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0.1 Making new topologies from old

We will discuss three ways to obtain topologies from given one(s), using known set theoretical
constructions. These are the subspace, the quotient and the product topologies.

0.1.1 The subspace topology

Suppose you have a set X with a topology τX on it. Let A ⊂ X be arbitrary. One can
obtain a topology on A using τX the following way.

Let
τA = {U ⊂ A | ∃V ∈ τX s.t. U = V ∩ A}

.

Exercise 0.1.1: Verify that this is a topology indeed.

Terminology: τA is called a subspace topology (with respect to τX).
Examples:

1. Let X = R with the usual topology. Consider A = [0, 1] with the subspace topology.
Then [0, 1/2) is open in A, (but (still) not open in X = R)

2. Let X = R with the usual topology. Consider A = [0, 1] ∪ [3, 4]. Then [0, 1] and [3, 4]
are open in A, but not open in X = R.

3. Let X = [0, 1]× [0, 1] with the subspace topology determined by (R2, τusual). Then the
”half-open disk” B(0,1/2)(1/4) ∩X is open in X.

(Here B(0,1/2)(1/4) = {(x, y) ∈ R2 |x2 + (y − 1/2)2 < 1/16}.)
Exercise 0.1.2: What is τA if X = R with the standard topology and A = Z?

The following lemma is very useful and shows that in case of metric topologies, you can
think of their subspaces as being generated by the restriction of the metric to the subset.

Lemma 0.1.3: Given a metric space (X, d), let τd be the topology generated by that metric.
Consider also a subset A ⊂ X and d′ = dA the metric d restricted to this subset. Then

τd,A, the subspace topology of τd on A = τd′ , the metric topology on A generated by d′ = dA

0.1.2 The inclusion map.

Considering a set X and subset A ⊂ X ”comes with” a natural map - the inclusion map
i : A→ X where i(a) = a ∀a ∈ A.

From the definition of i we have ∀V ⊂ X it follows that i−1(V ) = V ∩ A.
Thus when X has topology τX and A is equipped with the corresponding subspace

topology then i is automatically continuous.

Exercise 0.1.4: Verify this.

We also have the following technical lemma, which will be useful later.

Lemma 0.1.5: Given (X, τX), (Y, τY ) and A ⊂ X with the subspace topology τA,
f : Y → A is continuous if and only if i ◦ f : Y → X is continuous.
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0.1.3 The quotient topology and the quotient map

First, let us recall the following ”quotient set” construction from set theory.

Given a set X and an equivalence relation ∼ on it, the equivalence relation determines
equivalence classes {Aα}, where each Aα ⊂ X, Aα 6= ∅, their union ∪Aα = X and Aα∩Aβ = ∅
if α 6= β.

The equivalence classes are defined by a, b ∈ Aα if and only if a ∼ b.

The set of equivalence classes is called the quotient set. It is denoted by X/∼ so that
X/∼ = {Aα}. So the elements of X/∼ are subsets (equivalence classes) of X.

There is a ”natural map” q : X → X/∼ coming with this setup, where q(x) = [x] = Aα =
the equivalence class of x. (That is q(x) = Aα if x ∈ Aα.)

The map q is called the quotient map. It is clearly onto.

Now, suppose that the set X also has a topology τX on it.

Then we can define a topology on X/∼ by

τX/∼ = {U ⊂ X/∼ | q−1(U) ∈ τX}

Exercise 0.1.6: Verify that this is a topology indeed.

Exercise 0.1.7: Think through that q is automatically continuous.

The following ”technical lemma” will be useful later.

Lemma 0.1.8: Suppose we are given a topological space (X, τX), an equivalence relation
∼ on X, as well as a map f : X/∼ −→ Y where Y is equipped with some topology τY .

Then f is continuous if and only if f ◦ q : X −→ Y is continuous.

(Here q : X → X/∼ is the quotient map.)

Proof: ⇒ Follows immediately, since the composition of continuous maps is continuous.

⇐. We have to show that if U ⊂ Y is open in Y then the pre-image f−1(U) is open in
X/∼.

This is true, since by definition of the quotient topology, f−1(U) is open in X/∼ happens
exactly when the pre-image q−1(f−1(U)) is open in X. But q−1(f−1(U)) = (f ◦ q)−1(U) and
f ◦ q is continuous by assumption, so we are done.

Remark 0.1.9: Fix a set X. As we discussed above, each equivalence relation ∼ on X
determines a partition P of X, namely, its partition into the equivalence classes determined
by ∼.

Conversely, a given partition P of X – that is P = {Bγ} where Bγ 6= ∅, Bγ ⊂ X,
Bγ ∩ Bδ = ∅, if γ 6= δ and ∪Bγ = X – determines an equivalence relation on X, by setting
a ∼ b for each a, b ∈ X if and only if ∃Bγ ∈ P such that a, b ∈ Bγ.

Exercise 0.1.10: Verify that ”a ∼ b for each a, b ∈ X if and only if ∃Bγ ∈ P such that
a, b ∈ Bγ” given above is indeed an equivalence relation.
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Thus every equivalence relation determines a partition and vice-versa.
Using this observation, one can construct quotient spaces using arbitrary partitions of

the sets X in topological spaces (XτX).
Terminology: A quotient space is also referred to as an ”identification space” with the equiv-
alence relation determining it being the identification. When for points x, y of X we consider
”x ∼ y” we also say that ”x is identified with y” (in X/∼) or ”x is glued to y” or ”pasted
to”.

Example 0.1.11: 1. Let X = [0, 1] and consider the partition of X into U = {0, 1} as
well as Va = {a} ∀a ∈ (0, 1). That is, consider P = {U,Va |a ∈ (0, 1)}.
Equivalently, one can consider ∼ on X where 0 ∼ 1 and a ∼ b implies a = b if
0 < a < b < 1.

Guess a well-known space that X/P = X/∼ is homeomorphic to.

2. Let X = D
2

= the closed unit disk centered at the origin in R2, as before (with the
subspace topology of the standard topology on R2. Consider also the partition of X
to U = {(x, y) |x2 + y2 = 1} and all other points are in one-point sets.

Equivalently, one can consider ∼ on X where (x1, y1) ∼ (x2, y2) if and only if x21 +y21 =
x22 + y22 = 1 (and all other points are only eqivalent to themselves.

Guess a well-known space that X/P = X/∼ is homeomorphic to.

3. Let X = [0, 1]× [0, 1] (with the subspace topology of the standard topology of R2).

Consider the identification (0, y) ∼ (1, y) for y ∈ [0, 1] (and all other points are identi-
fied with only themselves).

Guess a well-known space that X/P = X/∼ is homeomorphic to.

4. Let X = [0, 1]× [0, 1] (with the subspace topology of the standard topology of R2).

Consider the identification (0, y) ∼ (1, 1 − y) for y ∈ [0, 1] (and all other points are
identified with only themselves).

Definition 0.1.12: The quotient or identification space of this example is called (open)
Mobius strip. It is denoted by M .

5. Let X = [0, 1]× [0, 1] (with the subspace topology of the standard topology of R2).

Consider the identification (0, y) ∼ (1, y) and (x, 0) ∼ (x, 1) for x, y ∈ [0, 1] (and all
other points are identified with only themselves).

Definition 0.1.13: The quotient or identification space of this example is called torus.
It is denoted by T 2 or T .

6. Let X = [0, 1]× [0, 1] (with the subspace topology of the standard topology of R2).

Consider the identification (0, y) ∼ (1, 1 − y) and (x, 0) ∼ (x, 1) for x, y ∈ [0, 1] (and
all other points are identified with only themselves).
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Definition 0.1.14: The quotient or identification space of this example is called Klein
bottle. It is denoted by K2.

7. Let X = D
2

= {(x, y) |x2 + y2 ≤ 1} (with the subspace topology of the standard
topology of R2).

Consider the identification (x, y) ∼ (−x,−y) when x2 + y2 = 1 (and all other points
are identified with only themselves).

Definition 0.1.15: The quotient or identification space of this example is called real
projective space. It is denoted by RP 2.

Examples 5-7 are all examples of surfaces.

Definition 0.1.16: A subset S ⊂ RK (K ∈ N) is a surface if ∀p ∈ S ∃U open set
with p ∈ U and U ∼ R2 ∼ D2

(Above S has the subspace topology of the standard (or ususal) topology of RK .)

Thus every point of a surface ”looks” locally just like the real Euclidean plane or,
equivalently (up to homeomorphism) like an open disc in R2.

Example 0.1.17: More examples of surfaces include: R2 itself, the open disk D2, the
cylinder C = {(x, y, z) |x2 + y2 = 1} ⊂ R3, S2.

Exercise 0.1.18: Check that the quotient construction is such that for each of the
torus, Klein bottle and RP 2 every point has an open set around it that is homeomorphic
to an open disc of R2.

Above there are several examples that involve identifying edges of a square in R2 and
as a result we got surfaces.

A natural question is then: if you take a square and consider some other identifica-
tion of its edges, what do you get? Do you get something new or perhaps two such
identifications provide the same quotient space?

More generally, if you take some a polygon and identify its edges, what do you get?
How does one compare two such quotients? Especially, if the polygons we start with
are different (have different number of sides)?

In order to be able to takle such and similar questions there is a special type of argument
that topologists use - these are called cut-and-paste arguments.

Cut-and-paste arguments have been developed in variuos settings and higher dimen-
sions as well. The version we consider is for identification spaces (or quotients) of
polygons only.
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0.1.4 Special quotients: identifying edges of polygons

Among the examples of quotient spaces we considered there were some some that involved
identifying edges of a square in R2, pairwise. The torus and the Klein bottle were defined
that way.

We also considered an example involving a 2-gon, that you can take to be the closed

unit disk centered at the origin D
2

= {(x, y) |x2 + y2 = 1} with the two edges being the
upper and the lower unit semi-circles. We discussed that the identification (x, y) ∼ (−x,−y)

when x2 + y2 = 1 results in the quotient D
2
/ ∼ which is the real projective plane RP 2, by

definition.

Alternatively, when (x, y) ∼ (x,−y) when x2 + y2 = 1 we have D
2
/ ∼ homeomorphic to S2.

More generally, one can take any 2n-gon K ⊂ R2 (n ≥ 1) and identify its edges pairwise.
The resulting quotient spaces all belong to a very important class of topological spaces, the
compact surfaces, as we will see later.

Here is a precise description of this type of identification.

First of all, any edge can be oriented two ways: if the line segment PQ is an edge of a
polygon K, where P = (x1, y1) and Q = (x2, y2) are the vertices of K connected by the edge
PQ, then the parametrization r(t) = (1− t)(x1, y1) + t(x2, y2) for t ∈ [0, 1] starts at P ”runs
along” PQ and ends at Q. This parametrization gives a direction to the edge and is denoted
by putting an arrow on it in the direction pointing from P to Q.

The parametrization r(t) = t(x1, y1)+(1− t)(x2, y2) for t ∈ [0, 1] on the other hand starts
at Q ”runs along” the edge PQ ending at P . That is, it gives an orientation to the edge PQ
that is opposite of the previous one.

This parametrization is denoted by putting an arrow on the edge in the direction from
Q to P .

Now, what does identification of two edges of the polygon K mean?

Suppose the edge PQ between vertices P = (x1, y1) and Q = (x2, y2) is identified with
another edge RS of the polygon K where R = (x3, y3) and S = (x4, y4). This can be done
two different ways: without loss of generality assume that for t ∈ [0, 1] the edge PQ is
parametrized by r(t) = (1 − t)(x1, y1) + t(x2, y2) and assume that RS is parametrized by
r′(t) = (1− t)(x3, y3) + t(x4, y4). Then setting r(t) ∼ r′(t) for t ∈ [0, 1] identifies (or ”glues”)
the points of edge PQ to points of the edge RS.

Clearly, considering the opposite orientation on RS, that is the parametrization r′(t) =
t(x3, y3) + (1− t)(x4, y4) for t ∈ [0, 1] and then again identifying according to r(t) ∼ r′(t) for
t ∈ [0, 1] provides a different gluing of the edges PQ and RS, pointwise.

For example, in the first case P is identified with R and Q with S, while in the second
case P is identifies with S and Q with R.

Diagram notation: When edges of a polygon are identified in pairs, the resulting quotient
space is represented by that polygon where two edges are denoted by the same letter if and
only if the two edges are identified. Arrows on the edges indicate how those two edges are
identified pointwise, as described precisely above.

Words corresponding to diagrams: Each polygonal diagram as above determines a ”word”

on the letters of edge-labels {ai} as well as their formal inverses {a−1i } the following way:
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choose a vertex and a direction e.g. clockwise. Trace the edges of the polygon in clockwise di-
rection, starting at your vertex – as you trace, write down the label of an edge with exponent
+1 (usually omitted) if the direction of that edge coincides with the tracing-direction around
the edges of the polygon (which was chosen to be clockwise), and write down the label of an
edge with exponent -1 if the direction of that edge is opposite the ”global” tracing-direction.

Remark 0.1.19: Note that if all edges of a polygon are labelled e.g. if you have a 2n-gon
whose edges are identified pairwise then the corresponding word is determined up to cyclic
permutation.

Conversely, any word ω, where each letter ai appears exactly twice, with exponents ±1
determines a polygonal diagram, whose edges are identified in pairs.

The following are then natural questions: if one takes some polygon and identifies its
edges pairwise, what quotient does one get? If we take different edge-identifications, do we
get a different quotient spaces? How can we compare two such quotients? Especially, if the
polygons we start with are different (have different number of vertices and edges)?

In order to be able to tackle such and similar questions there is a special type of argument
that topologists use - these are called cut-and-paste arguments.

Cut-and-paste arguments have been developed in various settings. The version we con-
sider is for identification spaces (or quotients) of polygons only.

0.1.5 Cut-and-paste arguments for polygons.

In order to understand a quotient space X/∼ it may be useful to find another ”view” of it,
for example a quotient space Y/ ∼′ such that the two are homeomorphic and the latter is
”well-known”.

In order to find such Y/ ∼′ one can use the following elementary operations on
diagrams as they do not change the corresponding quotient space, up to homeomorphism:

1. Pasting or gluing along an edge with the same label, in the given direction.
2. Cutting along a new edge and remembering – this is the reverse of the previous step.
3. Relabelling all occurrences of some edge-label by a label that does not appear anywhere

else.
In particular, edges appearing consecutively with the same sequence of labels and direc-

tions throughout X (and nowhere else) can be replaced by a single edge, label and direction
(at all occurences).

4. Switching the direction of an edge, if all directions of all edges with the same label are
switched.

5. Flipping. A diagram corresponding to a1...an can be exchanged for a diagram a−1n ...a−11

6. Cancelling If the diagram uses a polygon with more than two edges, then edges aa−1

can be omitted.
Note: intuitively, one can think of this as actually performing the gluing of edges aa−1,

as they are next to each other.
7. Uncancelling This is the reverse of the previous operation.

Note that Operations 3,4 and 5 are straightforward, if one thinks through how edge
directions denote pointwise identification of edges.
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Example 0.1.20: (of elementary operation 1.)
Suppose you have a diagram corresponding to words w1 = abc−1 and w2 = b−1ca. That is
X = two disjoint triangles whose edges are identified according to w1 and w2.

Clearly, w1 = c−1ab and w2 = b−1ca determine the same quotient. (The cyclic permuta-
tion in w1 corresponds to starting reading the labels at another vertex of the first triangle.)

Then the diagram corresponding to c−1abb−1ca, that is c−1aca, is the result of ”pasting
along b”. In particular, gluing the two triangles corresponding to w1 and w2 respectively,
along the edge b, results in a square with labelling word c−1aca.

Example 0.1.21: (of elementary operation 3.) If a diagram corresponds to the word ω =
ω1 fgh

−1ω2 fgh
−1ω3 hg

−1f−1 and the subwords ω1, ω2, ω3 do not contain labelling letters
f, g, h then setting s = fgh−1, the diagram corresponding to ω can be replaced by a diagram
corresponding to ω1 sω2 sω3 s

−1

Definition 0.1.22: Given polygons X and Y and some identifications of their edges which
by abuse of notation will be denoted ∼ (although clearly may be very different identifications
even if X and Y are the same), the diagram corresponding to X/∼ is equivalent to
the diagram corresponding to Y/ ∼ if there is a sequence of elementary operations 1-7
above, that transforms one to the other.

Proposition 0.1.23: If the diagrams corresponding to quotients of polygons X and Y with
respect to identifying their edges are equivalent then the quotient spaces X/∼ and Y/ ∼ are
homeomorphic.

Finally, ”cut-and-paste arguments” on diagrams i.e. in case of identification spaces (”quo-
tients”) of polygons whose certain edges are identified in pairs, can for example be used to
prove that two different quotient spaces are homeomorphic.

Or investigate what happens when a given quotient space is altered (e.g. by a cut etc).

Use cut-and-paste arguments to solve the following exercises:

Exercise 0.1.24: What do you get when you cut a Mobius strip along its ”middle circle”,
parallel to its edge?

That is, ifM = [0, 1]×[0, 1]/(0, y) ∼ (1, 1−y) then the ”middle circle” isA = {(0, 1/2)}/[0, 1]/(0, 1/2) ∼
(1, 1/2).

Exercise 0.1.25: Show that when you glue a closed disk onto a Mobius strip, along its
edge, you get a real projective plane.

Exercise 0.1.26: Show that two Mobius strips glued along their boundaries give a Klein
bottle.

Exercise 0.1.27: Show that abca−1b−1c−1 determines a torus. (abca−1b−1c−1 is called the
”hexagonal torus”.)
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0.1.6 The product topology and quotient maps

The following is well-know from set theory. Given sets X and Y , their Cartesian product is
the set

X × Y = {(x, y) | x ∈ X, y ∈ Y }

A very important property is that (x, y) = (x′, y′) if and only if x = x′ and y = y′. Thus
for each (x, y) ∈ X × Y the subset {x} × Y is bijective to Y , X × {y} is bijective to X and

{x} × Y ∩ X × {y} = {(x, y)}.

Given X, Y and X × Y , the ”natural” maps prX : X × Y −→ X defined by (x, y) 7→ x
and prY : X × Y −→ Y defined by (x, y) 7→ y are called the projection maps onto the X
and Y factor, respectively.

Note that ∀V ⊂ X, we have for the pre-image pr−1X (V ) = V ×Y and similarly, ∀W ⊂ Y ,
we have for the pre-image pr−1Y (W ) = X ×W .

Now, suppose that X has topology τX and Y has τY . Using these topologies we define a
topology on X × Y in two steps.

Step 1. Let
B = {U × V | U ∈ τX , V ∈ τY }

Step 2. Let
τX×Y = {∪αBα | Bα ∈ B}

Exercise 0.1.28: B is not a topology – why?. Verify that τX×Y is a topology indeed.

Definition 0.1.29: τX×Y is called the product topology on X × Y induced by τX and τY .

Exercise 0.1.30: Show that W is open in X × Y is and only if ∀p ∈ W there exist U ∈ τX
and V ∈ τY with p ∈ U × V ⊂ W .

Example 0.1.31: 1. Let X = Y = R with the usual topology. The product topology on
R× R = R2 is the standard topology.

2. Let C = {(x, y, z)|x2 + y2 = 1}. Give an intuitive explanation why C can be thought
of as S1 × R.

3. The annulus A = {(r, θ) | 1 ≤ r ≤ 2} can be thought of as [1, 2]× S1

4. S1 × S1 is homeomorphic to a torus. Give an intuitive explanation.

5. Let X = [0, 1]× [0, 1]× [0, 1] (with the subspace topology of the standard topology of
R3).

Consider the identification (0, y, z) ∼ (1, y, z), (x, 0, z) ∼ (x, 1, z), (x, y, 0) ∼ (x, y, 1)
(and all other points are identified with only themselves).

Definition 0.1.32: The quotient (or identification) space of this example is called the
3-torus. It is denoted by T 3.
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This quotient space has a product structure T 2 × S1 (where T 2) is the (usual) torus.
Give an intuitive explanation as to why. Note that since T 2 has a product structure of
S1 × S1, T 3 has S1 × S1 × S1. Where can that ”be seen” in the gluing” (ie quotient
space of the cube)?

Exercise 0.1.33: prX and prY are continuous.
Moreover, they provide homeomorphisms between X and X × {y} as well as Y and

{x} × Y for each x ∈ X and y ∈ Y .

Thus X × {y} and {x} × Y can be thought of as ”copies” of X and Y at (x, y).

We have the following technical lemma.

Lemma 0.1.34: Given (X, τX), (Y, τY ) and (Z, τZ). Suppose X × Y is equipped with the
product topology.

Then f : Z → X × Y is continuous if and only if the compositions prX ◦ f : Z → X and
prY ◦ f : Z → Y are continuous.

Proof: ⇒ is immediate, since the composition of continuous maps is continuous.
⇐. We have to show that for each W ⊂ X × Y that is open in X × Y , the pre-image

f−1(W ) ∈ τZ .
We do this in two steps.
Step 1. Assume that W ∈ B, that is W = U × V where U ∈ τX and V ∈ τY . Note that

we have the following equivalence of sets:

U × V = (U × Y ) ∩ (X × V ).

Also U × Y = pr−1X (U) and X × V = pr−1Y (V ). Thus

f−1(U × V ) = f−1((U × Y ) ∩ (X × V )) = f−1(U × Y ) ∩ f−1(X × V ) =

= f−1(pr−1X (U)) ∩ f−1(pr−1Y (V )) = (prX ◦ f)−1(U) ∩ (prY ◦ f)−1(V )

Since prX◦f and prY ◦f are continuous by assumption, the two sets in the last expressions
are open in Z and thus their intersection is also open and we are done with step 1.

Now, for step 2, assume that W is an arbitrary open set in X × Y . Then W = ∪αBα

where BαinB. Then

f−1(W ) = f−1(∪αBα) = ∪αf−1(Bα)

By step 1, each of the sets in the last union is open in Z, so the union is also open in Z
and we are done.

Exercise 0.1.35: Finally, here are two advanced examples.

1. Consider S1 × D2
, where S1 is the unit circle and D

2
is the (closed) unit disc in R2.

The product S1×D2
can be thought of as a solid torus (a doughnut filled with dough).
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Now, take another copy of the solid torus by considering the original one and take
a translation of it so that the original and its translation do not intersect. Glue the
two solid tori by identifying corresponding points of their bounding surfaces (i.e. each
original point by the translation of it).

We get a product space again. What is it? Give an intuitive explanation.

2. Start with the solid cube X = {(x, y, z) |x, z, y ∈ [−1, 1]}. Glue its faces as follows:
(1, y, z) ∼ (−1, y, z), (x, 1, z) ∼ (−x,−1, z) and (x, y, 1) ∼ (x, y,−1). Guess an alter-
native product description of X.


