
Chapter 1

The fundamental group

We now discuss a new topological invariant: the fundamental group. Rather than studying
invariants related to points as we did in point-set topology, this new invariant is based on
studying (types of) loops on a surface.

More generally, we first need some machinery concerning ”paths from point a to point
b” of a surface. Loops are special - closed - paths, where a = b.

Precisely:

Definition 1.0.1: A path is a continuous mapping α : [0, 1] → X where (X, τX) is a
topological space, such that α(0) = a is the beginning point and α(1) = b is the endpoint of
the path.

Definition 1.0.2: We say that path α can be continuously deformed into β, or “α is ho-
motopic to β” - denoted α ' β - if there exists a continuous map H : [0, 1] × [0, 1] → X
such that

• H(s, 0) = α(s) ∀s ∈ [0, 1]

• H(s, 1) = β(s) ∀s ∈ [0, 1]

• H(0, t) = a = α(0) = β(0) ∀t ∈ [0, 1]

• H(1, t) = b = α(1) = β(1) ∀t ∈ [0, 1]

The continuous mapping H is called a homotopy from α to β.

Remark 1.0.3: Suggestion: think of the variable s as determining location on the path α,
β and other paths, and of the variable t as time.

That is: ”H takes the path α to the path β in 1 unit of time”; more precisely, the family
fs : [0, 1]→ X does that, where fs(t) = H(s, t) ∀ fixed s ∈ [0, 1].

On the other hand, ∀ fixed t0 ∈ [0, 1], the mapping γ : [0, 1]→ X with γ(s) = H(s, t0) is
an inbetween path.

Remark 1.0.4: In the literature there are variations on the types of homotopies used,
depending on the purpose. The one above is a homotopy of paths with fixed endpoints. We
will always compare paths with the same beginning and endpoints i.e. assume α(0) = β(0) =
a, α(1) = β(1) = b as well as consider only homotopies H with H(0, t0) = a = α(0) = β(0)
as well as H(1, t0) = b = α(1) = β(1) ∀ inbetween paths H(s, t0) (i.e. t0 ∈ [0, 1] fixed).
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Example 1.0.5: (1.) In R2, all α, β paths as above are homotopic. We can use the straight
line homotopy to show this:

H(s, t) = (1− t)α(s) + tβ(s) ∀s, t ∈ [0, 1].

(2.) Let X = R2 \ {(0, 0)}. Take α, β, γ : [0, 1]→ X with

α(s) = (cos(πs), sin(πs))

β(s) = (cos(πs), 2 sin(πs))

γ(s) = (cos(πs),− sin(πs)).

We have α ' β, but α nor β is homotopic to γ since the “lack of origin” is in the way.
We cannot continuously deform α or β within X to get γ while keeping their endpoints
fixed, since we would have to pass over the missing origin. (A rigorous prove will be
given later.)

To show α and β are homotopic, take H(s, t) = (cos(πs), t sin(πs) + (1− t)2 sin(πs)).

To show α 6' γ and β 6' γ rigorously, we must develop more machinery.

(3.) Consider α, β : [0, 1] → R3 be given by α(s) = (0, cos(πs), sin(πs)) and β(s) =
(0, cos(πs),−sin(πs)).

Then it is ”intuitively clear”, that α ' β in X = S2, but α 6' β in X = S1 of the
{x = 0} i.e. yz-plane.

Remark 1.0.6: We denote that α and β are homotopic by α ' β.

Proposition 1.0.7: ' is an equivalence relation on the set of paths from a to b in X.

Proof. α ' α by the homotopy H(s, t) = α(s). Next, if α ' β via the homotopy H, then
we take F such that F (s, t) = H(s, 1− t) to show β ' α.

Lastly, to show transitivity, assume α ' β and β ' γ. Then if the homotopy H takes α
to β and the homotopy F takes β to γ, then

G(s, t) =

{
H(s, 2t) t ∈ [0, 1/2]
F (s, 2t− 1) t ∈ [1/2, 1]

takes α to γ ”in one unit of time” i.e. G(s, 0) = α(s) and G(s, 1) = β(s) for s ∈ [0, 1].
Check that G(0, t) and G(1, t) ”work the right way” i.e. G(0, t) = α(0) = γ(0) and G(1, t) =
α(1) = γ(1). Also, G is well defined, since for t = 1/2 we have H(s, t) = H(s, 1) = β(s) =
F (s, 0) = F (s, t) and G is continuous by the Pasting Lemma, stated below.
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Lemma 1.0.8: Let X = A ∪ B, where A,B are closed in X. Suppose f : A −→ Y and
g : B −→ Y are continuous and such that f(x) = g(x) ∀x ∈ A ∩B.

Then the ”piecewise defined” function

H(x) =

{
f(x) x ∈ A
g(x) x ∈ B

is well-defined and continuous.

The proof is left as an exercise.

Remark 1.0.9: The equivalence class of α under ' is denoted by 〈α〉.

We will now define an operation on special paths.
Suppose we have two paths α and β : [0, 1] → X such that the second one starts where

the first one ends i.e. α(1) = β(0). In this situation, we can define a new path by ”running
along the first one and then the second, twice as fast”:

Definition 1.0.10: Given paths α, β : [0, 1]→ X such that α(1) = β(0), their concatena-
tion is a new path

(α ∗ β)(s) := α ∗ β(s) =

{
α(2s) s ∈ [0, 1/2]
β(2s− 1) s ∈ [1/2, 1]

Proposition 1.0.11: ∗ respects the equivalence classes under '. That is, if α ' α′ and
β ' β′, then α ∗ β ' α′ ∗ β′.

Remark 1.0.12: If we can show this, then the following definition makes sense: 〈α〉 ∗ 〈β〉 =
〈α ∗ β〉, whenever α and β are two paths that can be concatenated (i.e. if α(1) = β(0)).

Proof. Let F be a homotopy taking α to α′, and G be a homotopy taking β to β′. We want
a new homotopy H taking α ∗ β to α′ ∗ β′. Let

H(s, t) :=

{
F (2s, t) s ∈ [0, 1/2]
G(2s− 1, t) s ∈ [1/2, 1]

Note that H was obtained by concatenating, for each fixed time t = t0, the ”inbetween
paths” γ(s) = F (s, t0) and δ(s) = G(s, t0).

Exercise 1.0.13: Verify that H(0, t), H(1, t), H(s, 0), H(s, 1) ”work the right way”. Note,
that H is continuous, by the Pasting Lemma.

�

Now we are ready to define the fundamental group of a topological space (X, τX).
Fix a basepoint x0 ∈ X. Recall that a loop is a path α for which α(0) = α(1). Clearly,

we can always concatenate two loops with the same base point.

Proposition 1.0.14: The set of equivalence classes of loops based at a point x0 with the
operation of concatenation ∗ is an algebraic group, which we denote π1(X, x0).
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Conjectures: Unit element: 〈x0〉, where x0 : [0, 1]→ X maps s 7→ x0 ∀s ∈ [0, 1].

Inverses: Given 〈α〉, we let 〈α〉−1 = 〈α−1〉,where α−1(s) = α(1− s).

The proof that concatenation of equivalence classes of loops based at x0 ∈ X is asso-
ciative, as well as that that the above candidates are indeed the unit and inverse elements
consists of finding appropriate homotopies. This is discussed briefly in class.

Then we get that π1(X, x0) is an algebraic group, indeed.

Exercise 1.0.15: Use straightline homotopy, to show that all loops α ' x0 for x0 ∈ R2 so
that Π1(R2, x0) = 0 (”it is trivial”).

Just intuitively, give examples of other spaces with a trivial fundamental group.

Exercise 1.0.16: Find nonhomotopic loops and try to guess what the fundamental group
of the following spaces is:

the cylinder X = {x2 + y2 = 1} ⊂ R3, the plane take-away a point, the torus, the plane
take-away two points, the real projective plane.

1.0.1 Dependence on the basepoint.

Is the base point important, i.e. does the choice of x0 in π1(X, x0) matter? In general, yes.
Let X = S1 ∪ {(3, 0)}. If x0 = (3, 0), then π1(X, x0) is trivial, but it is not, if x0 ∈ S1.

However

Lemma 1.0.17: If X is path-connected, then π1(X, x0) ∼= π1(X, x1) for all x0, x1 ∈ X.

Proof: Since X is path-connected, there exists a path γ : [0, 1]→ X such that γ(0) = x0
and γ(1) = x1.

Then let φ : π(X, x0) ∼= π1(X, x1) be defined by φ(< α >) =< γ−1 ∗ α ∗ γ > and let
ψ : π1(X, x1) ∼= π1(X, x0) be defined by φ(< β >) =< γ ∗ β ∗ γ−1 >.

Check that φ and ψ are group homomorphisms, that is

φ(< α > ∗ < β >) = φ(< α >) ∗ φ(< β >),

and a similar statement is true for ψ, as well as that φ ◦ ψ = 1π(X,x1) and ψ ◦ φ = 1π(X,x0).
These last two equations show that φ and ψ are bijections, so are in fact group isomorphisms.�

From now on we assume that X is path-connected and (up to isomorphism) may use π1(X)
for the fundamental group.

1.0.2 The fundamental group is a topological invariant.

We want to show that π1(X, x0) is a topological invariant. That is: if X ∼ Y are homeo-
morphic, then π1(X, x0) ∼= π1(Y, y0) (group isomorphism). We need to find a way to pass
from topology to algebra, and we do this by the “induced homomorphism.”
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Definition 1.0.18: Given a continuous map f : X → Y , it “induces a homomorphism
of groups,”

f∗ : π1(X, x0)→ π1(Y, f(x0)),

defined by f∗(〈α〉) = 〈f ◦ α〉.

Proposition 1.0.19: f∗ is well-defined.

Proof. We have to show that if α ∼= β i.e. < α >=< β > then f∗(< α >= f∗(< β >).
Let α ∼= β via the homotopy F . In particular, F : [0, 1] × [0, 1] → X. Then take

f ◦ F : [0, 1]× [0, 1]→ Y which is continuous, since it is a composition of continuous maps.
Check that it deforms f ◦ α to f ◦ β.

�

Proposition 1.0.20: f∗ is a homomorphism.

Proof. One can check directly that

f∗(< α > ∗ < β >) = f∗(< α >) ∗ f∗(< β >)

∀ < α >,< β >∈ Π1(X, x0)
�

The induced homomorphisms have the following properties:

Proposition 1.0.21: Let g : X → Y , f : Y → Z. For a topological space X and x0 ∈ X,
we have that (IdX)∗ = 1π1(X,x0) and (f ◦ g)∗ = f∗ ◦ g∗.

Proof. (IdX)∗ : π1(X, x0)→ π1(X, x0) is defined by 〈α〉 7→ 〈IdX ◦ α〉 = 〈α〉.
Next, we have g : X → Y , f : Y → Z and by the definition of induced homomorphisms

(f ◦ g)∗ : π1(X, x0)→ π1(z, (f ◦ g)(x0))

〈α〉 7→ 〈(f ◦ g) ◦ α〉

On the other hand, f∗ : π1(Y, y0) → π1(Z, f(y0)) takes 〈β〉 7→ 〈f ◦ β〉. We also have
g∗ : π(X, x0)→ π1(Y, y0). Then

(f∗ ◦ g∗)(〈α〉) = f∗(g∗(〈α〉)) = 〈f ◦ (g ◦ α)〉.

Thus the left-hand-side (f ◦ g)∗ is equal to the right-hand-side f∗ ◦ g∗ by associativity of
composition.

�

Now, we can finally check that π1(X, x0) is a topological invariant. If X ∼ Y , then there
exist continuous f : X → Y and g := f−1 : Y → X such that f ◦ g = IdY and g ◦ f = IdX .
For the induced homomorphisms, we then have

f∗ : π1(X, x0)→ π1(Y, f(x0))

g∗ : π1(Y, y0)→ π1(X, g(y0)).

We have (f ◦ g)∗ = (IdY )∗. By the previous proposition these imply that f∗ ◦ g∗ = 1π1(Y,y0)
and g∗ ◦ f∗ = 1π1(X,x0). Therefore, f∗ and g∗ are bijections and so group isomorphisms.
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Exercise 1.0.22: R2 is not homeomorphic to R2 \ {p}.

Proof. Both are non-compact and all the topological invariants coming from point set topol-
ogy that we considered fail to distinguish the two spaces.

However, the fundamental group of the first space is trivial, while that of the second space
is non-trivial as the loop going around the missing point is not homotopic to the constant
loop (one would have to move it over the missing point). This is ”intuitively clear”, a formal
proof will be given later. �

1.1 An application: Brouwer’s fixed point theorem

Definition 1.1.1: Given A ⊂ X, a continuous, surjective map r : X → A is called a
retraction if r(a) = a for all a ∈ A. We also say that A is a retract of X.

Remark: Consider the inclusion map i : A → X, i(a) = a ∀a ∈ A. If r : X → A is a
retraction, we automatically have that, r ◦ i = IdA. So, for the induced homomorphisms,
r∗ : π1(X, a0)→ π1(A, a0) and i∗ : π1(A, a0)→ π1(X, a0), we have r∗ ◦ i∗ = 1π1(A,a0). Thus r∗
has to be onto and i∗ is 1-1.

Example 1.1.2: (1.) Consider the constant map r : R2 → {(0, 0)}. This is a retraction
onto A = {(0, 0)}.

(2.) r : {(x, y, z) : x2 + y2 = 1} → S1 ⊂ R2 where r is the projection r(x, y, z) = (x, y).
Then r is a retraction of the cylinder onto the circle.

Example 1.1.3: (a.) Give an example of a continuous map f : D
2 → S1

(b.) Give an example of a continuous, onto map f : D
2 → S1

(c.) Give an example of a continuous, onto map f : D
2 → S1, that keeps S1 fixed pointwise.

The last question above asks for a retraction D
2

onto S1. In fact, there is no such map,
for if such a map f = r existed, then r∗ ◦ i∗ = IdS1 . This would mean that the composition
π1(S1) → π1(D̄

2) → π1(S
1) would have to be the identity mapping on π1(S1). But π1(D̄

2)
is trivial and π1(S

1) ∼= Z, so this is a contradiction.

A very famous consequence of this fact is the Brouwer fixed point theorem:

Theorem 1.1.4: ∀f : D
2 → D

2
continuous maps ∃x ∈ D2

with f(x) = x.

We proved this in class.


