
TOP SUMMARY – WEEK 1.

1 Basic notions, topologies

MAIN GOAL: We want to study ”shapes”. In particular, we want
to be able to decide when two ”shapes” X and Y are ”the same”.

More precisely, suppose that X ⊂ Rn and Y ⊂ Rm.

Definition 1 X and Y are ”topologically the same, equal”, if there
exists a bijection f : X → Y such that both f and f−1 are continuous.

Thus for X and Y to be topologically the same, they have to be equal
at least as sets i.e. they at least have to have the same cardinality. The
last part of the following exercise provides a useful tool for checking
that a function is bijective.

Exercise 2 Suppose the mappings f : X → Y and g : Y → X are
such that g ◦ f = IdX (where IdX is the identity mapping on X, that
is IdX(p) = p ∀p ∈ X). Show that f has to be 1-1 and g onto.

Provide examples to show that f does not have to be onto and g does
not have to be 1-1.

Conclude that if g ◦ f = IdX and f ◦ g = IdY then f and g are
bijections, g = f−1 and X and Y have the same cardinality.

(Note that the above exercise applies to any maps f, g.)

TERMINOLOGY, NOTATION: f as in definition 1 is called a ”home-
omorphism” and we say that X and Y are ”homeomorphic”, if
there is a homeomorphism between them. This is denoted as X ∼ Y .

So, our aim is to work out methods to decide when two ”shapes” ie
subsets of Euclidean spaces - in full generality, when two topological
spaces - are homeomorphic.

WARNING: If f is a continuous bijection, that does not imply that
f−1 would be continuous as well. For example, the parametrization
f : [0, 1) → (cos 2πt, sin 2πt) is continuous and 1-1, onto the circle
S1 = {(x, y) |x2 + y2 = 1}, whose inverse is not continuous.

EXAMPLES FROM CALCULUS:
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1. (0, 1) ∼ R and in fact ∼ (a, b) i.e. all open intervals of R are
homeomorphic.
Here, we use the fact, that ∼ is an equivalence relation.

2. circle ∼ a square

3. the cylinder {(x, y, z)|x2 + y2 = 1} is homeomorphic to the hyper-
boloid {(x, y, z)|x2 + y2 = 1 + z2}

4. CLASSICAL EXAMPLE: S2 \ {p} ∼ R2. (stereographic pro-
jection).

5. In fact, Sn \ {p} ∼ Rn for any dimension n.

RELATED EXERCISE:

1. Show explicitly that the following three spaces are homeomorphic
a.) the (open) cylinder
b.) plane minus a point
c.) the open annulus (e.g. {(x, y, 0) | 1 < x2 + y2 < 4}).

1.1 Precise formulation of ”shapes”: topological spaces.

Very exactly, instead of ”shapes” we will work with ”topological spaces”.

Definition 3 A ”topological space” is a pair (X, τX) that consists of a
set X and a prescribed collection of subsets of X denoted by τX (that
is τX ⊂ P(X ), where P(X ) denotes the power set of X).

The collection τX must satisfy the following properties:

1. ∅ ∈ τX and X ∈ τX

2. If Uα ∈ τX for α ∈ I an arbitrary index set, then ∪αUα ∈ τX.

3. If U1, U2 ∈ τX then U1 ∩ U2 ∈ τX.

Exercise 4 Show that axiom 3 may be replaced by axiom 3’:
”If U1, U2, ..., Un ∈ τX then U1 ∩ U2 ∩ ... ∩ Un ∈ τX”.

That is, axiom 3 is true if and only if axiom 3’ is true.
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Terminology: we call the collection τα ”a topology” on X. The
elements of τ are referred to as ”open sets”.

EXAMPLES OF TOPOLOGIES:

1. LetX be any set and τ = {∅, X}. This is the so called ”antidiscrete
topology”.

2. Let X be any set and τ = P(X ), the power set of X. This is the
so called ”discrete topology”.

3. Let X = {a, b, c}. Then τ1 = {∅, X, {a}} or τ2 = {∅, X, {a}, {a, b}}
are topologies on X, while τ3 = {∅, X, {a}, {b}}} is not.
τ1 and τ2 are examples of ”finite topologies”.

4. Let X = R. The collection τ1 = {∅, X, {(a,+∞)}a∈R} is a topol-
ogy on X, while τ2 = {∅, X, {[a,+∞)}a∈R} is not. The topology
τ1 is sometimes called the ”arrow-topology”.

RELATED EXERCISES:

1. Let X = {a, b, c}. Consider the collection of subsets of X where
A = {∅, {b, c}}. Include extra subsets in A to make it into a
topology. Experiment with A = {∅, {a}, {b, c}}.

2. Is τ = {∅,R} ∪ {(− 1
2n ,

1
2n )}n∈N a topology on R?

3. For an infinite set X, fix p ∈ X. Consider those subsets of X that
do not contain p. Show that these sets, together with X, form a
topology on X.

4. For an infinite set X consider the collection of subsets

τ = {∅, X} ∪ {U ⊂ X |X \ U is finite }

.

Show that τ is a topology on X. (It is called the co-finite topology
on X.)
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1.2 The usual (or standard) topology on Rn.

In calculus one learns about open intervals (a, b), −∞ < a < b <∞ of
the real line R very early. These are special (1-dimensional) cases of
open disks of R2, or even more generally, of open balls of Rn.

Definition 5 Let x = (x1, x2, ..., xn) denote points of Rn.

An open ball centered at x ∈ Rn, of radius r is

Bx(r) = {y |d(x, y) < r}

where d(x, y) =
√

n∑
i=1

(xi − yi)2

i.e. the open ball consists of all those points y of Rn that are closer
to x than r.

Using open balls, one can then consider ”open sets” which are defined
as follows:

Definition 6 A set U of Rn is called an ”open set” if for every point
of it, you can find an open ball centered at that point such that the ball
is entirely inside U .

That is: U is an open set of ∀x ∈ U , ∃Bx(r) for some r > 0 such
that Bx(r) ⊂ U .

Definition 7 A set is called ”closed” if its complement is ”open”.

See more on the motivation for this

EXERCISES:

1. Are the following sets open/closed?
a.) The interval (1, 2) in R. The line segment (1, 2) ⊂ R viewed
in R2.
b.) The interval [2, 3] in R. The line segment [2, 3] ⊂ R viewed in
R2.
c.) ∩∞i=1[−1, 1/n) in R.
d.) Rn in Rn

e.) {r ∈ (0, 1)|r ∈ Q} in R.
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f.) {(x, y) ∈ R2 | 0 < x ≤ 1}
g.) {(x, y) ∈ R2 | |x| = 1}
h.) { 1n |n ∈ N}

2. a.) Prove the de-Morgan Laws

X \ ∪Uα = ∩(X \ Uα)

and
X \ ∩Uα = ∪(X \ Uα)

b.) Use these to show, that in a topology an arbitrary intersection
and finite union of closed sets is closed.

c.) Give examples of open sets {Uα} (in any space you like and
collection of your choice) for which ∩αUα is i.) open ii.) closed,
iii.)neither.

3. Show that an open disc of R2 is an open set. Work out a proof
that can be generalized to show: any open ball of Rn is an open
set.

4. Show that an arbitrary union and finite intersection of open sets
of Rn is an open set.

Consider now the set of all open sets of Rn,

τ = {U ⊂ Rn |U is open in Rn}

Using the fact that Rn and ∅ are also open sets, the last exercise
above shows, that τ forms a topology on Rn – and this is the ”usual”
or ”standard” topology on Rn.

1.3 The topology generated by a metric.

Now, we generalize the previous example to any set X on which one
can measure the distance between points. More precisely,
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Definition 8 Given a set X, we say that the non-negative map d :
X ×X → R≥0 is a metric (or distance function) on X if
a.) ∀x, y ∈ X we have d(x, y) = 0 if and only if x = y
b.) ∀x, y ∈ X we have d(x, y) = d(y, x)
c.) ∀x, y, z ∈ X we have d(x, y) ≤ d(x, z)+d(z, y). (This is the triangle
inequality.)

TERMINOLOGY: The pair (X, d) is called a ”metric space”.

EXAMPLES OF METRICS ON R2

Let x = (x1, y1), y = (x2, y2) ∈ R2.

• the usual metric d1(x,y) =
√

(x1 − x2)2 + (y1 − y2)2

• d2(x,y) = |x1 − x2|+ |y1 − y2|

• d3(x, y) = max{|x1 − x2|, |y1 − y2|}

• the discrete metric d4(x, y) = 0 if x = y otherwise d(x,y) = 1

EXERCISES:
1. Check that the above are metrics indeed.
2. Sketch the unit circle centered at the origin, in each case.
3. Remember: the formula for the discrete metric works for any set X,
therefore any set can be equipped with a metric.

In this setting, i.e. given a set X and a metric d on it, the notion of
open balls and of open sets can be defined analogously to the case
of Rn:

Definition 9 Let x,y denote points of X.

An open ball centered at x ∈ X, of radius r is

Bx(r) = {y |d(x,y) < r}.

i.e. the open ball consists of all those points y of X that are closer
to x than r.

EXERCISES:
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1. Consider a set X with the discrete metric. Let p ∈ X be an
arbitrary point. What are the open balls Bp(

1
2), Bp(1), Bp(2)?

2. a.) Suppose d is a metric on a set X Check that the pair (X, d′)
where d′(x, y) = d(x,y)

1+d(x,y) for all x, y ∈ X is also a metric space.

b.) If d is the usual metric on X = R2, then describe open balls
centered at the origin with respect to the metric d′.

Using open balls, one can then consider ”open sets” which are defined
as follows:

Definition 10 A set U of X is called an ”open set” if for every point
of it, you can find an open ball centered at that point such that the ball
is entirely inside U .

That is: U is an open subset of X if ∀x ∈ U , ∃By(r) for some r > 0
such that Bx(r) ⊂ U .

EXERCISE:

1. Show that given a set X and a metric d on it, still, the union of
arbitrary many open sets is an open set and also the intersection
of finite many open sets is an open set.

SinceX and ∅ are also open sets, this last exercise shows, that the open
sets of X that were defined using open balls i.e. the metric
d, form a topology – this is called the ”topology generated by
the metric d” on X.

EXERCISES:

1. Show that in this setting too, open balls are open sets.

2. Think through: the discrete metric generates the discrete topology.

3. Give an argument that shows, metrics d2 and d3 above (of the first
examples of metrics on R2) also generate the usual topology on
R2.

4. Give an argument that shows: if a set X has more than 2 points
then the anti-discrete topology on it is not metrizable (i.e. there
is no metric that would generate this topology)).
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1.4 Terminology - abstraction jump.

Motivated by the case of the usual and metric topologies, the sets of
any topology are referred to as ”open sets”, even for topologies that
have nothing to do with open balls (i.e. are not generated by a metric).

So people would, for example, say: ”the only open sets in the anti-
discrete topology are the empty set and the entire set X itself”.

And you hear: ”in a topology, the union of arbitrary many open sets
is open”. Well, yes, otherwise we would not call it a topology.

Nevertheless, this is a fact to be verified in case of topologies gen-
erated by a metric, where open sets are defined via open balls. And
in this case, one says: since the open sets of a metric space satisfy the
arbitrary union requirement (and the other requirements), they form a
topology.

Also,

Definition 11 Given a set X and a (ie any) topology τ on it, a set
V ⊂ X is called a closed set if its complement is open ie X \ V ∈ τ .

2 Continuity

Definition 12 Given two topological spaces (X, τX) and (Y, τY ) and a
function f : X → Y , we say that f is continuous if for all V ∈ τY we
have f−1(V ) ∈ τX.

To clarify: by definition, for a function f : X → Y and V ⊂ Y the
set f−1(V ) ⊂ X is defined by f−1(V ) = {x ∈ X | f(x) ∈ V }.

NOTE: Since we call sets of τX and τY ”open sets” (in X resp. Y ) this
definition can be worded as:

A function (between topological spaces) is continuous if the preimage
of every open set is an open set.

SOME RELATED EXERCISES:

1. Consider X = R and the topologies
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(a) τ1 = {∅,R} ∪ {(− 1
2n ,

1
2n )}n∈N

(b) τ3 = P(X) discrete topology

(c) τ4 = {∅,R} anti-discrete topology

(d) τ5 = the usual topology = the topology determined by the
usual (Eucleidean) metric

(e) τ6 = {∅,R} ∪ {(a,∞)}a∈R

Question1: For each of the topologies decide if the intervals (3, 7)
(3,∞) [3, 7] [3,∞) are open, closed, both or neither.

Question2: Let f : R → R be defined by f(x) = x. Is f :
(R, τ2) → (R, τ3) continuous? How about f : (R, τ3) → (R, τ2)?
Or f : (R, τ3)→ (R, τ6)?

Experiment with other combinations.

2. Think through: given a map f : X → Y , if X is equipped with the
discrete topology, or Y is equipped with the anti-discrete topology,
then f is continuous.

3. Let f : X → Y be the constant map, i.e. f(x) = a for all x ∈ X
and some a ∈ Y . Show that f is continuous, for all topologies τX
on X and τY on Y .

4. Let X = N and consider g : N→ N given by

g(x) =

 2 if x is even
4 if x is odd

If N is equipped with the co-finite topology both as a source (do-
main) and target (range), is g continuous?

5. Suppose f : X → Y , g : Y → Z and h = g ◦ f .

a.) Think through: if f and g are continuous, then h is continuous.

b.) If f and h are continuous, must g be continuous?

c.) If f and g are continuous, must h be continuous?

The definition of continuity, as given above, is motivated by the
following lemma, which also shows that if a function f was continuous
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in the ”calculus or real-analytic sense” then it is still continuous in the
general topological sense:

The lemma is stated for a function of one variable, but is true for
mappings between any dimensional spaces.

Lemma 13 A mapping f : R→ R is continuous if and only if for all
V ⊂ R open sets (open in the usual topology) we have f−1(V ) open in
R.

Recall that f : R → R is continuous on R if it is continuous at
every point a ∈ R, i.e. the left hand side of the statement is ”local” in
nature.

Also, by definition, f is continuous at a ∈ R if ∀ε > 0 ∃δ > 0 such
that |f(x)− f(a)| < ε if |x−a| < δ. So the definition of continuity and
thus the left hand side of the lemma depends directly on ”distance” i.e.
how far f(x) is from f(a) depending on the distance between x and a.

On the other hand, the right hand side uses only the notion of open
sets, it provides a ”global view” of continuity. And while in the case of
Euclidean spaces and the usual topology open sets do use distance in
a subtle way (since open sets depend on open balls, which use radius,
which depends on distance), in the general topologies, where open sets
are defined abstractly, without any distance whatsoever, continuity of
functions is independent of that. So the right hand side of the lemma
is exactly the right mathematical description of continuity, if we want
to be able to stretch, compress, twist, deform ”shapes” freely.

3 Homeomorphism and topological equivalence

Now that we have defined what a topological space (X, τ) is and we
know when a set map f : X → Y is continuous with respect to some
given topologies τX on X and τY on Y is, we are ready to precisely
formulate when two topological spaces are the same:

Definition 14 The topological space (X, τX) and (Y, τY ) are topolog-
ically equivalent or homeomorphic, if there is a continuous bijection
f : X → Y whose inverse f−1 : Y → X is also continuous.
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Exercise 15 Verify that homeomorphism is an equivalence relation.
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