connected, then it is connected.

Proof: Suppose the space is not connected. Then there exist disjoint, non-empty open
sets U, V ⊂ X such that X = U ∪ V .

Pick a ∈ U and b ∈ V (which exist, since U, V are not empty). Since X is path connected
∃γ : [0, 1]→ X such that γ(0) = a and γ(1) = b.

Clearly, for the image of gamma we have

Im(γ) = [Im(γ) ∩ U ] ∪ [Im(γ) ∩ V ]

where [Im(γ) ∩ U ] and [Im(γ) ∩ V ] are non-empty, disjoint, open subsets of Im(γ).
Thus Im(γ) is disconnected. But it is the image of a connected set under a continuous

map, so must be connected. �

However, the reverse is not true: connectedness does not imply path-connectedness. Here is
a classical example of a topological space that is connected, but not path-connected.

Example 0.0.12 (The Topologist’s Sine Curve): Let Y = {(x, sin(1/x)) : x > 0} ⊂
R2, that is: Y is (part of) the graph of y = sin( 1

x
) in R2. Note that Y is connected, since it

is path-connected.
The topologist’s sine curve is cl(Y ) = {(0, b) : −1 ≤ b ≤ 1}∪Y . We prove the following

lemma to show that cl(Y ) is connected

Lemma 0.0.13: If A ⊂ X is connected, then cl(A) is also connected.

Caution: be careful which topology you are considering. Here, when we say that A is
connected, we say that it cannot be written as the union of two disjoint, non-empty sets
open in A. But when we prove cl(A) is connected, we have to show that there are no disjoint
non-empty subsets open in cl(A) whose union is cl(A).
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Proof:
Suppose, by way of contradiction, that cl(A) = U ∪ V for some nonempty, disjoint U, V

that are open in cl(A).
Since U = cl(A) \ V and V = cl(A) \ U , we also have that U, V are closed in cl(A).
We showed before that this means: there exist W,Z closed in X such that U = W ∩cl(A)

and V = Z ∩ cl(A).
Then

A = A ∩ cl(A) = A ∩ [U ∪ V ] = [A ∩ U ] ∪ [A ∩ V ]

Also, A ∩ U = A ∩W ∩ cl(A) = A ∩W and A ∩ V = A ∩ Z ∩ cl(A) = A ∩ Z so

A = [A ∩W ] ∪ [A ∩ Z] (∗)

where A ∩ W and A ∩ Z are closed in A, since W,Z are closed in X. Also, this is a
disjoint union, since U and V are disjoint.

However, A is connected so (*) implies that one of A ∩ W or A ∩ Z must be empty.
Without loss of generality, assume that A ∩ Z = ∅. So A = A ∩W and therefore A ⊂ W .
But then cl(A) ⊂ W , since W is closed in X.

Thus, U = W ∩ cl(A) = cl(A), so V = ∅ and that contradicts our initial assumption.

J

Back to the Topologist’s Sine curve: by the lemma we just proved, since Y is connected, we
have cl(Y ) = Y ∪ {(0, b) : −1 ≤ b ≤ 1} is connected too.

However, cl(Y ) is not path connected as a point in cl(Y ) \ Y cannot be connected to a
point of Y by a path.

Here is an outline of the proof - we will show that there is no path beginning at the origin
and ending at a point of Y . The proof is by contradiction.

Let (x1, sin
1
x1

) ∈ Y and assume that there is a γ : [0, 1] → cl(Y ) path (i.e. continuous

function) such that γ(0) = (0, 0) and γ(1) = (x1, sin
1
x1

).
First we will show that there is a point in [0, 1] when γ ”leaves the y-axis”.
Consider the set W := {t ∈ [0, 1] | γ(t) ∈ {(0, b) : −1 ≤ b ≤ 1}}. W is not empty, since

0 is in it. Let t′ = sup{t ∈ W}. By the continuity of γ, t′ ∈ W , since if tn → t′, tn ∈ W ,
∀n ∈ N, we must have γ(tn)→ γ(t′) (Sequences tn → t′, tn ∈ W , ∀n ∈ N exist, by definition
of suprema.)

Now, consider prx, the projection on x, which is also continuous. We then have (prx ◦
γ)(tn) → (prx ◦ γ)(t′), by continuity of prx ◦ γ. But (prx ◦ γ)(tn) = 0, so (prx ◦ γ)(t′) = 0,
which means γ(t′) = (0, b0) for some b0 ∈ [−1, 1].

Thus we know γ(t) ∈ Y ∀t > t′.
Assume first that t′ = 0, so b0 = 0, since γ(0) = (0, 0). We then have γ(t) ∈ Y ∀t ∈ (0, 1].
We will find a sequence (tn) ⊂ (0, 1] such that tn → 0, but γ(tn) is an alternating

subsequence of (xm, (−1)m), xm → 0, m ∈ N so that γ(tn) 6→ γ(0) = (0, 0) which contradicts
γ being continuous.

We will use the fact that sin(π
2

+mπ) = (−1)m for m ∈ N to construct this sequence.
We will also make use of the Intermediate Value theorem according to which if g : [a, b]→

R is continuous then if (wlog) g(a) < g(b) we have for all c ∈ (g(a), g(b)) there is a z ∈ (a, b)
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for which g(z) = c. (This is a consequence of the fact that [a, b] is connected, and g is
continuous.)

Denote as before, by prx the projection prx : R2 → R for which prx(x, y) = x and note
that by assumption prx ◦ γ : [0, 1]→ [0, x1] is continuous and onto.

Pick now a sequence sn → 0 in [0, 1].
Since sn → 0 and prx ◦ γ is continuous, we have (prx ◦ γ)(sn) = xn → (prx ◦ γ)(0) = 0.

Note that the sequence (sn) may not work as the sequence (tn) we are looking for, because
the second coordinates sin 1

xn
could be any number in [−1, 1], so we may have the second

coordinates converge to zero, in which case there is no contradiction.
So, for each n ∈ N consider the restriction prx ◦ γ : [0, sn] → [0, xn]. Pick kn ∈ N such

that zn = 1
π
2
+knπ

∈ (0, xn). This is possible, since 1
π
2
+knπ

→ 0 as kn →∞. Moreover, we can

pick kn so that it has the same parity as n.
By the intermediate value theorem applied to prx ◦ γ on [0, sn], there is a tn ∈ (0, sn)

such that (prx ◦ γ)(tn) = zn = 1
π
2
+knπ

.

Then we have tn → 0, since by construction 0 < tn < sn and sn → 0. Also, we have

γ(tn) = (zn, sin
1

zn
) = (

1
π
2

+ knπ
, sin (

π

2
+ knπ)) = (

1
π
2

+ knπ
, (−1)kn)

so that γ(tn) 6→ γ(0) = (0, 0) and that is a contradiction.

If t′ > 0, we have γ(t′) = (0, b0) for some b0 ∈ [−1, 1] and γ(t) ∈ Y ∀t ∈ (t′, 1].
We should then find a sequence (tn) ⊂ (t′, 1] such that tn → t′, but γ(tn) is an alternating

subsequence of (xm, (−1)m), xm → t′, m ∈ N so that γ(tn) 6→ γ(t′) = (0, b0) which can be
done similarly as in the previous case. �

Theorem 0.0.14: Path-connectedness is a topological invariant: if X and Y are homeo-
morphic, then X is path connected if and only if Y is path connected.

This is a consequence of the fact that if f : X → Y is continuous and onto, and X is
path-connected, then Y is path connected, too.


