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Chapter 1

Introduction

Rube Walker: ”Hey, Yogi, what time is it?”

Yogi Berra: ”You mean now?”

In this work, we continue building the theory that Hajnal Andréka, Judit X. Madarász and
István Németi began to build with contributions from Attila Andai, Ildikó Sain, Gábor Sági, Csaba
Tőke and Sándor Vályi less than a decade ago, cf. [3], [1], [2], [14] or [15].1 We use first-order logic
(FOL) as a framework for studying relativity theory. We have chosen FOL for methodological
reasons for the latter, cf., e.g., the appendix “Why FOL?” of [3, pp.1245-1252].

Throughout this work, we concentrate mainly on the twin paradox and related subjects but
sometimes we stray away from this topic to peek into some other interesting areas, too. We will
discuss several formulations of the twin paradox. They will differ in level of subtlety or faithfulness.

In chapter two, we generalize the frame language that was used before, e.g., in [3] or [1] in
the following way: we talk about the dimensions of observers instead of the dimension of space-
time. This is the first step toward building a theory where not only the space-time dimension
is not fixed but time can be more-than-one dimensional for some observers. We also draw up a
conjecture here about this more-than-one time dimensional theory that has connections with the
Alexandrov-Zeeman theorem, cf., e.g., [1, p.9], [10, pp.178-182] or Theorem 4.1.1. Moreover, we
conjecture that this latter step will lead us to such flexible theories that allow more interesting
models for faster-than-light motion than what we have now and also helps us to understand the
logical structure of closed time-like curves, i.e. of what is popularly called time travel, cf., e.g.,
[6, p.261], [7], [8], [12], [16], [20, §14] or [21]. Also in this chapter, we construct some models
for our most liked axiom system after introducing some basic definitions, cf. Propositions 2.4.1
and 2.4.3. We also list some important and some less important model construction steps here
without intending to be exhaustive.

In chapter three, we formulate our first approximation of the twin paradox in a simple language
(like the language used in [3, §1 and 2]) in which we cannot yet talk about accelerated observers.
A more sophisticated and more refined formulation of the twin paradox, in the richer language of
accelerated observers, comes later in chapter four. Coming back to chapter three, here we examine
the connection of the twin paradox with some other axioms about space-time, via stating some
theorems that geometrically characterize these axioms and the twin paradox, cf. Theorems 3.1.2,
3.2.2 and 3.2.7, cf. also Figure 3.6. By the use of this theorems, we give more general solutions
for some problems of Hajnal Andréka, Judit X. Madarász and István Németi published in [3]

1cf. also the cooperation between Gábor Etesi, Mark Hogarth (Cambridge), István Németi and Hajnal Andréka,
cf., e.g., [9], [12], [13] and [5].
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(cf. questions 4.2.10, 4.2.15, 4.2.16 and 4.2.17 in [3]) than the one we have given in [19]. Also
in chapter three, we analyze the logical connections between some natural weakened forms of
the twin paradox, cf. Figure 3.6. In Theorem 3.3.1, we show that this form of the twin paradox
implies impossibility of the faster-than-light motion for the observers. The conceptual analysis
of the twin paradox leads us to take a step toward general relativity by forcing us to extend our
investigations to accelerated observers.

In chapter four, first we investigate the possibilities of non-inertial motion in the axiom system
Specrel0 without changing the language. During this investigation, we prove Proposition 4.1.2
in which we characterize all the possible non-inertial motions in the two-dimensional models of
Specrel0. We draw up a conjecture about the existence of two-dimensional models where a stronger
version of Einstein’s principle of (general) relativity is true in a sense, i.e. all observers see the
world the same way, and at the same time there are non-inertially moving observers, too. Then
we give general definitions for slower-than-light (STL) and faster-than-light (FTL) set, examine
the connection between the STL, time-like and causal curves in Theorem 4.1.4 and we also prove
that all the STL motions can be reparametrized to be continuous, cf. Proposition 4.3. Also in this
chapter, we expand the language of the theory introduced in chapter one by introducing a new
relation symbol distinguishing the accelerated observers from the inertial ones and formulate an
axiom, called AxAcc. that gives a connection between the inertial and the accelerated observers.
After this, we prove that the twin paradox is true in the models of this accelerated version of
our axiom system of special relativity, cf. Theorem 4.3.2. We also draw up conjectures about
two model constructions for accelerated observers. Finally, we draw the coordinate system of the
uniformly accelerated observer without any further comments.

In the Appendix, we build the analysis tools over arbitrary ordered field that we use in chapter
four to prove the theorems about the twin paradox.

Acknowledgments I am grateful to my supervisors Judit X. Madarász and István Németi
and to Hajnal Andréka for their helps and inspirations. I also would like to thank András Szilágyi
for his invaluable help in the typographical setting of this work and for his LATEX hints.
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Chapter 2

An axiomatization of special

relativity in FOL

2.1 Frame language

In this section, we introduce the frame language for the (special) relativity that we are going to
use throughout this work. We use the expressions “language”, “theory” and “the universe of a
model” in the sense of mathematical logic, cf., e.g., the logic books quoted in [3]. We will use a
similar frame language to that in [1, §1], but we will generalize it a bit. In the frame language,
we do not fix the dimension of the space-time but change the Ob and the W relations of [1] for
being able to talk about the dimensions of the observers. The dimension of an observer will mean
the number of parameters the observer uses for coordinatizing.

Our frame language contains the following non-logical symbols:

• unary relation symbols Obn for each non negative integer n (for n-dimensional observers)
and F (for quantities which are elements of a Field),

• binary function symbols +,−, ·, /, constants 0, 1 and a binary relation symbol for ≤ (for
the operations and the ordering of the ordered field F ), and

• an n+ 2-ary relation symbol Wn for each n ≥ 1 (for the n-dimensional world-view rela-
tions).

The set of observers and bodies are defined as Ob := ∪n≥1Obn and B := ∪n≥0Obn, respectively.1

The bodies will play the role of the objects of our space-times that will be observed (coordinatized)
by the observers by the use of the quantities. Our bodies are basically the same as the “test
particles” in some of the literature.

The following three axioms will always be assumed throughout this work and their models are
called frame models:

AxField A first-order axiom saying that F is a linearly ordered field with the functions +,−, ·, /, 0, 1
and the relation ≤.

AxSqrt Every positive element of the field F has a square root.2

AxFrame Wn ⊆ Obn ×B × F n, together with n 6= k ⇒ Obn ∩Obk = ∅ and ∃m m ∈ Ob.
1We identify relations with the sets defined by them.
2We use the symbol F both for the ordered field and for its universe.
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In words, AxFrame is the following three statement: the first argument of Wn is an n-dimensional
observer, the second is a body while the other arguments are quantities; the dimension of an
observer is unique; and there is at least one observer.

By AxFrame, we can talk about the dimension of an observer. The dimension of observer
m is defined as: d(m) := n iff m ∈ Obn.

Convention 1. We use the validity relation |= in the following way: if M is a frame model and
Σ,Γ are sets of formulas, then M |= Σ denotes that all formulas in Σ are true in the model M. In
this case, we say that M is a model of Σ. Similarly, Σ |= Γ means that all formulas in Γ are true
in all frame models of Σ. In this case, we say that Γ follows from Σ, e.g., Specrel0 |= Specrel?

0
.

In the case, when Γ = {ϕ} for some formula ϕ, then we simply write the following: Σ |= ϕ.

Convention 2. We write W (m, b, p) instead of Wd(m)(m, b, p); this will not be confusing since
d(m) is determined by m.

The hearts of our models are the Wn relations. We use these relations to talk about coordi-
natizations, by reading W (m, b, p) as “observer m observes body b at coordinate point p”. This
kind of observation has no connection with seeing via photons, it simply means coordinatizing.

2.2 Basic notation, definitions, and conventions

In this section, we list most of the notation and definitions that we are going to use throughout
this work.

We use the symbol R for the ordered field of the real numbers. When we write F = R, we
mean that the ordered field F is isomorphic to the ordered field R.

Let R be a binary relation, i.e. set of ordered pairs. Then the domain and range of R are
denoted by Dom(R) := {a : ∃b (a, b) ∈ R} and Rng(R) := {b : ∃a (a, b) ∈ R}, respectively.
We think of a function as a special binary relation. The identity relation on a set A is
IdA := {(a, a) : a ∈ A}. The inverse of R is R−1 := {(b, a) : (a, b) ∈ R}. We call a binary
relation R injective iff when ordered pairs (a, c), (b, c) are in R, then a = b. Notice that R is a
function iff R−1 is injective. If R and S are two binary relations, then their composition R ◦ S
is defined in the following way: R ◦ S := {(a, b) : ∃c (a, c) ∈ R ∧ (c, b) ∈ S}.3 If R is a binary
relation and A is an arbitrary set, then the R-image of A, in symbols R[A], is defined as the
following: R[A] := {b : ∃a ∈ A (a, b) ∈ R}, (e.g., evm[trm(k)] := {evm(p) : p ∈ trm(k)}, cf. evm

and trm(k) below).
The event (the set of bodies) seen by observer m at coordinate point p ∈ F d(m) is:

evm(p) := {b ∈ B : W (m, b, p)}.

The coordinate domain of an observer m is the set of those coordinate points where m sees
something:

CD(m) := {p ∈ F d(m) : evm(p) 6= ∅}.
From the definition of the events, a function called the world-view function or event function
arises. This function is evm : CD(m) 3 p 7−→ evm(p) ∈ Evm. Notice that the world-view relations
and the world-view functions can be reconstructed from each other. The world-view of observer
m is the set of events seen by him:

Evm := {evm(p) : p ∈ CD(m)}.
3Notice that if f, g are functions, then f ◦ g(x) = g(f(x)).
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The set of all events is the following:

Ev :=
⋃

m∈Ob

Evm.

The life-line (trace) of body b as seen by observer m is defined as the set of those coordinate
points where b was observed by m:

trm(b) := {p ∈ CD(m) : W (m, b, p)} = {p ∈ CD(m) : b ∈ evm(p)}.

We say that observers k and k′ are brothers according to observer m iff their life-lines are the
same for m, i.e. trm(k) = trm(k′).

We often talk about observers who observe some bodies somewhere, so the following abbrevi-
ations are practical:

m
�−→ b :⇐⇒ ∃p ∈ CD(m) b ∈ evm(p).

In this case, we say that observer m sees body b. We say that observer m strongly sees body b
if he sees it more than once, formally:

m
�−→ b :⇐⇒ ∃p 6= q ∈ CD(m) b ∈ evm(p) ∩ evm(q).

We abbreviate m
�−→ k ∧ k �−→ m with m

�←→ k.

PSfrag replacements

m

k

evm

fk
m

evk

Ev

Evk
Evm

Figure 2.1: for the event function and the world-view transformation.

We are not only interested in coordinate-domains but also in the relations between them. Thus
the next definition is fundamental. The world-view transformation between two observers m
and k is defined as:

fk
m := {(p, q) ∈ CD(k)× CD(m) : evk(p) = evm(q)},

i.e. two coordinate points respectively from the observers k and m’s coordinate domains are
in this relation if both k and m see the same event at these points, cf. Figure 2.1. Notice that
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fk
m = evk◦ev−1

m as suggested by the commutative triangle in Figure 2.1. Also notice that the world-
view transformation is only a binary relation in this general situation but some weak assumptions
can turn it into an injective function (e.g., AxPh or AxPh? or even AxPh0 is enough, see below).

Convention 3. Whenever we write “f k
m(p)”, we mean that there is a unique q ∈ CD(m) such

that (p, q) ∈ fk
m, and fk

m(p) denotes this unique q.4 This convention is very convenient when we
are working in one of those axiom systems where the world-view transformation is not a function,
because it “turns the world-view transformation into a function in the named point”.

Notice that IdCD(m) ⊆ fm
m and fk

m = (fm
k )−1 always hold, while IdCD(m) = fm

m holds iff for

all observers m the fm
m is a function or iff for all observers m and k the f k

m’s are functions. The
inclusion fk

m ◦ fm
k ⊇ IdDom(fk

m) is also always true since f k
m = (fm

k )−1, while fk
m ◦ fm

k ⊆ IdDom(fk
m)

is equivalent with the statement that fm
k is a function. Furthermore, f k

h ◦ fh
m ⊆ fk

m is always true,
while the converse inclusion is equivalent with the statement that h sees all the events that are
seen both by k and m (i.e. evh ⊆ evk ∩ evm, cf. AxEv below). The inclusion f k

m[trk(b)] ⊆ trm(b)
also follows by the definitions.

Let p ∈ F n and let us assume that p = (p1, . . . , pn). We use the notation pt := p1 for the time
component of p and ps := (p2, . . . , pn) for the space component of p. The Euclidean-length
of p is defined as |p| :=

q

p2
1

+ . . . + p2
n and the time-unit vector as 1t := (1, 0, . . . , 0). We use the

symbol o for the origin (0, . . . , 0).
The straight-line through p, q ∈ F n is:

pq := {q + λ(p− q) : λ ∈ F}.

Notice that pp = {p}. The set of straight-lines is denoted as:

Linesn := {pq : p 6= q ∧ p, q ∈ F n}.

If it is not confusing, we omit the subscript of Linesn.
Let p, q ∈ F n. Then

slope(p) :=

{
|ps|
|pt|

if pt 6= 0

∞ otherwise

and slope(pq) := slope(p− q).
Convention 4. In the case p = (p1, . . . , pk) ∈ F k and q = (q1, . . . , qn) ∈ F n, we use the
symbolism (p, q) for (p1, . . . , pk, q1, . . . , qn) ∈ F n+k throughout this work.

The n-dimensional time-axis is defined as:

t̄n := {(t, o) ∈ F n : t ∈ F}.

If it is not confusing, we omit the subscript of t̄n.
Let F+ := {x ∈ F : x > 0} denote the positive members of F . The (open) ball with center

p ∈ F n and radius ε ∈ F+ is the following:

Bε(p) := {q ∈ F n : |p− q| < ε}.

The (open) punctured ball with center p ∈ F n and radius ε ∈ F+ is the following:

B◦ε(p) := {q ∈ F n : 0 < |p− q| < ε}.
4Sometimes this convention appears indirectly in some relations defined from the world-view relation, (cf., e.g.,

AxLinTime, Timek
m, 1k

m).
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2.3 Some axioms and axiom systems

In this section, we introduce some of the axioms and axiom systems that we work with. The
following natural axiom goes back to Galileo Galilei and even to the Norman-French Oresme of
around 1350, cf., e.g., [1, p.23, §5]. It simply states that each observer thinks that he rests in the
origin of the space part of his coordinate system.

AxSelf The trace of any observer in his own coordinate domain is the time-axis:

∀m ∈ Ob trm(m) = t̄d(m).

Later, when we are generalizing toward accelerated observers, we will use the following localized
version of AxSelf:

AxSelf loc The trace of any observer is the intersection of his coordinate domain and the time-axis:

∀m ∈ Ob trm(m) = t̄d(m) ∩ CD(m).

The next axiom is not as natural as the first one but useful to assume it sometimes since it
is required for the group property of the world-view transformations. It is also assumed in the
other approaches, e.g., in Minkowski geometry, cf., e.g. [14].

AxEv All observers see the same events:

∀m, k ∈ Ob Evm = Evk.

Notice that from AxEv it follows that Dom(f k
m) = CD(k) and Rng(f k

m) = CD(m).
A bit more than a hundred years ago, all the problems started when Michelson and Morley

got as the result of their experiment that there are some objects called photons whose speeds are
independent of who measures it.5 For being able to talk about these objects, we introduce a unary
relation Ph on the set B of bodies for Photons. In the following axiom, we postulate that these
bodies are acting like the “real” photons according to the Michelson-Morley experiment and that
from every point it is possible to send a photon in every direction. For convenience, we choose 1
for the speed of photons.

AxPh The traces of the photons are exactly the straight-lines with slope 1:

∀m ∈ Ob {trm(ph) : ph ∈ Ph} = {l ∈ Linesd(m) : slope(l) = 1}.
We note that, from AxPh, it follows that CD(m) = F d(m) and the world-view transformation f k

m

is an injective function for every m and k, see the proof of Proposition 2.3.1 below for details.
Later, while axiomatizing accelerated observers, we will need variants of our present axioms

which do not imply CD(m) = F d(m) for accelerated m. In later generalizations, we will want to
replace AxPh, as in the case of AxSelf, with a localized version, e.g., AxPh loc

0
below, cf. also [15].

We call the axiom system that contains these three axioms Specrel0 because the most char-
acteristic predictions of special relativity theory can be derived from it, i.e. “relatively moving
clocks slow down”, “relatively moving space ships shrink” and “relatively moving pairs of clocks
get out of synchronism”, cf. [1, §1].

Specrel0 := {AxSelf,AxPh,AxEv}.
We call a set photon-line if it is the trace of a photon. Notice that photon-lines are not

supposed to be straight-lines in general but if we assume AxPh, then they must be straight-lines
with slope 1.

The following proposition says that AxPh and AxEv already imply that there are no different
dimensional observers.

5Actually, this result could have been anticipated on the basis of earlier results on electromagnetism but we
ignore this aspect of history for simplicity here.
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Proposition 2.3.1. AxPh,AxEv |= ∀m, k ∈ Ob d(m) = d(k).

proof. The statement is clear if there is an observer, say m, whose dimension is one or two, i.e.
d(m) = 1 or d(m) = 2 because of the followings: A one-dimensional observer cannot see any
photon because there is no straight-line with slope 1 in his coordinate system. A two-dimensional
observer cannot see more than two different photon-lines through the same point but he sees
photons. A more-than-two dimensional observer sees more than two different photon-lines through
the same point. From AxEv it follows that if one observer sees two photons on different life-lines,
then all observers see them on different life-lines.

In the case when d(m), d(k) > 2, the world-view transformation f k
m is a bijection from F d(m)

to F d(k) which preserves the photon-lines (i.e. the f k
m image of a photon-line is a photon-line)

because of the following: f k
m is injective because for any two distinct points p and q in F d(m)

there is a photon-line which contains exactly one of them. Furthermore, Dom(f k
m) = F d(k) and

Rng(fk
m) = F d(m) as we mentioned before.

The set of those points that cannot be reached from a fixed photon-line by photon-lines forms
a hyperplane.6 From the definition of these hyperplanes, it is clear that they have to be preserved
by the world-view transformations. In different dimensions, different many of these hyperplanes
are needed to get a point by intersection. Thus d(m) and d(k) must be the same. �

Until now, we have assumed that an observer m uses exactly one dimension for coordinatizing
time. We could introduce the following flexibility here: An observer m uses, say, t(m) dimensions
for coordinatizing time where 0 ≤ t(m) ≤ d(m). In this case for a point p ∈ CD(m), we define
pt :=

(
p1, . . . , pt(m)

)
and ps :=

(
pt(m)+1, . . . , pd(m)

)
. This will influence the meaning of slope and

thus the meaning of the photon axiom, too.

Question 1. Does Proposition 2.3.1 remain true if we allow more than one dimensions for the
observers for coordinatizing time?

We say that a frame model is n-dimensional if every observer in it is n-dimensional. So
from Proposition 2.3.1, it follows that every model of Specrel0 is n-dimensional for some natural
number n. Therefore it is clear that we have to weaken Specrel0 if we want different dimensional
observers. Now we do so:7

The following axiom is a very natural weakened form of AxEv:

AxEvTr An observer observes all the events he was observed in by some other observer:

∀m, k ∈ Ob ∀p ∈ trm(k) ∃q ∈ CD(k) evm(p) = evk(q).

Notice that AxEvTr is equivalent with the following: f k
m[trk(k)] = trm(k) while the converse

inclusion is true in all frame models.
There is a similar weakened form for AxPh:

AxPhTr The traces of the photons which intersect the time-axis are exactly the straight-lines
which intersect the time-axis with slope 1:

∀m ∈ Ob {trm(ph) : ph ∈ Ph ∧ trm(m) ∩ trm(ph) 6= ∅} =

{l ∈ Linesd(m) : slope(l) = 1 ∧ trm(m) ∩ l 6= ∅}.

The motivation for the following axiom is that in our intuitive image of the models where
different dimensional observers are allowed a photon can be seen only for a moment for some
observers.

6This hyperplane is the Minkowski-orthogonal one to the fixed photon-line.
7We list more axioms here than we use in this present work for illustrating what kind of natural possible weakened

forms of the axioms may arise.
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AxPh? If some observer sees a photon at least twice, then he sees it on a straight-line with slope
1 and every observer sees a photon on each straight-line with slope 1:

∀m ∈ Ob {trm(ph) : ph ∈ Ph ∧m �−→ ph} = {l ∈ Linesd(m) : slope(l) = 1}.

There is a weakened form of this axiom which requires only that the traces of the photons are
subsets of straight-lines with slope 1 and for every two different points if there is a straight-line
with slope 1 through them, then there is a photon-line through them.

AxPh0 Through two different points there is a photon-line iff the slope of the straight-line through
these two points is 1:

∀m ∈ Ob ∀p 6= q ∈ F d(m)
[
∃ph ∈ Ph ph ∈ evm(p) ∩ evm(q)

]
⇐⇒ slope(pq) = 1.

Notice that from AxPh0 it follows that CD(m) = F d(m). The following weakened form of AxPh0

is a step toward general relativity where we do not want the observers to use the whole F d(m) for
coordinate domain.

AxPhloc
0

Through two different points from the coordinate domain of an observer there is a photon-
line iff the slope of the straight-line through these two points is 1:

∀m ∈ Ob ∀p 6= q ∈ CD(m)
[
∃ph ∈ Ph ph ∈ evm(p) ∩ evm(q)

]
⇐⇒ slope(pq) = 1.

The weakest and therefore the less powerful of our photon axioms is the following one:

AxPh00 The slope of a straight-line through two points where the same photon was observed by
observer m is 1:

∀m ∈ Ob ∀p 6= q ∈ CD(m)
[
∃ph ∈ Ph ph ∈ evm(p) ∩ evm(q)

]
=⇒ slope(pq) = 1.

Notice that AxPh00 is the only photon axiom that does not require the existence of photons.
Our favorite collection of the weakened axioms is:

Specrel?0 := {AxSelf,AxPh?,AxEvTr}.

We note that in the models of Specrel?
0

the dimensions of the observers are not necessarily the
same. This follows from Proposition 2.4.1.

The time-unit of observer k seen by observer m is defined as:

1k
m := fk

m(1t)− fk
m(o).

The following axiom roughly says that if an observer m strongly sees another observer k, then
the restriction of the world-view transformation f k

m to the time-axis is linear.

AxLinTime If observerm strongly sees observer k, then he thinks that the time is passing uniformly
for k:

∀m, k ∈ Ob ∀λ ∈ F m
�−→ k =⇒ fk

m(λ1t)− fk
m(o) = λ1k

m.

Remark 1. Notice that only by assuming AxLinTime the following statements are hold: if observer
m strongly sees observer k, then t̄ ⊆ Dom(fk

m), the restriction of f k
m to t̄ is a function and 1k

m

exists by Convention 3.

Finally, let us introduce a very weak axiom system of kinematics here:

Kinem0 := {AxSelf,AxEvTr,AxLinTime}.
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2.4 Important models and model construction steps and their

relations with the axioms

In this section, we list some of the most important models and a pack of construction steps that
help us in constructing new frame models from other fame models or transforming frame models
into each other. We also examine the question “under which conditions do these construction
steps preserve our axioms”.

A model construction step is a partial operation that creates a new frame model form one
or more given frame models. We say that a model construction step preserves an axiom when
the following holds: if the axiom was valid in the models before applying the construction step,
then it remains valid in the newly created model, too.

There is a so-called base-model, over any ordered field F , for Specrel0 and Specrel?
0

where
there is only one observer, called base-observer, whose life-line is the time-axis and who sees a
photon on every one-sloped straight-line.

In the definition of the construction step called the disjoint union of frame models, we
take the disjoint union of the bodies in some frame models over the same field. The construction
of the new world-view relation is straightforward for this operation. Notice that the models of
Specrel?

0
are closed under the disjoint union operation, i.e. the disjoint union construction step

preserves the axiom system Specrel?
0
.

We call a frame model observationally connected iff for every two events α, β ∈ Ev there
is a sequence m1 . . . mn of observers such that α ∈ Evm1

, β ∈ Evmn and Evmk
∩Evmk+1

6= ∅ for
each 1 ≤ k < n.

It is quite natural to try to add (or remove) observers to (from) the models while trying
to preserve the axioms (or most of them). The way of changing the world-view relations for
removing bodies or even observers is obvious. If the removed body is not a photon or the
only observer in the model, then this operation does not ruin the validity of our axioms. The
construction step for adding bodies or even observers is also free from any problems if we do
not want to preserve any of our axioms. This kind of construction begins to be difficult when we
want some of our axioms to be preserved. It has been proved that we can add an observer, say k,
to any straight-line with slope less than 1 in another observer’s, say m’s, coordinate domain such
that we do not lose the validity of Specrel0. In this construction, we can freely choose two points
from the named straight-line both for f k

m(o) and fk
m(1t), cf. [3, §3.5]. There are some other natural

observer-adding construction steps, too, cf. the radar construction or the tangent construction on
page 35.

If H is a subset of CD(m), we can change m’s coordinate domain to H by restricting the event
function evm to H, cf. localizing in [4, §4]. This construction step is called restriction of the
coordinate domain. It does not necessarily preserve AxPh or AxPh?. It preserves AxSelf iff the
time-axis is a subset of H, and in this situation the restriction does not screw up AxEvTr either.

Proposition 2.4.1. There is an observationally connected model of Specrel?
0

where there is no
maximal dimensional observer.

proof. IfH is a linear subspace of F d(m) which contains the time-axis and we change the dimension
of m to the dimension of H, then the restriction of m’s coordinate domain to H preserves AxPh?

as well as AxSelf and AxEvTr. By this kinds of restrictions, we can construct models for Specrel?
0

which are not models of Specrel0. Then we can take an infinite chain8 of these kinds of models of
Specrel?

0
over the same ordered field such that the union of this chain is a model of Specrel?

0
which

is observationally connected and there is no maximal dimensional observer in it. �

8Let Mi be a sequence of frame models. We call Mi a chain if for all i < j, Mi is a submodel of Mj .
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The construction step called gluing is the following one: we take the disjoint copies of two
frame models over the same ordered field and a subset of the events in each with a fixed bijection
between these two sets; if the event evm(p) is in one of the two sets for some observer m and
coordinate point p, then we change the image of m’s world-view function in p to the union of this
event and its bijective image.

We say that a body is faster-than-light (FTL) if its trace is a greater-than-one sloped straight-
line. We abbreviate the statement “there is no faster-than-light observer” by noFTL. Later in this
work, we will generalize the definition of being FTL for arbitrary sets.

The following theorem states that the FTL motion is not allowed in the more-than-two dimen-
sional models of Specrel0 while in the two-dimensional models it is, cf. [3, Theorem 3.4.1.]:

Theorem 2.4.2 (Madarász).

(i) Specrel0 ∪ {∀m ∈ Ob d(m) > 2} |= noFTL

(ii) Specrel0 ∪ {∀m ∈ Ob d(m) = 2} 6|= noFTL.

The following proposition shows that there are more possibilities for FTL motion in the models
of Specrel?

0
than in the models of Specrel0:

Proposition 2.4.3. FTL motion is allowed in the models of Specrel?
0

not only for two-dimensional
observers.

proof. Let us take two more-than-two dimensional base-models over the same field and a plane
which contains the time-axis in each base-observer’s coordinate domain. Let us also take a linear
(or an affine) isomorphism between these planes which takes the time-axis to a FTL straight-line
and takes one-sloped straight-lines into one-sloped straight-lines. These planes and the isomor-
phism between them determine two subsets of the events in each base-model and a bijection
between them. If we glue these two models through this bijection we get a model of Specrel?

0

where there are two observers who move FTL according to each other. �

Conjecture 1. If an observer k is FTL according to m in a model of Specrel?
0
, then Dom(fm

k )
cannot contain a three dimensional affine subspace which contains both the time-axis and the
life-line of k. We also conjecture that this can be proved by creating a three dimensional model
for Specrel0 from any counterexample of the conjecture where there is a faster-than-light observer
but this is impossible by Theorem 2.4.2.

Linking bodies together is the operation of changing a set H ⊆ B of bodies to one body
b ∈ B in the following way: if W (m, p, b′) holds for some b′ ∈ H, then we change this b′ to b in W .
This is useful when we want the photons whose traces intersect in more than one points be the
same, e.g., after gluing. Moreover, if we take a frame model where AxPh0 is true and we link all
the photons that intersect the same one-sloped straight-line more-than-once, then we get a model
where AxPh? is true. Thus the theorems whose statements are insensible for this latter operation
(e.g., there are no photon-lines in the statement) and provable by using AxPh? are provable from
AxPh0, too, cf., e.g., Proposition 2.3.1.

The following axiom is related to Occam’s Razor:

AxOccam Every body is observable by some observer, formally:

∀b ∈ B ∃m ∈ Ob m
�−→ b.

We call Occamization the construction step that removes all the bodies from a frame model
that are not observed by some observer. This construction step might be useful when we would
like to clear the mess that some other constitution steps might have left behind.

12



Chapter 3

Twin paradox without accelerated

observers

3.1 Characterization of the twin paradox

In this section, we formulate and give a characterization for the inertial version of the twin paradox.
The twin paradox is an often quoted paradigmatic effect of relativity theory that is based on

the following thought experiment: Let us imagine two twin siblings, called Amelia and Immanuel,
and let us imagine that Amelia is an astronaut who travels (and accelerates) a lot through space
while Immanuel is a scientist who works at home and does not travel at all. The twin paradox
is the surprising statement that says when Amelia returns to the Earth and meets Immanuel she
is younger than her twin brother. To formulate this phenomenon, first, we formulate that two
bodies, say a and b, meet at coordinate point p according to observer m:

meetpm(a, b) :⇐⇒ W (m,a, p) ∧W (m, b, p) ⇐⇒ {a, b} ⊆ evm(p).

The second thing that has to be formulated is the elapsed time measured by observers between
events according to another observer. Since we axiomatize relativity theory in an observationally
oriented way we define the time difference between coordinate points instead of events. If m and
k are observers, then the time measured by k between p, q ∈ CD(m) is defined as:

Timem
k (p, q) := fm

k (q)t − fm
k (p)t.

Notice that Timem
k (p, q) is independent from the choice of observer m in the following sense:

assuming p, q ∈ Dom(fm
k ) ∩Dom(fm

h ) and fm
k and fm

h are functions both in p and q,

Timem
k (p, q) = Timeh

k

(
fm

h (p), fm
h (q)

)
.

Now we are able to formulate the twin paradox in our language. We formulate it in a bit
more general situation than mentioned above because we also would like to talk about that some
observer sees this phenomenon. So two observers a and b are in twin paradox relation at
coordinate points p and q in observer m’s coordinate domain if b measures more time between p
and q than a:

Twpm(a < b)(p, q) :⇐⇒
∣∣∣Timem

a (p, q)
∣∣∣ <

∣∣∣Timem
b (p, q)

∣∣∣.

We will give a geometrical characterization to the twin paradox in the axiom system Kinem0

but before doing so we show some easy but useful consequences of Kinem0.
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The following lemma states that, in the models of Kinem0, if an observer m strongly sees
observer k then the life-line of k is a straight-line in the coordinate domain of m and the word-
view transformation is a bijection between the life-lines of k according to m and k, respectively.1

Proposition 3.1.1. Kinem0 |= ∀m, k ∈ Ob
[
m

�−→ k =⇒ trm(k) ∈ Linesd(m) and fk
m is a

bijection between trk(k) and trm(k)
]
.

proof. Let m and k be observers such that m strongly sees k. By AxLinTime, f k
m(λ1t)− fk

m(o) =
λ1k

m. Hence t̄ ⊆ Dom(fk
m), fk

m[t̄ ] is a straight-line (i.e. the line λ1k
m +fk

m(o)) and fk
m is a bijection

between t̄ and fk
m[t̄ ]. By AxSelf and AxEvTr, respectively, trk(k) = t̄ and trm(k) = fk

m[trk(k)], cf.
remarks below AxEvTr on page 9. Thus trm(k) = fk

m[trk(k)] = fk
m[t̄ ] is a straight-line and f k

m is
a bijection between trk(k) = t̄ and trm(k) = fk

m[t̄ ]. �

Since the life-lines of the observers are straight-lines, if two observers meet in two different
coordinate points then their life-lines have to be the same. Therefore we have to change the twin
paradox relation if we want to treat the twin paradox in Kinem0. We do this by replacing the
accelerating twin with two inertial ones, i.e. we replace the traveling twin with a leaving and an
approaching one.2 So we say that observer m sees observers a, b, c in twin paradox situation in
coordinate points p, q, r if observers a, b meet at q, observers b, c meet at r, observers a, c meet at
p and p, q, r are not collinear and the time coordinates of p, q, r are in this order, i.e. pt < qt < rt,
see Figure 3.1;

��

��

��PSfrag replacements

m

a

b

c

p

q

r

pt

qt

rt

Figure 3.1: for meetTwpm(âb, c)(p, q, r).

meetTwpm(âb, c)(p, q, r) :⇐⇒ meetq
m(a, b) ∧meetrm(b, c) ∧meetpm(a, c) ∧ pt < qt < rt ∧ q /∈ pr.

We say that the (inertial-)twin paradox is true for observers a, b, c at coordinate points
p, q, r according to m if c measures more time between p and r than the sum of what a measures

1We say that a binary relation R is a bijection between two set A and B iff A ⊆ Dom(R), B ⊆ Rng(R) and
R ∩ (A × B) is a bijective function.

2This is the common trick of the literature for talking about the twin paradox in special relativity.
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between p and q and what b measures between q and r:

Twpm(âb < c)(p, q, r) :=
∣∣∣Timem

a (p, q)
∣∣∣ +

∣∣∣Timem
b (q, r)

∣∣∣ <
∣∣∣Timem

c (p, r)
∣∣∣.

AxTwp Every observer observes the twin paradox in all twin paradox situations:

∀m,a, b, c ∈ Ob ∀p, q, r ∈ CD(m) meetTwpm(âb, c)(p, q, r) =⇒ Twpm(âb < c)(p, q, r).

We say that observers m and k are well-configured in coordinate point p iff they see the same
event in p, i.e. evm(p) = evk(p). If we simply say that m and k are well-configured, we mean that
they are well-configured in the origin. Notice that well-configuredness is an equivalence relation
on the set of observers.

The (time-)Minkowski-sphere of an observer m is the set of the time-units of observers
well-configured to m:

MSt
m := {1k

m : k ∈ Ob ∧ 1k
m exists ∧ evm(o) = evk(o)}.

AxDisplace If m is an observer who strongly sees observer k and p is an arbitrary point of m’s
coordinate domain, then there is another observer h whose time-unit is the same as k’s and
who sees the same event in o that m sees in p:

∀m, k ∈ Ob ∀p ∈ CD(m) m
�−→ k =⇒ ∃h ∈ Ob 1k

m = 1h
m ∧ evm(p) = evh(o).

Notice that if observer m strongly sees observer k, then the statement 1k
m ∈ MSt

m follows from
AxDisplace since there is an observer who is well-configured to m and whose time-unit is the same
as k’s (according to m).

For convenience, we introduce the following notation:

p+ :=

{
(pt, . . . , pn) if pt ≥ 0
(−pt, . . . ,−pn) if pt < 0.

Assume that p, q, r ∈ F n. We write convex(p, q, r) iff o, p, q, r are coplanar and q+ is in the
interior of the triangle op+r+, formally: q+ ∈ {λp+ + µr+ : 0 < λ, µ∧ λ+ µ < 1} and or 6= op. A
set H ⊆ F n is called convex if ∀p, q, r ∈ H if op, oq, or are distinct coplanar straight-lines, then
convex(p, q, r) or convex(q, r, p) or convex(r, p, q).

The following theorem gives the promised geometrical characterization for the twin paradox
axiom and answers the question 4.2.10 in [3].

Theorem 3.1.2.

Kinem0 ∪ {AxDisplace} |= AxTwp⇐⇒ ∀m ∈ Ob MS t
m is convex. Therefore

Specrel?
0
∪ {AxLinTime,AxDisplace} |= AxTwp⇐⇒ ∀m ∈ Ob MS t

m is convex.

proof. The heart of this proof is the following lemma:

Lemma 3.1.3.

Kinem0 |= meetTwpm(âb, c)(p, q, r) =⇒
[
Twpm(âb < c)(p, q, r)⇐⇒ convex(1a

m, 1
c
m, 1

b
m)

]
.
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Figure 3.2: for the proof of Lemma 3.1.3.

proof. Let us assume thatm,a, b, c ∈ Ob and p, q, r ∈ CD(m) are such that meetTwpm(âb, c)(p, q, r)

is true. From Kinem0, it is easy to see that for all observersm, k and points x, y ∈ trm(k) ifm
�−→ k

then ∣∣∣Timem
k (x, y)

∣∣∣ =
|x− y|
|1k

m|
(*)

holds. Let us abbreviate (1k
m)+ with k+ throughout this proof.

First, we show that if c+ is on the straight-line a+b+ then c measures the same time between
p, r as a and b do together. Assume that c+ ∈ a+b+. Let s be the intersection of straight-line pr
and the straight-line parallel with a+b+ through q, see Figure 3.2. Then the triangles oa+c+ and
pqs are similar; and the triangles oc+b+ and rsq are similar, too. Thus

|p− q|
|1a

m|
=
|p− s|
|1c

m|
and

|q − r|
|1b

m|
=
|s− r|
|1c

m|
(**)

hold. From this, we have

∣∣∣Timem
a (p, q)

∣∣∣ +
∣∣∣Timem

b (q, r)
∣∣∣ ∗
=
|p− q|
|1a

m|
+
|q − r|
|1b

m|
∗∗
=
|p− s|+ |s− r|

|1c
m|

=
|r − p|
|1c

m|
∗
=

∣∣∣Timem
c (r, p)

∣∣∣.

Observer c measures more time between p and r iff his time-unit is shorter. Thus we get that
Twpm(âb < c)(p, q, r) holds iff convex(1a

m, 1
c
m, 1

b
m). This completes the proof of the lemma. �

Now we return to the proof of Theorem 3.1.2. For proving the “=⇒” part, let take three
points a′, b′, c′ from MSt

m such that oa′, ob′ and oc′ are different coplanar lines. From, AxDisplace
there are three observers a, b, c in twin paradox situation such that 1a

m = a′, 1b
m = b′ and 1c

m = c′.
Thus from Lemma 3.1.3 we get that MS t

m is convex since a′, b′, c′ were three arbitrary points of
it.

The converse is also clear from Lemma 3.1.3 since whenever observers a, b, c are in twin paradox
situation, 1a

m, 1
c
m, 1

b
m are on MSt

m by AxDisplace as we mentioned before. �
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3.2 Relations between the twin paradox and some symmetry ax-

ioms

In this section, we examine the relationship between some symmetry axioms and the twin paradox
but before doing so we introduce some definitions.

Simultaneity of observer k at time t ∈ F observed by observer m is the f k
m-image of the

horizontal hyperplane {t} × F d(k)−1:

simk
m(t) := fk

m

[
{t} × F d(k)−1

]
=

{
p ∈ CD(m) : ∃q ∈ CD(k) (p, q) ∈ fm

k ∧ qt = t
}

p, q are simultaneous, in symbols p ∼k
m q, if they are in the same simultaneity for some t ∈ F , i.e.

∃t ∈ t̄ p, q ∈ simk
m(t). Notice that if f k

m is an injective relation, or equivalently fm
k is a function,

then ∼k
m is an equivalence relation on Rng(f k

m). Also notice that if p ∈ Dom(fm
k ) and fm

k is a
function in p, then p ∈ simk

m(t) iff fm
k (p)t.

Let p, q ∈ F n. Then their Minkowski-product is p • q := ptqt − p2q2 − . . . − pnqn. Notice
that Minkowski-product is a symmetric bilinear function. We say that p and q are Minkowski-
orthogonal, in symbols p ] q, iff p • q = 0. Two straight-lines, say pq and rs, are Minkowski-
orthogonal iff p− q ] r− s. We call a straight-line self-orthogonal if it is Minkowski-orthogonal
to itself. Notice that AxPh? says that a line is photon-line iff it is a self-orthogonal straight-line
or a single point. We call a quadrangle photon-quadrangle if its sides are self-orthogonal.

Proposition 3.2.1. The diagonals of a photon quadrangle are Minkowski-orthogonal.

proof. Let p, q, r and s be the vertexes of a photon-quadrangle such as pq, qr, rs and sp are
self-orthogonal straight-lines. Then from the definition of the Minkowski-orthogonality we get:

p • p− 2p • q + q • q = 0 (3.1)

q • q − 2q • r + r • r = 0 (3.2)

r • r − 2r • s+ s • s = 0 (3.3)

s • s− 2s • p+ p • p = 0 (3.4)

from this by simplifying the equitation (3.1) − (3.2) + (3.3) − (3.4) we get:

−p • q + q • r − r • s+ s • p = 0

which is the same as:
(r − p) • (q − s) = 0.

Thus the diagonals pr and qs of the photon-quadrangle (p, q, r, s) are Minkowski-orthogonal, and
this is what we wanted to prove. �

Let us introduce the following notation for the n-dimensional hyperboloid:

Hyp := {p ∈ F n : p2
t − p2

2 − . . .− p2
n−1 = 1} = {p ∈ F n : p2

t − |ps|2 = 1}.

The following axiom is a special case of Einstein’s special principle of relativity that states
that all inertial observers are equivalent, cf. Einstein’s principle of (general) relativity on page 28,
cf. also, e.g., [1, §5] or [6, p.19].

AxSym If two observers strongly see each other, then they see each other’s clocks go wrong the
same way, formally:

∀m, k ∈ Ob ∀p, q ∈ t̄ m �←→ k =⇒ Timek
m(p, q) = Timem

k (p, q).
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This axiom has the following natural weakened form:

AxSymTime If observers m and k strongly see each other then they both see each others time-unit
changing the same way:

∀m, k ∈ Ob m
�←→ k ∧ evk(o) = evm(o) =⇒ (1k

m)t = (1m
k )t.

Let us also introduce an auxiliary axiom here:

Ax� If observer m strongly sees observer k, then k has a brother k ′ who strongly sees m and
well-configured to k:

∀m, k ∈ Ob m
�−→ k =⇒ ∃k′ ∈ Ob trm(k) = trm(k′) ∧ evk(o) = evk′(o) ∧ k′ �−→ m.

The following theorem gives a geometrical characterization for AxSymTime in the models of
Specrel?0 and some auxiliary axioms.

Theorem 3.2.2.

Specrel?0 ∪ {AxLinTime,AxDisplace,Ax�} |= AxSymTime⇐⇒ ∀m ∈ Ob MS t
m ⊆ Hyp.

proof. In the proof, we will use the following lemma that shows if observer m strongly sees observer
k then two points are simultaneous for k iff the straight-line through these points is Minkowski-
orthogonal to k’s life-line.

Lemma 3.2.3.

Specrel?0 ∪ {AxLinTime} |= m
�−→ k =⇒ [∀p, q ∈ Dom(fm

k ) p ∼k
m q ⇐⇒ p− q ] 1k

m].PSfrag replacements

m k k
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s
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r′

p′

s′

2q − p

Figure 3.3: for the proof of Lemma 3.2.3.

proof. Let m and k be such observers that m strongly sees k. Let the relation v ⊆ Dom(fm
k )×

Dom(fm
k ) be defined as p v q holds iff p − q ] 1k

m. It is easy to see that v is an equivalence
relation. Therefore it is enough to prove that it has the same classes as the relation ∼k

m.
Every class of both relations have a unique representative on trm(k) because of the following:

The relation v has this property because trm(k) is a straight-line by Proposition 3.1.1 which
is not self-orthogonal by AxPh? and AxSelf; and through every point, there is a Minkowski-
orthogonal hyperplane to a non self-orthogonal straight-line which intersect this straight-line in
exactly one point. Relation ∼k

m has a unique representative on trm(k) since for all p ∈ Dom(fm
k )

the fk
m

(
fm

k (p)t1t

)
is on trm(k) and ∼k

m equivalent with p.3

3It is correct to write fk
m

`

fm
k (p)t1t

´

since fk
m is a function in fm

k (p)t1t ∈ t̄, cf. remark 1.
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Let p be an element of Dom(fm
k ) that it is not on the life-line of k. Let r, s be the two points,

on k’s life-line, that can be reached from p by photon-lines, i.e. by self-orthogonal straight-lines.
Let q be the midpoint of r and s, i.e. q = r+s

2 . See Figure 3.3. We complete the proof by showing
that the unique representative of p’s class is this q for both relations. For v, it is true since
pq ] rs follows from Proposition 3.2.1 since q is the intersection of the diagonals of the photon
parallelogram (p, r, 2q − p, s) and r and s are on the life-line of k, cf. Figure 3.3. For proving the
statement for ∼k

m, let us denote the fm
k image of a point x with x′. The statement q ∼k

m p is true,
i.e. p′t = q′t, because of the following: p′, q′, r′ ∈ trk(k) = t̄ since p, q, r ∈ trm(k), q′ is the midpoint
of r′ and s′ by AxLinTime, p′r′ and s′p′ are photon-lines since ps and pr are photon lines. By
AxPh?, r′p′ and p′s′ are one-sloped straight-lines. Thus p′t = q′t. This completes the proof of the
lemma. �
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Figure 3.4: for the proof of Theorem 3.2.2.

We return to the proof of Theorem 3.2.2. Let k be a well-configured observer to m, i.e.
evk(o) = evm(o), and let m strongly see k. By Ax� we can assume that m and k strongly see
each other.

If m and k are brothers according to m, i.e. trm(k) = trm(m) = t̄, then AxSymTime is
equivalent with 1k

m = ±1t ∈ Hyp.
If m and k are not brothers, then let 1k

m be the coordinate point p = (pt, ps). Thus (1k
m)t = pt,

cf. Figure 3.4. AxSymTime is true for k and m iff (1m
k )t = (1k

m)t which is equivalent with the state-
ment 1t ∼k

m (p2
t , ptps) = pt1

k
m by AxLinTime. From Lemma 3.2.3, we get this is equivalent whit the

statement that 1k
m is Minkowski-orthogonal to (p2

t − 1, ptps), i.e. k’s life-line trm(k) is Minkowski-
orthogonal to the the straight-line through 1t and (p2

t , ptps). This Minkowski-orthogonality is
equivalent that the (1, o), (p2

t , ptps), (p
2
t , o) and the (pt, ps), (0, o), (pt, o) right-angled triangles are

similar since the angles at (0, o) and (p2
t , ptps) are the same, see for example, [10, p.6]. This

similarity is equivalent that
p2

t−1
pt|ps|

= |ps|
pt

; and this is equivalent with 1 = p2
t − |ps|2 which is the

same as 1k
m ∈ Hyp.

Since k was an arbitrary observer such that m and k are strongly see each other, this completes
the proof of the Theorem. �

The following corollary of the characterization theorems proved above states that AxSymTime
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is a stronger assumption than AxTwp in the models of Specrel?0 and some auxiliary axioms:

Corollary 3.2.4. Specrel?
0
∪ {AxLinTime,AxDisplace,Ax�} |= AxSymTime =⇒ AxTwp.

proof. The statement is clear from Theorem 3.1.2 and 3.2.2 since Hyp is convex. �

Let us introduce the following axiom system of the special relativity:

Specrel := Specrel0 ∪ {AxSym}.

Corollary 3.2.4 has the following trivial but important consequence:

Theorem 3.2.5. Specrel ∪ {AxLinTime,AxDisplace} |= AxTwp. �

The characterization theorems above also imply that AxSymTime is strictly stronger assump-
tion than AxTwp. Thus it gives a negative answer for the question 4.2.17. in [3].

Corollary 3.2.6. Specrel0 ∪ {AxLinTime,AxDisplace,Ax�} 6|= AxTwp =⇒ AxSymTime.

proof. The statement is clear from Theorems 3.1.2 and 3.2.2 since by the observer-adding construc-
tion mentioned above we can easily construct a model for Specrel0 ∪ {AxLinTime,AxDisplace,Ax�}
where MSt

m is convex but not a subset of Hyp. �

There is an another phenomenon in relativity about moving clocks. We formulate the named
phenomenon with the following axiom:

AxSlowTime Every observer sees every (relatively) moving observer’s clocks slowing down, for-
mally:

∀m, k ∈ Ob m
�−→ k ∧ trm(k) 6= trm(m) =⇒

∣∣(1k
m)t

∣∣ > 1.

This phenomenon also has strong connection with the twin paradox.
We call the less-than-one sloped straight-lines slower-than-light STL straight-lines. We will

generalize this notation on page 26 below. The following axiom states that the uniform motion is
possible for the observers with any speed less than the speed of the light.

AxOb Every STL straight-line is a trace of some observer:

∀m ∈ Ob {trm(k) : k ∈ Ob} ⊇ {l ∈ Linesd(m) : slope(l) < 1}.

The following theorem gives a geometrical characterization for AxSlowTime in the case when
F is the ordered field of the reals.

Theorem 3.2.7. If we assume that F = R, then

Specrel0 ∪ {AxLinTime,AxOb,AxDisplace} |= AxSlowTime ⇐⇒ MS t
m = Hyp.

sketch of the proof. The “⇐=” part is trivial. Let S be an arbitrary plane which contains the
time-axis. We prove the “=⇒” part by proving that the intersection of S with the Minkowski-
sphere is the same as with the d(m) dimensional hyperboloid for every observer m.

For every point p, there is a unique hyperplane which is Minkowski-orthogonal to op. This
hyperplane determines two half-spaces; let us call the upper half-space positive Minkowski
half-space. AxSlowTime is equivalent with the statement (MS t

m)
+

is the subset of the positive
Minkowski half-spaces which determined by the time-unit vector 1t. From this and Lemma 3.2.3
we get that AxSlowTime is equivalent with the statement that (MS t

m)+ is a subset each of the
Minkowski half-spaces determined by the points of (MS t

m)+.
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From AxOb, we get that the intersection of an STL straight-line with (MS t
m)+ is one and only

one point. We associate a function to the intersection of S with (MS t
m)+ from the open interval

(−1, 1) ⊆ F to F+ by the following definition: if x ∈ (−1, 1), then MS t
m(x) is the time part of

the intersection of the STL straight-line through o and (1, x) ∈ S and (MS t
m)+.

We associate a function to the intersection of S and the set Hyp in the same way. From the
definitions, it is not hard to see that both MS t

m(x) and Hyp(x) are differentiable functions whose
differentials are the same. Since F is the ordered field of the reals, MS t

m(x) and Hyp(x) can only
differ in a constant but Hyp(0) = 1t = MSt

m(0). Thus MSt
m(x) = Hyp(x) as we wanted. �

3.3 Twin paradox and the possibility of faster-than-light motion

for observers

In this section, we show that if the twin paradox and some auxiliary axioms are added to Specrel0
then the faster-than-light motion is not allowed for the observers in its models.

The following theorem states that if the twin paradox axiom is true, then there is no faster-
than-light observer in the models of Specrel0 and some auxiliary axioms:

Theorem 3.3.1. Specrel0 ∪ {AxLinTime,AxOb} |= AxTwp =⇒ noFTL.
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Figure 3.5: for the proof of the Theorem 3.3.1.

proof. If there is an FTL observer, say k, then from AxOb there are some observers a and b such
that meetTwpm(âb,m)(p, q, r) and meetTwpk(m̂b, a)(p, r, q), cf. Figure 3.5. Thus from AxTwp

we get Twpm(âb < m)(p, q, r) and Twpk(m̂b < a)
(
fm

k (p), fm
k (r), fm

k (q)
)
. This means that m

measured more time in the section [pr] than a measured in the section [pq] plus b measured in
the section [qr] and a measured more time in the section [pq] than m measured in the section [pr]
plus b measured in the section [rq]. Thus m measures more time in the section [pr] than himself,
and this is impossible.4 �

4Notice that this proof did not use the whole power of the axiom AxOb.
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3.4 Weakened forms of the twin paradox axiom

In this section, we check what happens if we change the quantifiers in the twin paradox axiom;
and we also turn our attention toward what kind of axioms are experimentally testable in some
sense.

If we change the quantifiers in the AxTwp axiom, we get the following ones:

Ax∀∃Twp All observers see twin paradox in some twin paradox situations:5

∀m ∈ Ob ∃a, b, c ∈ Ob ∃p, q, r ∈ CD(m) meetTwpm(âb, c)(p, q, r) ∧ Twpm(âb < c)(p, q, r).

Ax∃∀Twp There is some observer who sees twin paradox in all the twin paradox situations:

∃m ∈ Ob ∀a, b, c ∈ Ob ∀p, q, r ∈ CD(m)

meetTwpm(âb, c)(p, q, r) =⇒ Twpm(âb < c)(p, q, r).

Ax∃∃Twp There is some observer who sees twin paradox in some twin paradox situations:

∃m ∈ Ob ∃a, b, c ∈ Ob ∃p, q, r ∈ CD(m) meetTwpm(âb, c)(p, q, r) ∧ Twpm(âb < c)(p, q, r).

Notice that these axioms have the hierarchy shown in Figure 3.6 since the class of models of
Specrel?

0
closed under taking disjoint union and since in some of the models the twin paradox is

true while in others it is not.
The following corollary shows that Ax∀∃Twp is strictly weaker assumption than the twin

paradox; thus it answers the question 4.2.16 in [3].

Corollary 3.4.1. Specrel0 ∪ {AxLinTime,AxDisplace} 6|= Ax∀∃Twp =⇒ AxTwp.

proof. The statement is clear from Lemma 3.1.3 and Theorem 3.1.2 since by the observer-adding
construction mentioned above we can easily construct a model for the axiom system Specrel0∪
{AxLinTime,AxDisplace} where there are points p, q, r ∈MS t

m such that convex(p, q, r) but MSt
m

is not convex. �

We can interpret Corollaries 3.4.1 and 3.2.6 to says that we cannot prove that Specrel is “true”
in the “physical world” by checking the twin paradox, not even if we assume Specrel0 and checking
all the possible twin paradox situations.

We can associate a naive physical meaning to existential formulas, i.e. formulas that contains
only ∃ quantifier, e.g., Ax∃∃Twp. We can say that they are experimentally testable.

A natural question arises here: is Specrel experimentally testable over some natural axioms of
kinematics? By this question we mean the following: are there some (maybe infinitely many) ex-
istential axioms and some natural consequences of Specrel0 not talking about photons (containing
any kind of quantifiers) whose models are the same as the models of Specrel? Like in the situation
in geometry where there is an existential axiom, i.e. the axiom saying that there is a triangle such
that sum of its angles is π, that lifts the Euclidean plane out of the models of the plane geometries
while the standard axiom of parallelism is not an existential one.

Theorem 3.4.2 shows that the answer for this question is negative. Moreover, Specrel is not
experimentally testable from Specrel0.

Theorem 3.4.2. There is no set of existential formulas which together with Specrel0 have the
same models as Specrel.6

5Since this (the inertial) formulation of the twin paradox loses its meaning when we change some of the quantifiers
to an existential one, we change the axioms to mean what they would were they the accelerated versions.

6The statement remains true if we change Specrel0 in it to any set of consequences of Specrel0.
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0
= {AxSelf,AxPh?,AxEvTr}.

proof. It is easy to see that if some theory Γ is axiomatizable in an other theory Σ by only
existential formulas, then it must be preserved the extensions cf., e.g., [17]. It is clear from the
observers adding construction and Theorem 3.2.2 that we can extend a Specrel model to a Specrel0
model which is not a Specrel model. �
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Chapter 4

Accelerated observers

In this chapter, we extend the range of our interest toward accelerated observers and introduce
some axiom systems that permit their existence. We generalize the theorems and definitions of
Real Analysis that we use in this chapter for arbitrary ordered fields in the Appendix.

4.1 On the possibility of non-inertial motion in models

of Specrel0

In this section, we show that Specrel0 permits acceleration only in its two-dimensional models.
We also draw up a conjecture about the existence of such models of Specrel0 where acceleration
is possible but only in a relative sense, cf. Einstein’s principle on page 28.

Let us recall the following well known theorem from the literature:

Theorem 4.1.1 (Alexandrov-Zeeman). Let n > 2. If f : F n −→ F n is a bijection that
maps one-sloped straight-lines onto one-sloped straight-lines, then f maps any straight-line onto
a straight-line, i.e. f is a collineation.1

From Theorem 4.1.1, it follows that the trace of an observer has to be straight-line in the
more-than-two dimensional models of Specrel0 since it is the image of the time-axis by the world-
view transformation which is a collineation. Therefore we cannot examine accelerated motion of
observers in these models; but we would like to talk about accelerated observers, too. Thus we
have to change our axiom system but before doing so; let us see what is true in the two-dimensional
models of Specrel0.

2

We define the life-curve Trk
m : F −→ CD(m) of observer k as seen by observer m as t 7→

Trk
m(t) := fk

m(t, o).

Proposition 4.1.2. There is a two-dimensional model of Specrel0 where the curve γ : F −→ F 2

is the life-curve of some observer iff Rng(γ) intersects every photon-line once and only once.

proof. It is clear that every life-curve has the named property in the two-dimensional models of
Specrel0 since an observer cannot meet a photon more than once but has to meet every photon.

Let m be an observer in a two-dimensional model of Specrel0 and let γ : F −→ F 2 = CD(m)
be a curve which has the named property. We are going to extend this model with a new observer
k such that Trk

m = γ will hold.

1We call a transformation collineation if it takes straight-lines to straight-lines.
2We will change our axiom system to accommodate accelerated observers in §4.2.
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Figure 4.1: for the proof of the Proposition 4.1.2.

First, we build the world-view transformation f k
m : CD(k) = F 2 −→ F 2 = CD(m) from γ. Let

fk
m((τ, 0)) := γ(τ) for each τ ∈ F . This step will make AxSelf valid for k. For a point p which

is not in the time-axis, let (τ + t, 0) and (τ − t, 0) be the points where the photon-lines through
p intersect the time-axis cf. Figure 4.1. There are two intersections of the photon-lines through
γ(τ + t) and γ(τ − t). Let us choose on the basis of these two points f k

m(p) such that fk
m will take

parallel photon-lines to parallel photon-lines. We have freedom in choosing f k
m just for the first

point. This step will make AxPh valid and will not ruin the validity of AxSelf. Let we change the
even function of m such that we put k into all the events that m sees in the points of Rng(γ).
Then we change the other observers event function via the world-view transformations, cf. the
radar construction on page 35. AxEv also becomes valid after this last step since γ intersects all
the photon-lines. �

Notice that the curve property in Proposition 4.1.2 is independent from the parametrization.
This means that we can rearrange some observer’s inner time via an arbitrary permutation.

The following Corollary shows that a life-line of an observer can be very different from a
straight-line in the two-dimensional models of Specrel0.

Corollary 4.1.3. There is a two-dimensional model of Specrel0 where the life-line of an observer
is dense.3

outlined proof. It is enough to show that there is a dense subset of F 2 which intersects every
photon-line once and only once. If a set intersects the interior of every photon-square, then it is
dense. Since photon-squares have the same cardinality as the photon-lines, the named set can be
easily constructed by transfinite induction. �

Let p ∈ F n. We use the following notation: Λp := {q ∈ F n : slope(p − q) = 1} for the
light-cone (through p). Λ+

p := {q ∈ F n : slope(p− q) = 1 ∧ qt > pt} for the future light-cone.
Λ−

p := {q ∈ F n : slope(p− q) = 1∧ qt < pt} for the past light-cone. I−(p) := {q ∈ F n : slope(p−
q) < 1 ∧ qt < pt} is called chronological past. I+(p) := {q ∈ F n : slope(p− q) < 1 ∧ qt > pt} is

3A subset of F n is called dense if it intersects every non empty open set.
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called chronological future. For these notion, cf., e.g., [11, §6]. Two distinct points, p and q are
time-like separated iff they are on a straight-line of slope less-than-one. They are light-like
separated iff they are on a straight-line of slope one. They are space-like separated iff they
are on a straight-line of slope more-than-one. We say that a set H ⊂ F n is slower-than-light
(STL) iff any two distinct elements of it are time-like separated. A set H ⊂ F n is faster-than-
light (FTL) iff any two distinct elements of it are space-like separated. A curve γ : F −→ F n

is STL/FTL iff Rng(γ) is STL/FTL. We say that a body b is STL/FTL according to observer m
(in symbols b STL m / b FTL m) if its trace is STL/FTL in CD(m). Also notice that most of the
curves are neither STL nor FTL. We call p time-like vector iff its slope is less-than-one. We
call p light-like vector iff its slope equals one. We call p causal vector iff its slope is less or
equal to one. Let γ : F → F n be a curve. The curve γ is called time-like if it is differentiable
and its derivate is a time-like vector in each point, i.e. ∀t ∈ F solpe(γ ′(t)) < 1. The curve
γ is called causal if if it is differentiable and its derivate is a causal vector in each point, i.e.
∀t ∈ F solpe(γ ′(t)) ≤ 1. We call p future-directed vector if pt > 0. We say that a time-like
curve is well-parametrized iff its derivate, in every point, is a future-directed vector that has
one Minkowski-lenght, i.e. ∀t ∈ F µ(γ ′(t)) = 1 ∧ γ ′(t)t > 0. By a chord of γ we mean a
straight-line passing through to two distinct points of Rng(γ). The following theorem shows how
the (differentiable) time-like, STL and causal curves are related:

Theorem 4.1.4. Let γ : F −→ F n be a curve. Then

(i) γ is time-like
F=R
=⇒ γ is STL =⇒ γ is causal.4

(ii) γ is causal ; γ is STL 6⇒ γ is time-like.

proof. Assume γ is not STL and F = R.5 Then it has a light-like or a space-like chord. Let
H be a hyperplane that contains this chord and does not contain time-like straight-lines. Let
πH : R

n −→ R be the parallel projection to t̄ w.r.t. H, i.e. πH(p) = t iff p − (t, o) is parallel
to H. Thus by applying the Rolle’s Theorem to γ ◦ πH we get that there is c ∈ F such that
(γ ◦ πH)′(c) = 0. Thus γ ′(c) is parallel with H since (γ ◦ πH)′(c) = πH(γ′(c)) by Corollary A.0.8.
Since H does not contain time-like straight-lines, γ ′(t) is not time-like. Thus γ is not time-like.

If γ is an STL curve, then every chord of it is time-like therefore its derivate is a causal vector
in each point. Thus γ is a causal curve.

Any self-orthogonal line can be parametrized to be a causal curve but it cannot be the range
of an STL curve.

It is easy to construct a curve that has causal derivate vectors but every chord of it is time-like,
e.g., F 3 t 7→ (t, 1

3 t
3 + t) ∈ F 2 is good, cf. Figure 4.2. �

Conjecture 2. Assume γ is (continuously) differentiable and F = R. γ is STL iff γ is causal
and the set {t ∈ F : γ ′(t) is light-like} does not contain intervals.

In F n, an STL set intersects every horizontal (orthogonal to the time-axis) hyperplane at most
once, and an FTL set intersects every vertical (parallel with the time-axis) straight-line at most
once. Therefore we can associate a function from a subset of F to F n−1 to every STL set and a
function from a subset of F n−1 to F to every FTL set. We call these functions
associated functions.

Proposition 4.1.5. The associated function to an STL/FTL set is uniformly continuous.

4The condition F = R can be changed with a first order axiom scheme, cf. (???)
5If F 6= R then there are non STL time-like curves, e.g., if ∅ 6= H ⊂ F is a closed and open set then the set

{(t, 0) ∈ F 2 : t ∈ H} ∪ {(t, 1) ∈ F 2 : t 6∈ H} can be parametrized to be a good counterexample.
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on the proof. The proof can be read from Figure 4.3. Moreover, the associated functions f have
the property |f(x)− f(y)| < |x− y| and this is also clear from the definitions. �

We say that body b is eternal for observer m (in symbols b ETR m) if b is present in every
simultaneity of m, formally: ∀t ∈ t̄ trm(b)∩simm

m(t) 6= ∅. We also say that body b is everseen for
observer m (in symbols b EVSm) if the life-line of b intersects all of the future and past light-cones
through the points of the time-axis, formally: ∀t ∈ t̄ trm(b) ∩ Λ−(t) 6= ∅ ∧ trm(b) ∩ Λ+(t) 6= ∅ .

In physics, Einstein’s principle of (general) relativity (PR) says that all observers are equivalent
from the point of view of physics, cf., e.g., [1, §5] or [6, p.130]. We get a stronger version of PR
if we change from the physical point of view to the point of view of the formal logic, cf. [14,
§2.8.3].6 From this point of view, we can say that the strong version of PR is true in a frame
model if the automorphism group acts transitively on the Obn relations, i.e. iff for every two
(same dimensional) observers m and k there is some automorphism ψ ∈ Aut(M) of the frame
model M such that ψ(m) = k, cf. [14, Theorem 2.8.20]. The following conjecture is about the
existence of some two-dimensional frame models of Specrel0 where this strong version of PR holds
but non-inertial motions are allowed for the observers. Notice that in the higher dimensional
models of Specrel0 this is impossible, cf. the Alexandrov-Zeeman theorem on page 24.

Conjecture 3. There is a two-dimensional model M of Specrel0 where “the strong version of
Einstein’s principle of relativity” is true and ∃m, k ∈ Ob trm(k) 6∈ Lines.

The idea of the conjectured proof is the following: If we add an observer to every (or every
continuous) EVS slower-than-light curve by the construction used in Propositions 4.1.2 in both
possibilities, then we get the desired model.

4.2 The accelerating axiom

In this section, we extend Specrel to Specrel+ where the acceleration will be allowed for observers
and introduce the axiom AxAcc that will give a connection between the coordinate systems of the
accelerated observers and of the inertial observers.

We say that k,m are co-moving observers at q ∈ F n, in symbols k �q m, if (1)-(3) below
hold:

(1) evm(q) = evk(q) ⊇ {k,m}

(2) fm
k and fk

m are injective functions on Bε(q) for some ε ∈ F+ , and

(3) ∀ε ∈ F+ ∃δ ∈ F+ ∀p ∈ Bδ(q)
∣∣p− fm

k (p)
∣∣ ≤ ε

∣∣p− q
∣∣ and

∣∣p− fk
m(p)

∣∣ ≤ ε
∣∣p− q

∣∣.

Notice that co-moving observers have to have the same dimensions. Behind the definition of
the co-moving observers is the following intuitive image: as we zoom into smaller and smaller
neighborhoods of a given coordinate point the world-views of two observers are more and more
the same.

Also notice that there are some redundancies in the definition of the co-moving observers.
evm(q) = evk(q) immediately follows from (3) if we choose p and q to be the same. It is also easy
to prove that (2) follows from (3) by Convention 3.

If the restriction of the world-view transformation to some sphere is a function, then we can
talk about its differentiability.7

6The footnotes of the works of H. Andréka, J. X. Madarász and I. Németi very often contain important infor-

mations, so do not omit them.
7If a restriction of a relation is a function, we call this relation differentiable if the restriction is differentiable

and the differential of this relation is the differential of the restriction.
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(3.1) fk
m and fm

k are differentiable in q and their differentials are the identity map.

Proposition 4.2.1. (1), (2), (3) are true for two observers iff (1), (2), (3.1) are true
for them.

proof. The proof of the statement is straightforward from the definitions. �

Proposition 4.2.2. The co-moving relation �q is an equivalence relation on Dom(�q), i.e. on
the set {k ∈ Ob : ∃m ∈ Ob m �q k}.
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Figure 4.4: for the proof of Proposition 4.2.2.

proof. The symmetry of �q is trivial. Assume m �q h and h �q k. There is some δ such that
fh

m and fh
k are injective functions on Bδ(q). From differentiability of f k

h and fm
h follows their

continuity. Therefore there is some η such that fm
h [Bη(q)] ⊆ Bδ(q) and fm

h is an injective function
on Bη(q). Similarly there is some ε such that f k

m[Bε(q)] ⊆ Bδ(q) and fk
h is an injective function

on Bε(q) cf. Figure 4.4. For these ε, δ and η the following holds: f k
m

∣∣
Bε(q)

= fk
h

∣∣
Bδ(q)

◦ fh
m

∣∣
Bη(q)

,

since evh

∣∣
Bδ(q)

⊆ evk

∣∣
Bε(q)

∩ evm

∣∣
Bη(q)

, cf. remarks on page 7 below convention 3. From this,

the transitivity can be easily derived since composition of injective and differentiable functions
is injective and differentiable and since the differential of the composition of two functions is the
composition of their differentials, cf. the chain rule on page 39.

The reflexivity follows from the symmetry and the transitivity of an arbitrary relation on the
domain.

(
moreover fk

k

∣∣
Bε(q)

= Id
∣∣
Bε(q)

is also true for some ε if k ∈ Dom(�q)
)
. �

We introduce a new unary relation symbol Ib for inertial bodes. The observers in the set
IOb := Ob∩Ib are called inertial observers. If Ax is an axiom, then Ax in will denote the axiom
we get by restricting it to the inertial observers, i.e. changing all occurrences of Obn to IObn.

We introduce the following axiom to exclude the undesirable two-dimensional models of
Specrel0, cf. Proposition 4.1.2.

AxLine Traces of the observers are straight-lines

∀m, k ∈ Ob trm(k) ∈ Linesd(m).

We also introduce the following weakened form of AxSym:

AxSym0 If two observers strongly see each other, then they see each other’s clocks go wrong the
same way in absolute value, formally:

∀m, k ∈ Ob ∀p, q ∈ t̄ m �←→ k =⇒
∣∣Timek

m(p, q)
∣∣ =

∣∣Timem
k (p, q)

∣∣.
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The following axiom is a very convenient technical axiom:

AxExt If two observers’ event function is the same, then they are the same observers.

∀m, k ∈ Ob evm = evk =⇒ m = k.

Let us introduce the following axiom system as the first step towards generalizing Specrel for
being able to discuss accelerated observers:

Specrel+ := {AxSelf,AxExt,AxPhin,AxEvin,AxSymin
0 ,AxLinein,AxObin}.

We introduce the promised axiom that connects the coordinate systems of the accelerated and of
the inertial observers:

AxAcc At any point on the life-line of any observer there is a co-moving inertial observer:

∀k ∈ Ob ∀q ∈ trk(k) ∃m ∈ IOb m �q k.

Notice that, form Specrel+, it follows that two co-moving inertial observer have to be the same,
by AxExt, Theorem 4.2.3 and Proposition 4.2.2. Thus, form AxAcc and AxSelf, we get that for all
k ∈ Ob and there is an unique inertial co-moving observer. For this unique observer we use the
notation kt and we call it the inertial co-moving observer of k at t.

In an arbitrary ordered field, the basic tools of the Real Analysis are not present. For example
the Bolzano theorem, which says that the continuous image of an interval is an interval, is not
true in any other ordered field than the field of the real numbers. Since R is the only connected
ordered field, the characteristic function of a closed and open set is a good counterexample in the
other ordered fields. To replace the missing tools, we will introduce an axiom scheme called IND,
see below.

Let ϕ be a first-order formula in a language L that contains a binary relation symbol ≤ and a
unary relation symbol F ; and let t, a1, . . . , an be all the free variables of ϕ. We use the following
abbreviation for stating that b ∈ F is a bound of the set defined by the formula ϕ on F when
using a1, . . . an as fixed parameters:

boundϕ(b) :⇐⇒ ∀t ∈ F ϕ(t) =⇒ t ≤ b.

AxSupϕ The set {t ∈ F : ϕ(t, a1, . . . , an)} defined by ϕ when using a1 . . . an as fixed parameters
has a supremum if it is nonempty and bounded i.e.:

∀a1, . . . , an [∃t ∈ F ϕ(t)] ∧ [∃b ∈ F boundϕ(b)] =⇒
[∃d ∈ F ∀c ∈ F boundϕ(c) =⇒ d ≤ c ∧ boundϕ(d)].

Let us introduce the following axiom scheme for filling the undesired gaps in the fields different
from R:

INDL := {AxSupϕ : ϕ is a first-order formula in the language L}.

We omit the subscript L of the INDL if L is our frame language.
Let us introduce the following two axiom systems for the accelerated version of the special

relativity theory:

AccRel0 := Specrel+ ∪ {AxAcc,AxEvTr}.

30



AccRel := Specrel+ ∪ {AxAcc,AxEvTr, IND}.
Notice that AccRel is an extension of Specrel+, i.e. if Ob = IOb in a model of AccRel then it is a
model of Specrel+.

Let

µ(p) :=





√∣∣∣p2
t − |ps|2

∣∣∣ if p2
t − |ps|2 ≥ 0

−
√∣∣∣p2

t − |ps|2
∣∣∣ otherwise

be the Minkowski-length of p ∈ F n and let the Minkowski-distance between p and q be
µ(p, q) := µ(p − q). We call a transformation Poincaré-transformation if it preserves the
Minkowski-distance.

Let ρ : F 2 → F 2 denote “the reflection to the x = y-line”, i.e. ρ(x, y) = (y, x) for all
x, y ∈ F . Notice that ρ is a linear transformation which does not preserve the Minkowski-length
but preserves the absolute value of the Minkowski-length since µ(ρ(p)) = −µ(p). We will use the
following theorem from the literature:

Theorem 4.2.3. Assume Specrel+. Let m, k be inertial observers. Then (i) and (ii) below hold:

(i) fm
k is a Poincaré-transformation if n > 2.

(ii) fm
k is a Poincaré-transformation composed perhaps with the reflection ρ if n = 2.

Theorem 4.2.3 is an immediate corollary of theorems 1.2 and 1.4 in [1].
Let the function ι : F → F n be defined as ι : t 7→ (t, o). With these notion we get that

Trk
m = ι ◦ fk

m.
The following proposition says that, according any inertial observers, the life-curve of every

observer is differentiable and the derivate of it is the time-unit vector of the inertial co-moving
observe.

Proposition 4.2.4. Assume AccRel0 and m ∈ IOb, k ∈ Ob. Then Trk
m is differentiable and

Trk
m

′
(t) = 1kt

m. Thus µ
(
Trk

m
′
(t)

)
= ±1. Moreover,if k STL m, then µ

(
Trk

m
′
(t)

)
= 1.

proof. Let m ∈ IOb, k ∈ Ob and t ∈ F ; and let k and kt ∈ IOb be co-moving observers
in ι(t) = (t, o). Then Trk

kt

′
(t) = (ι ◦ fk

kt
)′(t) = dι(t)f

k
kt

(
ι′(t)

)
= 1t by Theorem A.0.6 since

ι′(t) = 1t and dι(t)f
k
kt

= Id by Proposition 4.2.2. Thus Trk
m
′
(t) = (Trk

kt
◦fkt

m )′(t) = fkt
m

(
Trk

kt

′
(t)

)
−

fkt
m (o) = fkt

m (1t) − fkt
m (o) = 1kt

t by Corollary A.0.8 since f kt
m is affine and Trk

kt

′
(t) = 1t. By

Theorem 4.2.3, f kt
m preserves the absolute value of the Minkowski-length, i.e. for all p, q ∈ F n∣∣µ(fkt

m (p), fkt
m (q))

∣∣ = |µ(p, q)|. Thus
∣∣µ

(
Trk

m
′
(t)

)∣∣ =
∣∣µ

(
fkt

m (1t), f
kt
m (o)

)∣∣ = |µ(1t, o)| = 1. If k STL

m then µ
(
Trk

m
′
(t)

)
≥ 0. Thus µ

(
Trk

m
′
(t)

)
= 1. This is what we wanted to prove. �

Proposition 4.2.5. Assume AccRel. Let m ∈ IOb, k ∈ Ob. Then(i) and (ii) below hold:

(i) Trk
m is time-like iff Trk

m is STL.

(ii) Trk
m is STL or FTL.

proof. (i) If Trk
m is time-like, then it is STL, by Proposition A.0.15. Trk

m is differentiable and
µ
(
Trk

m(t)
)

= 1 for all t ∈ t̄ by Proposition 4.2.4. Thus, if Trk
m is STL, then it is time-like, too.

(ii) By Proposition A.0.15, it is enough to prove that Trk
m does not have light-like chords.

In the case when n = 2, if Trk
m has a light-like chord then it has a light-like derivate by

Corollary A.0.13 since a 1-dimensional subspace of F 2 that contains a light-like chord must be a
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self-orthogonal straight-line. This contradict the fact that Trk
m cannot have light-like derivatives

by Proposition 4.2.4.
In the case when n > 2, Trk

m cannot have light-like or space-like derivatives by Proposition
A.0.15 and Theorem 2.4.2. Thus it cannot have light-like or space-like chords, either, by Corollary
A.0.13 since for every light-like chord {p, q} there is an (n− 1)-dimensional subspace H such that
p− q ∈ H. �

For any γ : F ⊃ [a, b] −→ F n STL curve, let the Minkowski-length of γ be defined as:

µ(γ) := inf{
k∑

i=0

µ
(
γ(qi)− γ(qi−1)

)
: a = q0 < q1 < . . . < qk = b}.

In the definition of the Minkowski-length, we use infimum since in Minkowski geometry the triangle
inequality holds in the reverse way in triangles whose sides are STL, cf. the inertial twin paradox.

We call a curve Minkowski parametrized if it is parametrized by its Minkowski-length.
The following theorem states that each STL observer’s life-curve must be Minkowski parametrized

in the models of AccRel if F is the ordered field of the real numbers.

Theorem 4.2.6. If we assume F = R, then

AccRel |= ∀m ∈ IOb k ∈ Ob k STL m =⇒ µ(Trk
m

∣∣∣
[a,b]

) = b− a.

proof. The proof of the theorem is based on the following lemma:

Lemma 4.2.7. Assume AccRel0. If m ∈ IOb, k ∈ Ob and k STL m, then for all ε ∈ F+ the
following holds:

∀q ∈ F ∃δ ∈ F+ ∀p ∈ (q, q + δ)
∣∣∣µ

(
Trk

m(p)− Trk
m(q)

)
− (p− q)

∣∣∣ ≤ ε(p− q).

proof. If p ∈ F , then we use the notation p̃ for (p, o) throughout this proof. Notice that this
notation implies

∣∣p̃ − q̃
∣∣ = p − q if q < p. It is enough to prove the lemma in the case when m

is the inertial co-moving observer of k in the point q̃, since the Minkowski-distance between two
events is the same for all the inertial observers, cf. Theorem 4.2.3.

In this case, we know that

Trk
m(p) := fk

m(p̃) and Trk
m(q) := fk

m(q̃) = q̃. (*)

Since m and k are co-moving at q, we get:

∣∣Trk
m(p)− p̃

∣∣ =
∣∣fk

m(p̃)− p̃
∣∣ ≤ ε

∣∣p̃− q̃
∣∣. (**)

From these we get:

∣∣∣
∣∣Trk

m(p)− Trk
m(q)

∣∣−
∣∣p̃− q̃

∣∣
∣∣∣ ≤

∣∣∣Trk
m(p)− Trk

m(q)− (p̃− q̃)
∣∣∣ ∗
=

∣∣∣Trk
m(p)− p̃

∣∣∣
∗∗
≤ ε

∣∣p̃− q̃
∣∣ = ε(p− q) (4.1)

if |p− q| < δ for some δ since
∣∣|a| − |b|

∣∣ ≤ |a− b| holds for all a, b ∈ F n.
The following inequality holds

∣∣∣µ
(
Trk

m(p)− Trk
m(q)

)
−

∣∣Trk
m(p)− Trk

m(q)
∣∣
∣∣∣ ≤ ε

∣∣∣Trk
m(p)− Trk

m(q)
∣∣∣ (4.2)
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if |p− q| < δ for some δ since the quotient of the Minkowski- and the Euclidean-length of some
vector tends to 1 as the vector tends to vertical and Trk

m(p)−Trk
m(q) tends to vertical as p tends

to q.
From the triangle inequality, we get:

∣∣∣Trk
m(p)− Trk

m(q)
∣∣∣

∗
≤

∣∣∣Trk
m(p)− p̃

∣∣∣ +
∣∣p̃− q̃

∣∣ ∗∗
≤ (ε+ 1)

∣∣p̃− q̃
∣∣ = (ε+ 1)(p− q). (4.3)

From inequalities 4.2 and 4.3, we get:

∣∣∣µ
(
Trk

m(p)− Trk
m(q)

)
−

∣∣Trk
m(p)− Trk

m(q)
∣∣
∣∣∣ ≤ ε(ε + 1)(p− q). (4.4)

From inequalities 4.1 and 4.4, we can easily derive the desired one by using the triangle inequality.
Thus we completed the proof of the lemma. �

We return to the proof of Theorem 4.2.6. Let Q = {qi : a = q0 < q1 < . . . < qk = b}
be an arbitrary partition of the interval [a, b]. For every p ∈ [a, b] there is some δp such that
Lemma 4.2.7 holds for ε. Since F is the ordered field of the reals, [a, b] is compact. So we can
choose finite many of these p’s such as B(p) := Bδp(p)’s cover [a, b]. Let us choose partition
P = {pi : a = p0 < p1 . . . < p2n = b} such that B(pi)’s cover [a, b], all qi’s are among the
pi’s and p2i+1 ∈ [a, b] ∩ B(p2i) ∩ B(p2i+2). Thus we get a refinement of partition Q such that∣∣µ

(
Trk

m(pi+1)− Trk
m(pi)

)
− (pi+1 − pi)

∣∣ ≤ ε(pi+1 − pi) hold for all pi, pi+1 ∈ P.
By adding these inequalities and applying the triangle inequality, we get the following:

∣∣∣∣∣
2n∑

i=0

µ
(
Trk

m(pi+1)− Trk
m(pi)

)
− (b− a)

∣∣∣∣∣ ≤

2n∑

i=0

∣∣∣µ
(
Trk

m(pi+1)− Trk
m(pi)

)
− (pi+1 − pi)

∣∣∣ ≤
2n∑

i=0

ε(pi+1 − pi) = ε(b− a).

Since ε was an arbitrary element of F+ and Q was an arbitrary partition of [a, b], we get that
µ(Tmk

m

∣∣
[a,b]

) = b− a as we wanted. �

Question 2. Does Theorem 4.2.6 remain valid if F is not the ordered field of the reals? We
conjecture that the answer is yes; but it is not straightforward to prove it, since the Minkowski-
length of a curve is not a first-order definition therefore IND cannot be used here directly.

4.3 Twin paradox with accelerated observers

The function πt : F n → F is defined as πt : p 7→ pt. Let the function τ k
m : F → F be defined as

τk
m := ι ◦ fk

m ◦ πt = Trk
m ◦ πt.

The following theorem is the key theorem for proving that the twin paradox is true in the
models of Accrel, cf. Theorem 4.3.2.

Theorem 4.3.1. Assume AccRel, x, y ∈ F , x < y and m ∈ IOb, k ∈ Ob are such observers that
k STL m. Then y − x ≤

∣∣τk
m(y)− τk

m(x)
∣∣. Moreover, if Trk

m(p)s 6= Trk
m(q)s for some p, q ∈ [x, y],

then y − x <
∣∣τk

m(y)− τk
m(x)

∣∣.
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proof. Throughout this proof, we omit the sub and superscripts of τ k
m and denote Trk

m with
γ. τ ′(t) := (γ ◦ πt)

′(t) = πt(γ
′(t)) by Corollary A.0.8 since πt is a linear map. µ(γ ′(t)) = 1

by Proposition 4.2.4. Thus |τ ′(t)| = |πt(γ
′(t))| ≥ 1 and equal with 1 iff γ ′(t) is vertical since

a the first coordinate of a Minkowski-one-length vector is always greater-than-one and equals
one iff the named vector is vertical. Thus if there were some x, y ∈ F such that x < y and
y − x > |τ(y)− τ(x)|, then from Theorem A.0.11 there were some t ∈ (x, y) such that |τ ′(t)| =∣∣ τ(y)−τ(x)

y−x

∣∣ < 1. This contradicts |τ ′(t)| ≥ 1. Thus y − x ≤ |τ(y) − τ(x)|. So we have completed
proving the first statement of the theorem.

It is clear that τ is injective since γ is STL. From Theorem A.0.3 it is clear that τ is monotonous,
i.e. [∀x, y ∈ F x < y ⇒ τ(x) < τ(y)] ∨ [∀x, y ∈ F x < y ⇒ τ(y) < τ(x)], since it is continuous
and injective. For proving the second part of the theorem, let us assume that there are some
p, q ∈ [x, y] where γ(p)s 6= γ(q)s (we can assume that p < q). Thus form Corollary A.0.13, we get
that there is some t ∈ (p, q) such that γ ′(t) is not vertical. Thus |τ ′(t)| > 1 and therefore there
must be some r, s ∈ (p, q) such that r > s and r − s < |τ(r) − τ(s)|. Since τ is monotonous, we
get that y−x < |τ(y)− τ(x)| by adding the inequalities y−r ≤ |τ(y)− τ(r)|, r−s < |τ(r)− τ(s)|
and s− x ≤ |τ(s)− τ(x)|. This completes the proof of the second statement. �

Let us formulate the accelerated version of the twin paradox. We say that two observers a, i
are in twin paradox relation at coordinate points p, q in the coordinate domain of observer m
if:

Twpm(a ≤ i)(p, q) :⇐⇒ Timem
a (p, q) ≤ Timem

i (p, q).

AxTwpAcc The inertial observers measure more or equal time between two meeting points than
the other observers:

∀m, i ∈ IOb ∀a ∈ Ob ∀p, q ∈ CD(m) meetq
m(a, i) ∧meetpm(a, i) =⇒ Twpm(a ≤ i)(p, q).

Theorem 4.3.2. AccRel |= AxTwpAcc.

proof. From the definition of the relation Time, it follows that we can assume that m = i, cf. the
remark on page 13. In the case when m = i, Tra

i is STL by Proposition 4.2.5 since it has a vertical
chord. Therefore a STL i. Thus we can use Theorem 4.3.1.

We use it in the following way: Let x := f i
a(q)t and y := f i

a(p)t. We can assume that x < y.
It is easy to see that pt = πt(p) = τa

i (y) and qt = πt(q) = τa
i (x) since p, q ∈ t̄. Thus

Timei
a(p, q) = |f i

a(p)t − f i
a(q)t| = y − x ≤ |τa

i (y)− τa
i (x)| = |pt − qt| = Timei

i(p, q).

This completes the proof of the theorem. �

If we assume that F is the ordered field of the reals, then Theorem 4.3.2 is an immediate
corollary of Theorem 4.2.6 since between two points the straight-line has the longest Minkowski-
length among all the STL lines.

Without IND, Theorem 4.3.2 does not remain true if F is not the ordered field of the reals.
Since there are “holes” in the other ordered fields and in such a “hole” the observers clock can
jump ahead and ruin the twin paradox. The axiom scheme IND is a tool for filling this kind of
“holes” but it can fill only the first-order definable ones.

4.4 Two possible ways for constructing accelerated world-views

In this section, we introduce two observer-adding construction steps and formulate two conjectures
about them.

34



We call radar construction the following one: Let M be a two-dimensional model of Specrel0
or Specrel+, let m be an observer in M and let γ : F −→ CD(m) be a curve that intersects every
self-orthogonal straight-line at most once. We construct a new model M

rad
m,γ where γ is going to

be the life-curve of the only new observer k in m’s coordinate domain. Let us choose the f k
m

transformation such that it takes parallel self-orthogonal straight-lines to parallel self-orthogonal
straight-lines and let (p, q) ∈ f k

m iff p is the intersection of two self-orthogonal straight-lines through
(τ − t, 0) and (τ + t, 0) while q is the intersection of two self-orthogonal straight-lines through
γ(τ − t) and γ(τ + t), cf. Figure 4.1. Let the event function of m in Mrad

m,γ be ev+
m(p) := evm(p) if

p /∈ Rng(γ) and ev+
m(p) := evm(p)∪{k} if p ∈ Rng(γ). Let ev+

h := fh
m ◦ ev+

m be the event function
of an other observer h.

It is easy to see that the radar construction preserves the axioms AxEvTr, AxPhTr and AxSelf.

Question 3. For what kind of curves, can the radar construction be extended in higher dimen-
sions?

We call a transformation of F n future preserving Poincaré transformation if it is a
Poincaré transformation which takes future light-cones to future light-cones. We use the symbol
Poi+ for the set of the future preserving Poincaré transformations.

AxPoi+ For every inertial observer m and future preserving Poincaré transformation f , there is
an inertial observer k such that the world-view transformation between m and k is f

∀m ∈ IOb ∀f ∈ Poi+ ∃k ∈ IOb fk
m = f .

Conjecture 4. If we assume F = R, M |= AccRel ∪ {AxPoi+}, m ∈ IOb2 and γ : F −→ CD(m)
is a well-parametrized time-like curve, then M

rad
m,γ |= AccRel ∪ {AxPoi+}.

�������
� ��

��
PSfrag replacements

h2
m Trk

m = γ

h1

t1

t2

s

simh2
m (t2)

simh1
m (t1)

Figure 4.5: for the tangent construction.

There is an another natural way of building a new observer’s world-view from a time-like curve
in some inertial observers word view. The following construction is called tangent construction:
Let M be a model of Specrel+, let m be an inertial observer and let γ : F −→ CD(m) be a time-like
curve. Like in the radar construction, we construct a new model M

tan
m,γ where γ is going to be
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the life-curve of the only new observer k in m’s coordinate domain. Let the f k
m transformation

be constructed by the following way: Let Trk
m := γ. Since γ is differentiable and since AxPoi+

there is some inertial observer, say h, whose life-line tangents γ and well-configured to k at the
tangent point. (The well-configuredness has meaning in this situation since evk(0) has already
been defined.) Let the simultaneity of k through this tangent point of Trk

m be the same as the
simultaneity of h through this point, cf. Figure 4.5. Let the event function of m in M

tan
m,γ be

ev+
m(p) := evm(p) if p /∈ Rng(γ) and ev+

m(p) := evm(p) ∪ {k} if p ∈ Rng(γ). Let ev+
h := fh

m ◦ ev+
m

be the event function of an other observer h.
Notice that if the trace of the observer is not a straight-line than his simultaneities have an

intersection, i.e. the world-view transformation is not injective, cf. Figure 4.5.

Conjecture 5. If we assume F = R, M |= AccRel ∪ {AxPoi+}, m ∈ IOb and γ : F −→ CD(m) is
a continuously differentiable well-parametrized time-like curve, then Mtan

m,γ |= AccRel ∪ {AxPoi+}.

4.5 The uniformly accelerated observer

Figure 4.6: the coordinate system of the uniformly accelerated observer.
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Appendix A

Analysis over arbitrary ordered fields

In this chapter, we recall some statements and definitions from real analysis and generalize them
for arbitrary ordered fields by using the axiom scheme IND. The power of this axiom scheme can
easily be illustrated by the next proposition.

Let M be a frame model. An n-ary relation R ⊆ F n is said to be definable in M iff there is a
formula ϕ with only free variables x1, . . . , xn, y1, . . . , yk and there are a1, . . . , ak in the universe of
M such that R = {(p1, . . . , pn) ∈ F n : M |= ϕ(p1, . . . , pn, a1, . . . , ak)}. Notice that IND says that
every non empty, bounded and definable subset of F has a supremum.

Proposition A.0.1. IND |= F is real-closed.1

proof. Let p(y) be the odd degree polynomial a2n+1y
2n+1 + . . .+ a1y + a0. It is enough to prove

that p(y) has a root when a2n+1 > 0. Let H := {t ∈ F : p(t) < 0}. It is clear that H is not empty,
bounded and definable. From IND, it follows that H has a supremum, say s. Both {t : p(t) > 0}
and {t : p(t) < 0} are open sets, since p(y) is continuous. Thus p(s) cannot be negative since s is
an upper bound of H, and cannot be positive since s is the smallest upper bound, i.e. p(s) = 0 as
desired.

Let a be a positive element of F and let H := {y ∈ F : y2 < a}. Then H is not empty,
bounded and definable. From IND, it follows that H has a supremum and from the same reasons
as before this supremum is a square root of a. �

Let a, b, c ∈ F . We say that b is between a and c iff a < b < c or a > b > c. In this
case, we write Bw(a, b, c). We use the following notations: [a, b] := {t ∈ F : a ≤ t ≤ b},
(a, b) := {t ∈ F : a < t < b}, [a, b) := {t ∈ F : a ≤ t < b} and (a, b] := {t ∈ F : a < t ≤ b}.
Convention 5. Whenever we write [a, b], we assume that a, b ∈ F and a < b. We also use this
convention for [a, b), (a, b] and (a, b).

Lemma A.0.2 (Cousin’s lemma). Assume IND. Let A be a set of some subintervals of [a, b]
which has the following properties:

(i) beginable: for each x ∈ [a, b], A contains every small enough right and left neighborhood
of x, i.e. ∀x ∈ [a, b] ∃c, d ∈ F c < x < d ∀y ∈ [c, d] ∩ [a, b] (y < x⇒ [y, x] ∈ A) ∧ (x < y ⇒
[x, y] ∈ A).

(ii) connectable: if [x, y], [y, z] ∈ A then [x, z] ∈ A,

0Throughout this section, we used only that 〈F,≤, ·, /, +,−〉 is an (linearly) ordered (commutative) field and
the symbols ≤, ·, /, +,− are in the language of INDL.

1An ordered field F is called real-closed if every positive element has a square root and every polynomial of
odd degree has a root.
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(iii) definable: the set {t ∈ F : [a, t] ∈ A} is definable.

Then [a, b] ∈ A.

proof. From IND, it follows that the set H := {x ∈ F : a < x ∧ ∀t ∈ (a, x) [a, t] ∈ A} has a
supremum since it is a definable, non-empty (since A is beginable) and bounded set. Let us call
this supremum s. We complete the proof by proving that [a, s] ∈ A and s = b.

Since A is beginable, there is a c ∈ [a, s) such that [c, s] ∈ A. Since s is the supremum of
H, for all t ∈ (a, s) [a, t] ∈ A. Thus [a, c] ∈ A. Thus by the connectability of A, we get that
[a, s] ∈ A.

If s < b, then there is an e ∈ (s, b] such that [s, t] ∈ A for all t ∈ (s, e] since A is beginable.
Thus we get that for all t ∈ (s, e] [a, t] ∈ A by using the connectability of A and the fact that
[a, s] ∈ A. But then, for all t ∈ (a, e] [a, t] ∈ A. This contradicts the fact that s is the supremum
of the set H therefore s = b.2 �

A set H ⊆ F is called open if ∀x ∈ H ∃a, b ∈ H x ∈ (a, b) ⊂ H. The open sets of F
form a topology. This topology is called the order-topology. A function f : [a, b]→ F is called
continuous if the inverse image of every open subinterval of F is open, i.e. {x : f(x) ∈ (c, d)} is
open for all c, d ∈ F .

Theorem A.0.3 (Boltzano’s Theorem). Assume IND. Let f : [a, b] → F be a definable
continuous function. If f(a) < c < f(b), then there is a t ∈ [a, b] such that f(t) = c.

proof. Let A := {[x, y] ⊆ [a, b] : (∀t ∈ [x, y] f(t) < c) ∨ (∀t ∈ [x, y] f(t) > c)} and assume that
there is no such t ∈ [a, b] that f(t) = c. A is definable since f is definable. A is beginable since
f is continuous. The connectability of A is also clear. Thus from Cousin’s lemma we get that
∀t ∈ [a, b] f(t) < c or ∀t ∈ [a, b] f(t) > c. So if f(a) < c and f(b) > c, then there must be some
t where f(t) = c. This completes the proof of the theorem.2 �

Theorem A.0.4. Assume IND. Let f : [a, b] → F be a definable continuous function. Then
sup{f(x) : x ∈ [a, b]} exists and there is a t ∈ [a, b] where f(t) = sup{f(x) : x ∈ [a, b]}.

proof. Let H := {f(x) : x ∈ [a, b]} and A := {[x, y] ⊆ [a, b] : ∃c ∈ F ∀t ∈ [x, y] f(t) < c}. Since
A is definable, beginable and connectable therefore H is bounded by Cosine’s Lemma. Thus
from IND it follows that supH exists since H is nonempty, definable and bounded. If there is no
t ∈ [a, b] such that f(t) = supH, then A := {[x, y] ⊆ [a, b] : ∃q ∈ F ∀t ∈ [x, y] f(t) < q < supH}
is also definable, beginable and connectable. Thus [a, b] ∈ A by Cousin’s lemma. Thus there is a
q < supH such that f(t) < q for all t ∈ [a, b] and this contradicts the supremum property. This
completes the proof of the theorem.2 �

A function f from H ⊆ F n to F k is called continuous at q ∈ H if the usual formula of
continuity holds for f , i.e.:

∀ε ∈ F+ ∃δ ∈ F+ ∀p ∈ H |q − p| < δ =⇒ |f(q)− f(p)| < ε.

The function f is called continuous if it is continuous at every q ∈ H; and f is called uniformly
continuous if it is continuous and the same δ is good for every q ∈ H for a given ε.

We call a set G ⊆ F n open iff for all p ∈ G there is an ε ∈ F+ such that Bε(p) ⊂ G. Let
H ⊆ F n. The interior of H is defined as int(H) := {p ∈ H : ∃ε ∈ F + Bε(p) ⊂ H}. We call a
set Z ⊆ F n closed iff F n \ Z is open. Notice that {p} is open for all p ∈ F n.

2In the proof of Lemma A.0.2 and Theorems A.0.3 and A.0.4, we used only that 〈F,≤〉 is an (linearly) ordered
set and the language of INDL contains the binary relation symbol ≤ and the unary relation symbol F .
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Proposition A.0.5. Let f : F n −→ Fm. The following three statement are equivalent:

(i) f is continuous.

(ii) The f−1-image of a closed set is closed.

(iii) The f−1-image of a open set is open. �

It is well known and also easy to see that this definition and the definition mentioned earlier
for the continuity is the same for functions from [a, b] ⊂ F to F .

We say that function f : [a, b] −→ F is locally maximal at x ∈ (a, b) iff there is a δ ∈ F +

such that f(y) ≤ f(x) for all y ∈ (x− δ, x + δ). The local minimality is defined analogously.
We can generalize the definitions of differentiability and the limit of a function in a similar

way to the continuity. We say that function f from H ⊆ F n to F k tends to a ∈ F k while p ∈ H
tends to q ∈ H if the usual formula for the limit of a function holds for f :

∀ε ∈ F+ ∃δ ∈ F+ ∀p ∈ H 0 < |q − p| < δ =⇒ |a− f(p)| < ε.

This a is unique iff q is not an isolated point of H, i.e. ∀ε ∈ F + B◦ε(q) ∩H 6= ∅. In this case, we
call a the limit of the function f in the point q and we write that limp→q f(p) = a.

Let H ⊆ F n. We say that a function f : H −→ Fm is differentiable in q ∈ H if the usual
formula

∀ε ∈ F+ ∃δ ∈ F+ ∀p ∈ H ∩Bδ(q) |f(p)− f(q)−A(p− q)| ≤ ε |p− q|
holds for some linear map A : F n −→ Fm. This a A is unique if, q is in the interior of H, i.e.
q ∈ int(H). In this situation, call A the differential of f and denote it by dqf .

In the case when f is a function from H ⊆ F to F k, the differential of f , if it exists and is
unique, can be defined as the limit of the function h 7→ f(q+h)−f(q)

h
, i.e. as limh→0

f(q+h)−f(q)
h

.
In this situation, the differential of f in q ∈ H is not a linear map but a vector. In this case,
we use the notation f ′(q) for the differential and we call it the derivate vector of f in q. The
connection between the two definition is the following: dqf(t) = tf ′(q) where t ∈ F .

Notice that the basic properties of the limit and the differential are true over any ordered field
since we used only the ordered field property of the real numbers while we were proving them.

The proof of the following theorem also uses only the ordered field property of the real numbers,
cf., e.g. [18].

Theorem A.0.6 (chain rule). Let g : F n → Fm and f : Fm → F k. If g is differentiable
in t ∈ F n and f is differentiable in g(t), then g ◦ f is differentiable in t and its differential is
dtg ◦ dg(t)f , i.e.

dt(g ◦ f) = dtg ◦ dg(t)f.

in particular if g : F → Fm and f : Fm → F k, then

(g ◦ f)′(t) = dg(t)f
(
g′(t)

)
.

proof. The proof is the same as in real analysis, cf., e.g. [18, Theorem 5.5]. �

Proposition A.0.7. The differential of an affine map is its linear part; i.e. if A : F n → Fm is an
affine map, then dqA(p) = A(p)−A(o), where q, p ∈ F n and o is the origin of F n.

proof. The proof is straightforward from the definitions. �

Corollary A.0.8. If g : F → F n and A : F n → Fm is an affine map, then (g ◦ A)′(t) =
A

(
g′(t)

)
−A(o). �
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Proposition A.0.9. If a function f : [a, b] → F is locally maximal (minimal) and differentiable
in x ∈ (a, b), then its differential is 0 at x, i.e. f ′(x) = 0.

proof. The proof is the same as in real analysis, cf., e.g. [18, Theorem 5.8]. �

Theorem A.0.10 (Darboux’s Theorem). Assume IND. Let f : F → F be a definable and
differentiable function and let a, b ∈ F . Then for all d ∈ F between f ′(a) and f ′(b) there is a
c ∈ F between a and b such that f ′(c) = d.

proof. We can assume that f ′(a) > d > f ′(b). Let g(t) := f(t) − td. Then g is differentiable
and g′(a) > 0, g′(b) < 0. Thus g cannot be maximal in a or b by Proposition A.0.9. Thus, from
Theorem A.0.4, we get that there is a point, say c, between a and b where g is maximal. Thus
also form Proposition A.0.9, we get that g ′(c) = f ′(c)− d = 0. �

Theorem A.0.11 (Mean Value Theorem). Assume IND. Let f : [a, b] → F be a definable
continuous function which is differentiable on (a, b). Then there is at least one point t ∈ (a, b)

such that f ′(t) = f(b)−f(a)
b−a

.

proof. Let h(t) :=
(
f(b) − f(a)

)
t − (b − a)f(t). Then h is continuous on [a, b], differentiable on

(a, b) and h(a) = f(b)a− bf(a) = h(b). If h is constant then h′(t) = 0 for all t ∈ (a, b). Otherwise
there is a maximum/minimum of h different from h(a) = h(b) in some t ∈ (a, b). Hence h ′(t) = 0
by Theorem A.0.9. This completes the proof since h′(t) = f(b)− f(a)− (b− a)f ′(t). �

Corollary A.0.12 (Rolle’s Theorem). Assume IND. Let f : [a, b] → F be a definable contin-
uous function which is differentiable on (a, b). If f(a) = f(b), then there is at least one point
t ∈ (a, b) such that f ′(t) = 0. �

Corollary A.0.13. Assume IND. Let γ : F −→ F n be a definable and differentiable curve. Then
for all distinct a, b ∈ F and for every (n− 1)-dimensional subspace H that contains γ(a) − γ(b),
there is at least one c between a and b such that γ ′(c) is in H.

proof. The derivate vector of a curve γ composed by a linear map A in t ∈ F is the A-image of γ ′(t)
by Corollary A.0.8. Since any (n−1)-dimensional subspace of F n can be taken to {0}×F n−1 by a
linear transformation, we can assume thatH = {0}×F n−1. Recall that the function πt : F n −→ F
is defined as p 7→ pt. Then γ ◦ πt(a) = γ ◦ πt(b) since γ(a) − γ(b) ∈ H. By applying the Rolle’s
Theorem to γ ◦ πt, we get that there is a c ∈ F such that (γ ◦ πt)

′(c) = 0. Thus γ ′(c) is in with
H since (γ ◦ πt)

′(c) = πt

(
γ′(c)

)
= γ′(c)t by Corollary A.0.8. �

Proposition A.0.14. Assume IND. Let f : (a, b) → F be a definable differentiable function for
some a, b ∈ F . If f ′(t) = 0 for all t ∈ (a, b) then there is a c ∈ F such that f(t) = c for all
t ∈ (a, b).

proof. If there are x, y ∈ (a, b) such that f(x) 6= f(y) and x 6= y, then from Theorem A.0.11
there is a t between x and y such that f ′(t)(y − x) = f(y) − f(x) 6= 0 and this contradicts that
f ′(t) = 0. �

Proposition A.0.15. Assume IND. Let γ : F −→ F n be a definable and continuous curve. Then
(i) and (ii) below hold:

(i) γ is time-like =⇒ γ is STL.

(ii) γ is STL or FTL or it has a light-like chord.
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proof. To prove the first statement, let us assume that γ is not STL. Then it has a light-like or
space-like chord, say {p, q}. Let H be a (n − 1)-dimensional subspace that contains p − q and
does not contain time-like vectors. Thus, by Corollary A.0.13, we get that there is t ∈ F such
that γ′(t) is in H. Since H does not contain time-like vectors, γ ′(t) is not time like. Thus γ is
not time-like.

To prove the second statement, let us assume that γ is not STL or FTL and does not have a
light-like chord. Then γ has both time-like and space-like chords. Then there are distinct points
a, b, c ∈ Rng(γ) such that the triangle {a, b, c} determines two time-like and one space-like or two
space-like and one time-like chords of γ. We can assume that γ(0) = c and c is the intersection of
the chords that have same type. See Figure A.1.

For every p ∈ Rng(γ), by IND, there is a closest t ∈ F to 0 such that γ(t) = p, i.e. the set
H := { |x| : γ(x) = p } has a minimal element.3 Thus there is a t ∈ F such that γ(t) is a or b and
there is no t′ between 0 and t such that γ(t′) is a or b. We can assume that γ(t) = a and t > 0.

Let f : F n \ {b} −→ F be the function defined as p 7→ |(p−b)t|
|p−b| . It is easy to see that f is

continuous and for all p ∈ F n \ {b}

f(p) = 1/
√

2 ⇐⇒ p− b is light-like,

f(p) > 1/
√

2 ⇐⇒ p− b is time-like, (A.1)

f(p) < 1/
√

2 ⇐⇒ p− b is space-like.

Consider the function g := γ
∣∣
[0,t]
◦ f . It is a continuous function. Furthermore, Dom(g) = [0, t]

since there is no t′ ∈ [0, t] such that γ(t′) = b. By (A.1) above and by the fact that γ(0) = c and

3This is so because of the following. Let s be the supremum of the non-empty bounded definable set {−|x| :
γ(x) = p }. By the continuity of γ, one of γ(s) and γ(−s) must be p. But then −s is the minimal element of H.
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γ(t) = a, we have

(
g(0) > 1/

√
2 and g(t) < 1/

√
2
)

or
(
g(0) < 1/

√
2 and g(t) > 1/

√
2

)

because one of the chords {b, c}, {b, a} is time-like and the other is space-like. But then, by
Bolzano’s theorem, there is y ∈ [0, t] such that g(y) = 1/

√
2. For this y, by (A.1) above, we have

that γ(y)− b is light-like. But then {b, γ(y)} is a light-like chord of γ. This contradiction proves
our proposition. �
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Ax�, 18
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AxEv, 8
AxEvTr, 9
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AxFrame, 5
AxLine, 29
AxLinTime, 10
AxOb, 20
AxOccam, 12
AxPh, 8
AxPh0, 10

AxPh00, 10
AxPhloc
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AxPh?, 10
AxPhTr, 9
AxPoi+, 34
AxSelf, 8
AxSelf loc, 8
AxSlowTime, 20
AxSupϕ, 30
AxSym, 18
AxSym0, 29
AxSymTime, 18
AxTwp, 15
Ax∃∃Twp, 22
Ax∃∀Twp, 22
Ax∀∃Twp, 22

B, 4
Bε(p), 7
B◦ε(p), 7
ball, 7
base-model, 11
base-observer, 11
beginable, 36
bodies, 4
brothers, 6

causal curve, 26
causal vector, 26
CD(m), 5
chronological future, 26
chronological past, 25
collineation, 24
composition of relations, 5
connectable, 36
continuity, 37
continuous, 37
convex, 15
convexconvex(p, q, r), 15
coordinate domain, 5

d(m), 5

43



dqf , 38
definable, 36
dense set, 25
differentiability, 38
dimension of a frame model, 9
dimension of an observer, 5
disjoint union of frame models, 11
Dom(R), 5
domain, 5

Einstein’s principle of
(general) relativity , 28

Einstein’s special principle of relativity, 17
eternal, 27
ETH, 27
Euclidean-length, 7
Ev, 6
Evm, 5
evm(b), 5
event, 5
event function, 5
everseen, 27
EVS, 27

F = R, 5
F+, 7
fk

m, 6
faster-than-light, 26
frame language, 4
frame model, 5
FTL, 26
function, 5
future light-cone, 25
future preserving Poincaré transformation, 34
future-directed vector, 26

gluing models, 12

Hyp, 17

Ib, 29
IdA, 5
identity relation, 5
R-image, 5
IND, 30
inertial body, 29
inertial observer, 29
injective relation, 5
inverse of a relation, 5
IOb, 29

Kinem0, 10

life-curve, 24
life-line, 6
light-cone, 25
light-like separated points, 26
light-like vector, 26
Linesn, 7
linking bodies, 12
local maximum, 37
local minimum, 37

M, 5
M

rad
m,γ , 34

M
tan
m,γ , 35

measured time, 13
meet, 13
meetpm(a, b), 13
meetTwpm(âb, c)(p, q, r), 14
Minkowski-orthogonality, 17
Minkowski parametrization, 31
Minkowski-product, 17
Minkowski-distance, 30
Minkowski-length, 31
Minkowski-sphere, 15
MSt

m, 15

noFTL, 12

Obn, 4
Ob, 4
observationally connected, 11
observer, 4
Occamization, 12
open, 37
order-topology, 37
origin, 7

P , 8
p • q, 17
p ∼k

m q, 17
p+, 15
ps, 7
pt, 7
past light-cone, 25
photon-line, 8
photon-quadrangle, 17
photons, 8
Poincaré-transformation, 30
pq, 7
preserving axioms, 11
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punctured ball, 7

quantities, 4

R[A], 5
R ◦ S, 5
R, 5
radar construction, 34
range, 5
real-closed field, 36
removing bodies or observers, 11
restriction of the domain, 11
Rng(R), 5

see, 6
self-orthogonal, 17
simk

m(t) = t, 17
simultaneity, 17
slope, 7
slower-than-light, 26
space component, 7
space-like separated points, 26
Specrel, 20
Specrel0, 8
Specrelin, 29
Specrel?

0
, 10

STL, 26
strongly see, 6

t̄n, 7
t̄ϕ, 30
tangent construction, 35
time component, 7
time-axis, 7
time-like curve, 26
time-like separated points, 26
time-like vector, 26
time-unit, 10
time-unit vector, 7
Timem

k (p, q), 13
trm(b), 6
trace, 6
twin paradox relation, 13
twin paradox situation, 14
Twpm(âb < c)(p, q, r), 15
Twpm(a < b)(p, q), 13
Twpm(a ≤ i)(p, q), 33

uniformly continuous, 37

W (m, b, p), 5

well-configuredness, 15
well-parametrized curve, 26
word-view function, 5
world-view, 5
world-view relation, 4
world-view transformation, 6
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inst.hu/pub/algebraic-logic/Contents.html. 1312 pp.
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